Содержание
- CUDA_ERROR_INVALID_VALUE • man page
- CUDA_ERROR_INVALID_VALUE (3)
- Data Structures
- Defines
- Typedefs
- Enumerations
- #define CUDA_ARRAY3D_2DARRAY 0x01
- #define CUDA_ARRAY3D_CUBEMAP 0x04
- #define CUDA_ARRAY3D_DEPTH_TEXTURE 0x10
- #define CUDA_ARRAY3D_LAYERED 0x01
- #define CUDA_ARRAY3D_SURFACE_LDST 0x02
- #define CUDA_ARRAY3D_TEXTURE_GATHER 0x08
- #define CUDA_VERSION 8000
- #define MAX_PLANES 3
- Typedef Documentation
- typedef struct CUarray_st* CUarray
- typedef struct CUctx_st* CUcontext
- typedef int CUdevice
- typedef unsigned int CUdeviceptr
- typedef struct CUeglStreamConnection_st* CUeglStreamConnection
- typedef struct CUevent_st* CUevent
- typedef struct CUfunc_st* CUfunction
- typedef struct CUgraphicsResource_st* CUgraphicsResource
- typedef struct CUmipmappedArray_st* CUmipmappedArray
- typedef struct CUmod_st* CUmodule
- typedef size_t(CUDA_CB * CUoccupancyB2DSize)(int blockSize)
- typedef struct CUstream_st* CUstream
- typedef void(CUDA_CB * CUstreamCallback)(CUstream hStream, CUresult status, void *userData)
- typedef unsigned long long CUsurfObject
- typedef struct CUsurfref_st* CUsurfref
- typedef unsigned long long CUtexObject
- typedef struct CUtexref_st* CUtexref
- Enumeration Type Documentation
- enum CUaddress_mode
- enum CUarray_cubemap_face
- enum CUarray_format
- enum CUcomputemode
- enum CUctx_flags
- enum CUdevice_attribute
- enum CUdevice_P2PAttribute
- enum CUeglColorFormat
- enum CUeglFrameType
- enum CUeglResourceLocationFlags
- enum CUevent_flags
- enum CUfilter_mode
- enum CUfunc_cache
- enum CUfunction_attribute
- enum CUgraphicsMapResourceFlags
- enum CUgraphicsRegisterFlags
- enum CUipcMem_flags
- enum CUjit_cacheMode
- enum CUjit_fallback
- enum CUjit_option
- enum CUjit_target
- enum CUjitInputType
- enum CUlimit
- enum CUmem_advise
- enum CUmem_range_attribute
- enum CUmemAttach_flags
- enum CUmemorytype
- enum CUoccupancy_flags
- enum CUpointer_attribute
- enum CUresourcetype
- enum CUresourceViewFormat
- enum CUresult
- enum CUsharedconfig
- enum CUstream_flags
- enum CUstreamBatchMemOpType
- enum CUstreamWaitValue_flags
- enum CUstreamWriteValue_flags
- Author
CUDA_ERROR_INVALID_VALUE • man page
CUDA_ERROR_INVALID_VALUE (3)
Data Structures
Defines
#define CU_DEVICE_CPU ((CUdevice)-1)
#define CU_DEVICE_INVALID ((CUdevice)-2)
#define CU_IPC_HANDLE_SIZE 64
#define CU_LAUNCH_PARAM_BUFFER_POINTER ((void*)0x01)
#define CU_LAUNCH_PARAM_BUFFER_SIZE ((void*)0x02)
#define CU_LAUNCH_PARAM_END ((void*)0x00)
#define CU_MEMHOSTALLOC_DEVICEMAP 0x02
#define CU_MEMHOSTALLOC_PORTABLE 0x01
#define CU_MEMHOSTALLOC_WRITECOMBINED 0x04
#define CU_MEMHOSTREGISTER_DEVICEMAP 0x02
#define CU_MEMHOSTREGISTER_IOMEMORY 0x04
#define CU_MEMHOSTREGISTER_PORTABLE 0x01
#define CU_PARAM_TR_DEFAULT -1
#define CU_STREAM_LEGACY ((CUstream)0x1)
#define CU_STREAM_PER_THREAD ((CUstream)0x2)
#define CU_TRSA_OVERRIDE_FORMAT 0x01
#define CU_TRSF_NORMALIZED_COORDINATES 0x02
#define CU_TRSF_READ_AS_INTEGER 0x01
#define CU_TRSF_SRGB 0x10
#define CUDA_ARRAY3D_2DARRAY 0x01
#define CUDA_ARRAY3D_CUBEMAP 0x04
#define CUDA_ARRAY3D_DEPTH_TEXTURE 0x10
#define CUDA_ARRAY3D_LAYERED 0x01
#define CUDA_ARRAY3D_SURFACE_LDST 0x02
#define CUDA_ARRAY3D_TEXTURE_GATHER 0x08
#define CUDA_VERSION 8000
#define MAX_PLANES 3
Typedefs
typedef struct CUarray_st * CUarray
typedef struct CUctx_st * CUcontext
typedef int CUdevice
typedef unsigned int CUdeviceptr
typedef struct CUeglStreamConnection_st * CUeglStreamConnection
typedef struct CUevent_st * CUevent
typedef struct CUfunc_st * CUfunction
typedef struct CUgraphicsResource_st * CUgraphicsResource
typedef struct CUmipmappedArray_st * CUmipmappedArray
typedef struct CUmod_st * CUmodule
typedef size_t(CUDA_CB * CUoccupancyB2DSize )(int blockSize)
typedef struct CUstream_st * CUstream
typedef void(CUDA_CB * CUstreamCallback )(CUstream hStream, CUresult status, void *userData)
typedef unsigned long long CUsurfObject
typedef struct CUsurfref_st * CUsurfref
typedef unsigned long long CUtexObject
typedef struct CUtexref_st * CUtexref
Enumerations
enum CUaddress_mode < CU_TR_ADDRESS_MODE_WRAP = 0, CU_TR_ADDRESS_MODE_CLAMP = 1, CU_TR_ADDRESS_MODE_MIRROR = 2, CU_TR_ADDRESS_MODE_BORDER = 3 >
enum CUarray_cubemap_face < CU_CUBEMAP_FACE_POSITIVE_X = 0x00, CU_CUBEMAP_FACE_NEGATIVE_X = 0x01, CU_CUBEMAP_FACE_POSITIVE_Y = 0x02, CU_CUBEMAP_FACE_NEGATIVE_Y = 0x03, CU_CUBEMAP_FACE_POSITIVE_Z = 0x04, CU_CUBEMAP_FACE_NEGATIVE_Z = 0x05 >
enum CUarray_format < CU_AD_FORMAT_UNSIGNED_INT8 = 0x01, CU_AD_FORMAT_UNSIGNED_INT16 = 0x02, CU_AD_FORMAT_UNSIGNED_INT32 = 0x03, CU_AD_FORMAT_SIGNED_INT8 = 0x08, CU_AD_FORMAT_SIGNED_INT16 = 0x09, CU_AD_FORMAT_SIGNED_INT32 = 0x0a, CU_AD_FORMAT_HALF = 0x10, CU_AD_FORMAT_FLOAT = 0x20 >
enum CUcomputemode < CU_COMPUTEMODE_DEFAULT = 0, CU_COMPUTEMODE_PROHIBITED = 2, CU_COMPUTEMODE_EXCLUSIVE_PROCESS = 3 >
enum CUctx_flags < CU_CTX_SCHED_AUTO = 0x00, CU_CTX_SCHED_SPIN = 0x01, CU_CTX_SCHED_YIELD = 0x02, CU_CTX_SCHED_BLOCKING_SYNC = 0x04, CU_CTX_BLOCKING_SYNC = 0x04, CU_CTX_MAP_HOST = 0x08, CU_CTX_LMEM_RESIZE_TO_MAX = 0x10 >
enum CUdevice_attribute < CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK = 1, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X = 2, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y = 3, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z = 4, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X = 5, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y = 6, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z = 7, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK = 8, CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK = 8, CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY = 9, CU_DEVICE_ATTRIBUTE_WARP_SIZE = 10, CU_DEVICE_ATTRIBUTE_MAX_PITCH = 11, CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK = 12, CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK = 12, CU_DEVICE_ATTRIBUTE_CLOCK_RATE = 13, CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT = 14, CU_DEVICE_ATTRIBUTE_GPU_OVERLAP = 15, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT = 16, CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT = 17, CU_DEVICE_ATTRIBUTE_INTEGRATED = 18, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY = 19, CU_DEVICE_ATTRIBUTE_COMPUTE_MODE = 20, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH = 21, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH = 22, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT = 23, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH = 24, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT = 25, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH = 26, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH = 27, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT = 28, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS = 29, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_WIDTH = 27, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_HEIGHT = 28, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_NUMSLICES = 29, CU_DEVICE_ATTRIBUTE_SURFACE_ALIGNMENT = 30, CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS = 31, CU_DEVICE_ATTRIBUTE_ECC_ENABLED = 32, CU_DEVICE_ATTRIBUTE_PCI_BUS_ID = 33, CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID = 34, CU_DEVICE_ATTRIBUTE_TCC_DRIVER = 35, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE = 36, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH = 37, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE = 38, CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR = 39, CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT = 40, CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING = 41, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_WIDTH = 42, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_LAYERS = 43, CU_DEVICE_ATTRIBUTE_CAN_TEX2D_GATHER = 44, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_WIDTH = 45, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_HEIGHT = 46, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH_ALTERNATE = 47, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT_ALTERNATE = 48, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH_ALTERNATE = 49, CU_DEVICE_ATTRIBUTE_PCI_DOMAIN_ID = 50, CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT = 51, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_WIDTH = 52, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_WIDTH = 53, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_LAYERS = 54, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_WIDTH = 55, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_WIDTH = 56, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_HEIGHT = 57, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_WIDTH = 58, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_HEIGHT = 59, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_DEPTH = 60, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_WIDTH = 61, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_LAYERS = 62, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_WIDTH = 63, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_HEIGHT = 64, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_LAYERS = 65, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_WIDTH = 66, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_WIDTH = 67, CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_LAYERS = 68, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LINEAR_WIDTH = 69, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_WIDTH = 70, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_HEIGHT = 71, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_PITCH = 72, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_WIDTH = 73, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_HEIGHT = 74, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR = 75, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR = 76, CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_MIPMAPPED_WIDTH = 77, CU_DEVICE_ATTRIBUTE_STREAM_PRIORITIES_SUPPORTED = 78, CU_DEVICE_ATTRIBUTE_GLOBAL_L1_CACHE_SUPPORTED = 79, CU_DEVICE_ATTRIBUTE_LOCAL_L1_CACHE_SUPPORTED = 80, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR = 81, CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_MULTIPROCESSOR = 82, CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY = 83, CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD = 84, CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD_GROUP_ID = 85, CU_DEVICE_ATTRIBUTE_HOST_NATIVE_ATOMIC_SUPPORTED = 86, CU_DEVICE_ATTRIBUTE_SINGLE_TO_DOUBLE_PRECISION_PERF_RATIO = 87, CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS = 88, CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS = 89, CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED = 90, CU_DEVICE_ATTRIBUTE_CAN_USE_HOST_POINTER_FOR_REGISTERED_MEM = 91 >
enum CUdevice_P2PAttribute < CU_DEVICE_P2P_ATTRIBUTE_PERFORMANCE_RANK = 0x01, CU_DEVICE_P2P_ATTRIBUTE_ACCESS_SUPPORTED = 0x02, CU_DEVICE_P2P_ATTRIBUTE_NATIVE_ATOMIC_SUPPORTED = 0x03 >
enum CUeglColorFormat < CU_EGL_COLOR_FORMAT_YUV420_PLANAR = 0x00, CU_EGL_COLOR_FORMAT_YUV420_SEMIPLANAR = 0x01, CU_EGL_COLOR_FORMAT_YUV422_PLANAR = 0x02, CU_EGL_COLOR_FORMAT_YUV422_SEMIPLANAR = 0x03, CU_EGL_COLOR_FORMAT_RGB = 0x04, CU_EGL_COLOR_FORMAT_BGR = 0x05, CU_EGL_COLOR_FORMAT_ARGB = 0x06, CU_EGL_COLOR_FORMAT_RGBA = 0x07, CU_EGL_COLOR_FORMAT_L = 0x08, CU_EGL_COLOR_FORMAT_R = 0x09 >
enum CUeglFrameType < CU_EGL_FRAME_TYPE_ARRAY = 0, CU_EGL_FRAME_TYPE_PITCH = 1 >
enum CUeglResourceLocationFlags < CU_EGL_RESOURCE_LOCATION_SYSMEM = 0x00, CU_EGL_RESOURCE_LOCATION_VIDMEM = 0x01 >
enum CUevent_flags < CU_EVENT_DEFAULT = 0x0, CU_EVENT_BLOCKING_SYNC = 0x1, CU_EVENT_DISABLE_TIMING = 0x2, CU_EVENT_INTERPROCESS = 0x4 >
enum CUfilter_mode < CU_TR_FILTER_MODE_POINT = 0, CU_TR_FILTER_MODE_LINEAR = 1 >
enum CUfunc_cache < CU_FUNC_CACHE_PREFER_NONE = 0x00, CU_FUNC_CACHE_PREFER_SHARED = 0x01, CU_FUNC_CACHE_PREFER_L1 = 0x02, CU_FUNC_CACHE_PREFER_EQUAL = 0x03 >
enum CUfunction_attribute < CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK = 0, CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES = 1, CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES = 2, CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES = 3, CU_FUNC_ATTRIBUTE_NUM_REGS = 4, CU_FUNC_ATTRIBUTE_PTX_VERSION = 5, CU_FUNC_ATTRIBUTE_BINARY_VERSION = 6, CU_FUNC_ATTRIBUTE_CACHE_MODE_CA = 7 >
enum CUipcMem_flags < CU_IPC_MEM_LAZY_ENABLE_PEER_ACCESS = 0x1 >
enum CUjit_cacheMode < CU_JIT_CACHE_OPTION_NONE = 0, CU_JIT_CACHE_OPTION_CG, CU_JIT_CACHE_OPTION_CA >
enum CUjit_fallback < CU_PREFER_PTX = 0, CU_PREFER_BINARY >
enum CUjit_option < CU_JIT_MAX_REGISTERS = 0, CU_JIT_THREADS_PER_BLOCK, CU_JIT_WALL_TIME, CU_JIT_INFO_LOG_BUFFER, CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES, CU_JIT_ERROR_LOG_BUFFER, CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES, CU_JIT_OPTIMIZATION_LEVEL, CU_JIT_TARGET_FROM_CUCONTEXT, CU_JIT_TARGET, CU_JIT_FALLBACK_STRATEGY, CU_JIT_GENERATE_DEBUG_INFO, CU_JIT_LOG_VERBOSE, CU_JIT_GENERATE_LINE_INFO, CU_JIT_CACHE_MODE, CU_JIT_NEW_SM3X_OPT >
enum CUjit_target < CU_TARGET_COMPUTE_10 = 10, CU_TARGET_COMPUTE_11 = 11, CU_TARGET_COMPUTE_12 = 12, CU_TARGET_COMPUTE_13 = 13, CU_TARGET_COMPUTE_20 = 20, CU_TARGET_COMPUTE_21 = 21, CU_TARGET_COMPUTE_30 = 30, CU_TARGET_COMPUTE_32 = 32, CU_TARGET_COMPUTE_35 = 35, CU_TARGET_COMPUTE_37 = 37, CU_TARGET_COMPUTE_50 = 50, CU_TARGET_COMPUTE_52 = 52, CU_TARGET_COMPUTE_53 = 53, CU_TARGET_COMPUTE_60 = 60, CU_TARGET_COMPUTE_61 = 61, CU_TARGET_COMPUTE_62 = 62 >
enum CUjitInputType < CU_JIT_INPUT_CUBIN = 0, CU_JIT_INPUT_PTX, CU_JIT_INPUT_FATBINARY, CU_JIT_INPUT_OBJECT, CU_JIT_INPUT_LIBRARY >
enum CUlimit < CU_LIMIT_STACK_SIZE = 0x00, CU_LIMIT_PRINTF_FIFO_SIZE = 0x01, CU_LIMIT_MALLOC_HEAP_SIZE = 0x02, CU_LIMIT_DEV_RUNTIME_SYNC_DEPTH = 0x03, CU_LIMIT_DEV_RUNTIME_PENDING_LAUNCH_COUNT = 0x04 >
enum CUmem_advise < CU_MEM_ADVISE_SET_READ_MOSTLY = 1, CU_MEM_ADVISE_UNSET_READ_MOSTLY = 2, CU_MEM_ADVISE_SET_PREFERRED_LOCATION = 3, CU_MEM_ADVISE_UNSET_PREFERRED_LOCATION = 4, CU_MEM_ADVISE_SET_ACCESSED_BY = 5, CU_MEM_ADVISE_UNSET_ACCESSED_BY = 6 >
enum CUmem_range_attribute < CU_MEM_RANGE_ATTRIBUTE_READ_MOSTLY = 1, CU_MEM_RANGE_ATTRIBUTE_PREFERRED_LOCATION = 2, CU_MEM_RANGE_ATTRIBUTE_ACCESSED_BY = 3, CU_MEM_RANGE_ATTRIBUTE_LAST_PREFETCH_LOCATION = 4 >
enum CUmemAttach_flags < CU_MEM_ATTACH_GLOBAL = 0x1, CU_MEM_ATTACH_HOST = 0x2, CU_MEM_ATTACH_SINGLE = 0x4 >
enum CUmemorytype < CU_MEMORYTYPE_HOST = 0x01, CU_MEMORYTYPE_DEVICE = 0x02, CU_MEMORYTYPE_ARRAY = 0x03, CU_MEMORYTYPE_UNIFIED = 0x04 >
enum CUoccupancy_flags < CU_OCCUPANCY_DEFAULT = 0x0, CU_OCCUPANCY_DISABLE_CACHING_OVERRIDE = 0x1 >
enum CUpointer_attribute < CU_POINTER_ATTRIBUTE_CONTEXT = 1, CU_POINTER_ATTRIBUTE_MEMORY_TYPE = 2, CU_POINTER_ATTRIBUTE_DEVICE_POINTER = 3, CU_POINTER_ATTRIBUTE_HOST_POINTER = 4, CU_POINTER_ATTRIBUTE_P2P_TOKENS = 5, CU_POINTER_ATTRIBUTE_SYNC_MEMOPS = 6, CU_POINTER_ATTRIBUTE_BUFFER_ID = 7, CU_POINTER_ATTRIBUTE_IS_MANAGED = 8 >
enum CUresourcetype < CU_RESOURCE_TYPE_ARRAY = 0x00, CU_RESOURCE_TYPE_MIPMAPPED_ARRAY = 0x01, CU_RESOURCE_TYPE_LINEAR = 0x02, CU_RESOURCE_TYPE_PITCH2D = 0x03 >
enum CUresourceViewFormat < CU_RES_VIEW_FORMAT_NONE = 0x00, CU_RES_VIEW_FORMAT_UINT_1X8 = 0x01, CU_RES_VIEW_FORMAT_UINT_2X8 = 0x02, CU_RES_VIEW_FORMAT_UINT_4X8 = 0x03, CU_RES_VIEW_FORMAT_SINT_1X8 = 0x04, CU_RES_VIEW_FORMAT_SINT_2X8 = 0x05, CU_RES_VIEW_FORMAT_SINT_4X8 = 0x06, CU_RES_VIEW_FORMAT_UINT_1X16 = 0x07, CU_RES_VIEW_FORMAT_UINT_2X16 = 0x08, CU_RES_VIEW_FORMAT_UINT_4X16 = 0x09, CU_RES_VIEW_FORMAT_SINT_1X16 = 0x0a, CU_RES_VIEW_FORMAT_SINT_2X16 = 0x0b, CU_RES_VIEW_FORMAT_SINT_4X16 = 0x0c, CU_RES_VIEW_FORMAT_UINT_1X32 = 0x0d, CU_RES_VIEW_FORMAT_UINT_2X32 = 0x0e, CU_RES_VIEW_FORMAT_UINT_4X32 = 0x0f, CU_RES_VIEW_FORMAT_SINT_1X32 = 0x10, CU_RES_VIEW_FORMAT_SINT_2X32 = 0x11, CU_RES_VIEW_FORMAT_SINT_4X32 = 0x12, CU_RES_VIEW_FORMAT_FLOAT_1X16 = 0x13, CU_RES_VIEW_FORMAT_FLOAT_2X16 = 0x14, CU_RES_VIEW_FORMAT_FLOAT_4X16 = 0x15, CU_RES_VIEW_FORMAT_FLOAT_1X32 = 0x16, CU_RES_VIEW_FORMAT_FLOAT_2X32 = 0x17, CU_RES_VIEW_FORMAT_FLOAT_4X32 = 0x18, CU_RES_VIEW_FORMAT_UNSIGNED_BC1 = 0x19, CU_RES_VIEW_FORMAT_UNSIGNED_BC2 = 0x1a, CU_RES_VIEW_FORMAT_UNSIGNED_BC3 = 0x1b, CU_RES_VIEW_FORMAT_UNSIGNED_BC4 = 0x1c, CU_RES_VIEW_FORMAT_SIGNED_BC4 = 0x1d, CU_RES_VIEW_FORMAT_UNSIGNED_BC5 = 0x1e, CU_RES_VIEW_FORMAT_SIGNED_BC5 = 0x1f, CU_RES_VIEW_FORMAT_UNSIGNED_BC6H = 0x20, CU_RES_VIEW_FORMAT_SIGNED_BC6H = 0x21, CU_RES_VIEW_FORMAT_UNSIGNED_BC7 = 0x22 >
enum CUresult < CUDA_SUCCESS = 0, CUDA_ERROR_INVALID_VALUE = 1, CUDA_ERROR_OUT_OF_MEMORY = 2, CUDA_ERROR_NOT_INITIALIZED = 3, CUDA_ERROR_DEINITIALIZED = 4, CUDA_ERROR_PROFILER_DISABLED = 5, CUDA_ERROR_PROFILER_NOT_INITIALIZED = 6, CUDA_ERROR_PROFILER_ALREADY_STARTED = 7, CUDA_ERROR_PROFILER_ALREADY_STOPPED = 8, CUDA_ERROR_NO_DEVICE = 100, CUDA_ERROR_INVALID_DEVICE = 101, CUDA_ERROR_INVALID_IMAGE = 200, CUDA_ERROR_INVALID_CONTEXT = 201, CUDA_ERROR_CONTEXT_ALREADY_CURRENT = 202, CUDA_ERROR_MAP_FAILED = 205, CUDA_ERROR_UNMAP_FAILED = 206, CUDA_ERROR_ARRAY_IS_MAPPED = 207, CUDA_ERROR_ALREADY_MAPPED = 208, CUDA_ERROR_NO_BINARY_FOR_GPU = 209, CUDA_ERROR_ALREADY_ACQUIRED = 210, CUDA_ERROR_NOT_MAPPED = 211, CUDA_ERROR_NOT_MAPPED_AS_ARRAY = 212, CUDA_ERROR_NOT_MAPPED_AS_POINTER = 213, CUDA_ERROR_ECC_UNCORRECTABLE = 214, CUDA_ERROR_UNSUPPORTED_LIMIT = 215, CUDA_ERROR_CONTEXT_ALREADY_IN_USE = 216, CUDA_ERROR_PEER_ACCESS_UNSUPPORTED = 217, CUDA_ERROR_INVALID_PTX = 218, CUDA_ERROR_INVALID_GRAPHICS_CONTEXT = 219, CUDA_ERROR_NVLINK_UNCORRECTABLE = 220, CUDA_ERROR_INVALID_SOURCE = 300, CUDA_ERROR_FILE_NOT_FOUND = 301, CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND = 302, CUDA_ERROR_SHARED_OBJECT_INIT_FAILED = 303, CUDA_ERROR_OPERATING_SYSTEM = 304, CUDA_ERROR_INVALID_HANDLE = 400, CUDA_ERROR_NOT_FOUND = 500, CUDA_ERROR_NOT_READY = 600, CUDA_ERROR_ILLEGAL_ADDRESS = 700, CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES = 701, CUDA_ERROR_LAUNCH_TIMEOUT = 702, CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING = 703, CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED = 704, CUDA_ERROR_PEER_ACCESS_NOT_ENABLED = 705, CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE = 708, CUDA_ERROR_CONTEXT_IS_DESTROYED = 709, CUDA_ERROR_ASSERT = 710, CUDA_ERROR_TOO_MANY_PEERS = 711, CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED = 712, CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED = 713, CUDA_ERROR_HARDWARE_STACK_ERROR = 714, CUDA_ERROR_ILLEGAL_INSTRUCTION = 715, CUDA_ERROR_MISALIGNED_ADDRESS = 716, CUDA_ERROR_INVALID_ADDRESS_SPACE = 717, CUDA_ERROR_INVALID_PC = 718, CUDA_ERROR_LAUNCH_FAILED = 719, CUDA_ERROR_NOT_PERMITTED = 800, CUDA_ERROR_NOT_SUPPORTED = 801, CUDA_ERROR_UNKNOWN = 999 >
enum CUsharedconfig < CU_SHARED_MEM_CONFIG_DEFAULT_BANK_SIZE = 0x00, CU_SHARED_MEM_CONFIG_FOUR_BYTE_BANK_SIZE = 0x01, CU_SHARED_MEM_CONFIG_EIGHT_BYTE_BANK_SIZE = 0x02 >
enum CUstream_flags < CU_STREAM_DEFAULT = 0x0, CU_STREAM_NON_BLOCKING = 0x1 >
enum CUstreamBatchMemOpType < CU_STREAM_MEM_OP_WAIT_VALUE_32 = 1, CU_STREAM_MEM_OP_WRITE_VALUE_32 = 2, CU_STREAM_MEM_OP_FLUSH_REMOTE_WRITES = 3 >
enum CUstreamWaitValue_flags < CU_STREAM_WAIT_VALUE_GEQ = 0x0, CU_STREAM_WAIT_VALUE_EQ = 0x1, CU_STREAM_WAIT_VALUE_AND = 0x2, CU_STREAM_WAIT_VALUE_FLUSH = 1 linear conversion during texture read. Flag for cuTexRefSetFlags()
#define CUDA_ARRAY3D_2DARRAY 0x01
Deprecated, use CUDA_ARRAY3D_LAYERED
#define CUDA_ARRAY3D_CUBEMAP 0x04
If set, the CUDA array is a collection of six 2D arrays, representing faces of a cube. The width of such a CUDA array must be equal to its height, and Depth must be six. If CUDA_ARRAY3D_LAYERED flag is also set, then the CUDA array is a collection of cubemaps and Depth must be a multiple of six.
#define CUDA_ARRAY3D_DEPTH_TEXTURE 0x10
This flag if set indicates that the CUDA array is a DEPTH_TEXTURE.
#define CUDA_ARRAY3D_LAYERED 0x01
If set, the CUDA array is a collection of layers, where each layer is either a 1D or a 2D array and the Depth member of CUDA_ARRAY3D_DESCRIPTOR specifies the number of layers, not the depth of a 3D array.
#define CUDA_ARRAY3D_SURFACE_LDST 0x02
This flag must be set in order to bind a surface reference to the CUDA array
#define CUDA_ARRAY3D_TEXTURE_GATHER 0x08
This flag must be set in order to perform texture gather operations on a CUDA array.
#define CUDA_VERSION 8000
CUDA API version number
#define MAX_PLANES 3
Maximum number of planes per frame
Typedef Documentation
typedef struct CUarray_st* CUarray
typedef struct CUctx_st* CUcontext
typedef int CUdevice
typedef unsigned int CUdeviceptr
CUDA device pointer CUdeviceptr is defined as an unsigned integer type whose size matches the size of a pointer on the target platform.
typedef struct CUeglStreamConnection_st* CUeglStreamConnection
CUDA EGLSream Connection
typedef struct CUevent_st* CUevent
typedef struct CUfunc_st* CUfunction
typedef struct CUgraphicsResource_st* CUgraphicsResource
CUDA graphics interop resource
typedef struct CUmipmappedArray_st* CUmipmappedArray
CUDA mipmapped array
typedef struct CUmod_st* CUmodule
typedef size_t(CUDA_CB * CUoccupancyB2DSize)(int blockSize)
Block size to per-block dynamic shared memory mapping for a certain kernel
Parameters: blockSize Block size of the kernel.
Returns: The dynamic shared memory needed by a block.
typedef struct CUstream_st* CUstream
typedef void(CUDA_CB * CUstreamCallback)(CUstream hStream, CUresult status, void *userData)
CUDA stream callback
Parameters: hStream The stream the callback was added to, as passed to cuStreamAddCallback. May be NULL.
status CUDA_SUCCESS or any persistent error on the stream.
userData User parameter provided at registration.
typedef unsigned long long CUsurfObject
An opaque value that represents a CUDA surface object
typedef struct CUsurfref_st* CUsurfref
CUDA surface reference
typedef unsigned long long CUtexObject
An opaque value that represents a CUDA texture object
typedef struct CUtexref_st* CUtexref
CUDA texture reference
Enumeration Type Documentation
enum CUaddress_mode
Texture reference addressing modes
Enumerator: CU_TR_ADDRESS_MODE_WRAP Wrapping address mode CU_TR_ADDRESS_MODE_CLAMP Clamp to edge address mode CU_TR_ADDRESS_MODE_MIRROR Mirror address mode CU_TR_ADDRESS_MODE_BORDER Border address mode
enum CUarray_cubemap_face
Array indices for cube faces
Enumerator: CU_CUBEMAP_FACE_POSITIVE_X Positive X face of cubemap CU_CUBEMAP_FACE_NEGATIVE_X Negative X face of cubemap CU_CUBEMAP_FACE_POSITIVE_Y Positive Y face of cubemap CU_CUBEMAP_FACE_NEGATIVE_Y Negative Y face of cubemap CU_CUBEMAP_FACE_POSITIVE_Z Positive Z face of cubemap CU_CUBEMAP_FACE_NEGATIVE_Z Negative Z face of cubemap
enum CUarray_format
Enumerator: CU_AD_FORMAT_UNSIGNED_INT8 Unsigned 8-bit integers CU_AD_FORMAT_UNSIGNED_INT16 Unsigned 16-bit integers CU_AD_FORMAT_UNSIGNED_INT32 Unsigned 32-bit integers CU_AD_FORMAT_SIGNED_INT8 Signed 8-bit integers CU_AD_FORMAT_SIGNED_INT16 Signed 16-bit integers CU_AD_FORMAT_SIGNED_INT32 Signed 32-bit integers CU_AD_FORMAT_HALF 16-bit floating point CU_AD_FORMAT_FLOAT 32-bit floating point
enum CUcomputemode
Enumerator: CU_COMPUTEMODE_DEFAULT Default compute mode (Multiple contexts allowed per device) CU_COMPUTEMODE_PROHIBITED Compute-prohibited mode (No contexts can be created on this device at this time) CU_COMPUTEMODE_EXCLUSIVE_PROCESS Compute-exclusive-process mode (Only one context used by a single process can be present on this device at a time)
enum CUctx_flags
Context creation flags
Enumerator: CU_CTX_SCHED_AUTO Automatic scheduling CU_CTX_SCHED_SPIN Set spin as default scheduling CU_CTX_SCHED_YIELD Set yield as default scheduling CU_CTX_SCHED_BLOCKING_SYNC Set blocking synchronization as default scheduling CU_CTX_BLOCKING_SYNC Set blocking synchronization as default scheduling
Deprecated This flag was deprecated as of CUDA 4.0 and was replaced with CU_CTX_SCHED_BLOCKING_SYNC.
CU_CTX_MAP_HOST Support mapped pinned allocations CU_CTX_LMEM_RESIZE_TO_MAX Keep local memory allocation after launch
enum CUdevice_attribute
Enumerator: CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK Maximum number of threads per block CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X Maximum block dimension X CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y Maximum block dimension Y CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z Maximum block dimension Z CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X Maximum grid dimension X CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y Maximum grid dimension Y CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z Maximum grid dimension Z CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK Maximum shared memory available per block in bytes CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK Deprecated, use CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY Memory available on device for __constant__ variables in a CUDA C kernel in bytes CU_DEVICE_ATTRIBUTE_WARP_SIZE Warp size in threads CU_DEVICE_ATTRIBUTE_MAX_PITCH Maximum pitch in bytes allowed by memory copies CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK Maximum number of 32-bit registers available per block CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK Deprecated, use CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK CU_DEVICE_ATTRIBUTE_CLOCK_RATE Typical clock frequency in kilohertz CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT Alignment requirement for textures CU_DEVICE_ATTRIBUTE_GPU_OVERLAP Device can possibly copy memory and execute a kernel concurrently. Deprecated. Use instead CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT. CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT Number of multiprocessors on device CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT Specifies whether there is a run time limit on kernels CU_DEVICE_ATTRIBUTE_INTEGRATED Device is integrated with host memory CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY Device can map host memory into CUDA address space CU_DEVICE_ATTRIBUTE_COMPUTE_MODE Compute mode (See CUcomputemode for details) CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH Maximum 1D texture width CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH Maximum 2D texture width CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT Maximum 2D texture height CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH Maximum 3D texture width CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT Maximum 3D texture height CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH Maximum 3D texture depth CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH Maximum 2D layered texture width CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT Maximum 2D layered texture height CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS Maximum layers in a 2D layered texture CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_WIDTH Deprecated, use CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_HEIGHT Deprecated, use CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_NUMSLICES Deprecated, use CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS CU_DEVICE_ATTRIBUTE_SURFACE_ALIGNMENT Alignment requirement for surfaces CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS Device can possibly execute multiple kernels concurrently CU_DEVICE_ATTRIBUTE_ECC_ENABLED Device has ECC support enabled CU_DEVICE_ATTRIBUTE_PCI_BUS_ID PCI bus ID of the device CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID PCI device ID of the device CU_DEVICE_ATTRIBUTE_TCC_DRIVER Device is using TCC driver model CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE Peak memory clock frequency in kilohertz CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH Global memory bus width in bits CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE Size of L2 cache in bytes CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR Maximum resident threads per multiprocessor CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT Number of asynchronous engines CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING Device shares a unified address space with the host CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_WIDTH Maximum 1D layered texture width CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_LAYERS Maximum layers in a 1D layered texture CU_DEVICE_ATTRIBUTE_CAN_TEX2D_GATHER Deprecated, do not use. CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_WIDTH Maximum 2D texture width if CUDA_ARRAY3D_TEXTURE_GATHER is set CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_HEIGHT Maximum 2D texture height if CUDA_ARRAY3D_TEXTURE_GATHER is set CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH_ALTERNATE Alternate maximum 3D texture width CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT_ALTERNATE Alternate maximum 3D texture height CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH_ALTERNATE Alternate maximum 3D texture depth CU_DEVICE_ATTRIBUTE_PCI_DOMAIN_ID PCI domain ID of the device CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT Pitch alignment requirement for textures CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_WIDTH Maximum cubemap texture width/height CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_WIDTH Maximum cubemap layered texture width/height CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_LAYERS Maximum layers in a cubemap layered texture CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_WIDTH Maximum 1D surface width CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_WIDTH Maximum 2D surface width CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_HEIGHT Maximum 2D surface height CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_WIDTH Maximum 3D surface width CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_HEIGHT Maximum 3D surface height CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_DEPTH Maximum 3D surface depth CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_WIDTH Maximum 1D layered surface width CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_LAYERS Maximum layers in a 1D layered surface CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_WIDTH Maximum 2D layered surface width CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_HEIGHT Maximum 2D layered surface height CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_LAYERS Maximum layers in a 2D layered surface CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_WIDTH Maximum cubemap surface width CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_WIDTH Maximum cubemap layered surface width CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_LAYERS Maximum layers in a cubemap layered surface CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LINEAR_WIDTH Maximum 1D linear texture width CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_WIDTH Maximum 2D linear texture width CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_HEIGHT Maximum 2D linear texture height CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_PITCH Maximum 2D linear texture pitch in bytes CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_WIDTH Maximum mipmapped 2D texture width CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_HEIGHT Maximum mipmapped 2D texture height CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR Major compute capability version number CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR Minor compute capability version number CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_MIPMAPPED_WIDTH Maximum mipmapped 1D texture width CU_DEVICE_ATTRIBUTE_STREAM_PRIORITIES_SUPPORTED Device supports stream priorities CU_DEVICE_ATTRIBUTE_GLOBAL_L1_CACHE_SUPPORTED Device supports caching globals in L1 CU_DEVICE_ATTRIBUTE_LOCAL_L1_CACHE_SUPPORTED Device supports caching locals in L1 CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR Maximum shared memory available per multiprocessor in bytes CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_MULTIPROCESSOR Maximum number of 32-bit registers available per multiprocessor CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY Device can allocate managed memory on this system CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD Device is on a multi-GPU board CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD_GROUP_ID Unique id for a group of devices on the same multi-GPU board CU_DEVICE_ATTRIBUTE_HOST_NATIVE_ATOMIC_SUPPORTED Link between the device and the host supports native atomic operations (this is a placeholder attribute, and is not supported on any current hardware) CU_DEVICE_ATTRIBUTE_SINGLE_TO_DOUBLE_PRECISION_PERF_RATIO Ratio of single precision performance (in floating-point operations per second) to double precision performance CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS Device supports coherently accessing pageable memory without calling cudaHostRegister on it CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS Device can coherently access managed memory concurrently with the CPU CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED Device supports compute preemption. CU_DEVICE_ATTRIBUTE_CAN_USE_HOST_POINTER_FOR_REGISTERED_MEM Device can access host registered memory at the same virtual address as the CPU
enum CUdevice_P2PAttribute
Enumerator: CU_DEVICE_P2P_ATTRIBUTE_PERFORMANCE_RANK A relative value indicating the performance of the link between two devices CU_DEVICE_P2P_ATTRIBUTE_ACCESS_SUPPORTED P2P Access is enable CU_DEVICE_P2P_ATTRIBUTE_NATIVE_ATOMIC_SUPPORTED Atomic operation over the link supported
enum CUeglColorFormat
CUDA EGL Color Format — The different planar and multiplanar formats currently supported for CUDA_EGL interops.
Enumerator: CU_EGL_COLOR_FORMAT_YUV420_PLANAR Y, U, V in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height. CU_EGL_COLOR_FORMAT_YUV420_SEMIPLANAR Y, UV in two surfaces (UV as one surface), width, height ratio same as YUV420Planar. CU_EGL_COLOR_FORMAT_YUV422_PLANAR Y, U, V each in a separate surface, U/V width = 1/2 Y width, U/V height = Y height. CU_EGL_COLOR_FORMAT_YUV422_SEMIPLANAR Y, UV in two surfaces, width, height ratio same as YUV422Planar. CU_EGL_COLOR_FORMAT_RGB R/G/B three channels in one surface with RGB byte ordering. CU_EGL_COLOR_FORMAT_BGR R/G/B three channels in one surface with BGR byte ordering. CU_EGL_COLOR_FORMAT_ARGB R/G/B/A four channels in one surface with ARGB byte ordering. CU_EGL_COLOR_FORMAT_RGBA R/G/B/A four channels in one surface with RGBA byte ordering. CU_EGL_COLOR_FORMAT_L single luminance channel in one surface. CU_EGL_COLOR_FORMAT_R single color channel in one surface.
enum CUeglFrameType
CUDA EglFrame type — array or pointer
Enumerator: CU_EGL_FRAME_TYPE_ARRAY Frame type CUDA array CU_EGL_FRAME_TYPE_PITCH Frame type pointer
enum CUeglResourceLocationFlags
Resource location flags- sysmem or vidmem If the producer is on sysmem and CU_EGL_RESOURCE_LOCATION_VIDMEM is set, it will involve additional copy of the resource from sysmem to vidmem.
Enumerator: CU_EGL_RESOURCE_LOCATION_SYSMEM Resource location sysmem CU_EGL_RESOURCE_LOCATION_VIDMEM Resource location vidmem
enum CUevent_flags
Event creation flags
Enumerator: CU_EVENT_DEFAULT Default event flag CU_EVENT_BLOCKING_SYNC Event uses blocking synchronization CU_EVENT_DISABLE_TIMING Event will not record timing data CU_EVENT_INTERPROCESS Event is suitable for interprocess use. CU_EVENT_DISABLE_TIMING must be set
enum CUfilter_mode
Texture reference filtering modes
Enumerator: CU_TR_FILTER_MODE_POINT Point filter mode CU_TR_FILTER_MODE_LINEAR Linear filter mode
enum CUfunc_cache
Function cache configurations
Enumerator: CU_FUNC_CACHE_PREFER_NONE no preference for shared memory or L1 (default) CU_FUNC_CACHE_PREFER_SHARED prefer larger shared memory and smaller L1 cache CU_FUNC_CACHE_PREFER_L1 prefer larger L1 cache and smaller shared memory CU_FUNC_CACHE_PREFER_EQUAL prefer equal sized L1 cache and shared memory
enum CUfunction_attribute
Enumerator: CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK The maximum number of threads per block, beyond which a launch of the function would fail. This number depends on both the function and the device on which the function is currently loaded. CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES The size in bytes of statically-allocated shared memory required by this function. This does not include dynamically-allocated shared memory requested by the user at runtime. CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES The size in bytes of user-allocated constant memory required by this function. CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES The size in bytes of local memory used by each thread of this function. CU_FUNC_ATTRIBUTE_NUM_REGS The number of registers used by each thread of this function. CU_FUNC_ATTRIBUTE_PTX_VERSION The PTX virtual architecture version for which the function was compiled. This value is the major PTX version * 10 + the minor PTX version, so a PTX version 1.3 function would return the value 13. Note that this may return the undefined value of 0 for cubins compiled prior to CUDA 3.0. CU_FUNC_ATTRIBUTE_BINARY_VERSION The binary architecture version for which the function was compiled. This value is the major binary version * 10 + the minor binary version, so a binary version 1.3 function would return the value 13. Note that this will return a value of 10 for legacy cubins that do not have a properly-encoded binary architecture version. CU_FUNC_ATTRIBUTE_CACHE_MODE_CA The attribute to indicate whether the function has been compiled with user specified option ‘-Xptxas —dlcm=ca’ set .
enum CUgraphicsMapResourceFlags
Flags for mapping and unmapping interop resources
enum CUgraphicsRegisterFlags
Flags to register a graphics resource
enum CUipcMem_flags
CUDA Ipc Mem Flags
Enumerator: CU_IPC_MEM_LAZY_ENABLE_PEER_ACCESS Automatically enable peer access between remote devices as needed
enum CUjit_cacheMode
Caching modes for dlcm
Enumerator: CU_JIT_CACHE_OPTION_NONE Compile with no -dlcm flag specified CU_JIT_CACHE_OPTION_CG Compile with L1 cache disabled CU_JIT_CACHE_OPTION_CA Compile with L1 cache enabled
enum CUjit_fallback
Cubin matching fallback strategies
Enumerator: CU_PREFER_PTX Prefer to compile ptx if exact binary match not found CU_PREFER_BINARY Prefer to fall back to compatible binary code if exact match not found
enum CUjit_option
Online compiler and linker options
Enumerator: CU_JIT_MAX_REGISTERS Max number of registers that a thread may use.
Option type: unsigned int
Applies to: compiler only CU_JIT_THREADS_PER_BLOCK IN: Specifies minimum number of threads per block to target compilation for
OUT: Returns the number of threads the compiler actually targeted. This restricts the resource utilization fo the compiler (e.g. max registers) such that a block with the given number of threads should be able to launch based on register limitations. Note, this option does not currently take into account any other resource limitations, such as shared memory utilization.
Cannot be combined with CU_JIT_TARGET.
Option type: unsigned int
Applies to: compiler only CU_JIT_WALL_TIME Overwrites the option value with the total wall clock time, in milliseconds, spent in the compiler and linker
Option type: float
Applies to: compiler and linker CU_JIT_INFO_LOG_BUFFER Pointer to a buffer in which to print any log messages that are informational in nature (the buffer size is specified via option CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES)
Option type: char *
Applies to: compiler and linker CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES IN: Log buffer size in bytes. Log messages will be capped at this size (including null terminator)
OUT: Amount of log buffer filled with messages
Option type: unsigned int
Applies to: compiler and linker CU_JIT_ERROR_LOG_BUFFER Pointer to a buffer in which to print any log messages that reflect errors (the buffer size is specified via option CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES)
Option type: char *
Applies to: compiler and linker CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES IN: Log buffer size in bytes. Log messages will be capped at this size (including null terminator)
OUT: Amount of log buffer filled with messages
Option type: unsigned int
Applies to: compiler and linker CU_JIT_OPTIMIZATION_LEVEL Level of optimizations to apply to generated code (0 — 4), with 4 being the default and highest level of optimizations.
Option type: unsigned int
Applies to: compiler only CU_JIT_TARGET_FROM_CUCONTEXT No option value required. Determines the target based on the current attached context (default)
Option type: No option value needed
Applies to: compiler and linker CU_JIT_TARGET Target is chosen based on supplied CUjit_target. Cannot be combined with CU_JIT_THREADS_PER_BLOCK.
Option type: unsigned int for enumerated type CUjit_target
Applies to: compiler and linker CU_JIT_FALLBACK_STRATEGY Specifies choice of fallback strategy if matching cubin is not found. Choice is based on supplied CUjit_fallback. This option cannot be used with cuLink* APIs as the linker requires exact matches.
Option type: unsigned int for enumerated type CUjit_fallback
Applies to: compiler only CU_JIT_GENERATE_DEBUG_INFO Specifies whether to create debug information in output (-g) (0: false, default)
Option type: int
Applies to: compiler and linker CU_JIT_LOG_VERBOSE Generate verbose log messages (0: false, default)
Option type: int
Applies to: compiler and linker CU_JIT_GENERATE_LINE_INFO Generate line number information (-lineinfo) (0: false, default)
Option type: int
Applies to: compiler only CU_JIT_CACHE_MODE Specifies whether to enable caching explicitly (-dlcm)
Choice is based on supplied CUjit_cacheMode_enum.
Option type: unsigned int for enumerated type CUjit_cacheMode_enum
Applies to: compiler only CU_JIT_NEW_SM3X_OPT The below jit options are used for internal purposes only, in this version of CUDA
enum CUjit_target
Online compilation targets
Enumerator: CU_TARGET_COMPUTE_10 Compute device class 1.0 CU_TARGET_COMPUTE_11 Compute device class 1.1 CU_TARGET_COMPUTE_12 Compute device class 1.2 CU_TARGET_COMPUTE_13 Compute device class 1.3 CU_TARGET_COMPUTE_20 Compute device class 2.0 CU_TARGET_COMPUTE_21 Compute device class 2.1 CU_TARGET_COMPUTE_30 Compute device class 3.0 CU_TARGET_COMPUTE_32 Compute device class 3.2 CU_TARGET_COMPUTE_35 Compute device class 3.5 CU_TARGET_COMPUTE_37 Compute device class 3.7 CU_TARGET_COMPUTE_50 Compute device class 5.0 CU_TARGET_COMPUTE_52 Compute device class 5.2 CU_TARGET_COMPUTE_53 Compute device class 5.3 CU_TARGET_COMPUTE_60 Compute device class 6.0. This must be removed for CUDA 7.0 toolkit. See bug 1518217. CU_TARGET_COMPUTE_61 Compute device class 6.1. This must be removed for CUDA 7.0 toolkit. CU_TARGET_COMPUTE_62 Compute device class 6.2. This must be removed for CUDA 7.0 toolkit.
enum CUjitInputType
Device code formats
Enumerator: CU_JIT_INPUT_CUBIN Compiled device-class-specific device code
Applicable options: none CU_JIT_INPUT_PTX PTX source code
Applicable options: PTX compiler options CU_JIT_INPUT_FATBINARY Bundle of multiple cubins and/or PTX of some device code
Applicable options: PTX compiler options, CU_JIT_FALLBACK_STRATEGY CU_JIT_INPUT_OBJECT Host object with embedded device code
Applicable options: PTX compiler options, CU_JIT_FALLBACK_STRATEGY CU_JIT_INPUT_LIBRARY Archive of host objects with embedded device code
Applicable options: PTX compiler options, CU_JIT_FALLBACK_STRATEGY
enum CUlimit
Enumerator: CU_LIMIT_STACK_SIZE GPU thread stack size CU_LIMIT_PRINTF_FIFO_SIZE GPU printf FIFO size CU_LIMIT_MALLOC_HEAP_SIZE GPU malloc heap size CU_LIMIT_DEV_RUNTIME_SYNC_DEPTH GPU device runtime launch synchronize depth CU_LIMIT_DEV_RUNTIME_PENDING_LAUNCH_COUNT GPU device runtime pending launch count
enum CUmem_advise
Memory advise values
Enumerator: CU_MEM_ADVISE_SET_READ_MOSTLY Data will mostly be read and only occasionally be written to CU_MEM_ADVISE_UNSET_READ_MOSTLY Undo the effect of CU_MEM_ADVISE_SET_READ_MOSTLY CU_MEM_ADVISE_SET_PREFERRED_LOCATION Set the preferred location for the data as the specified device CU_MEM_ADVISE_UNSET_PREFERRED_LOCATION Clear the preferred location for the data CU_MEM_ADVISE_SET_ACCESSED_BY Data will be accessed by the specified device, so prevent page faults as much as possible CU_MEM_ADVISE_UNSET_ACCESSED_BY Let the Unified Memory subsystem decide on the page faulting policy for the specified device
enum CUmem_range_attribute
Enumerator: CU_MEM_RANGE_ATTRIBUTE_READ_MOSTLY Whether the range will mostly be read and only occasionally be written to CU_MEM_RANGE_ATTRIBUTE_PREFERRED_LOCATION The preferred location of the range CU_MEM_RANGE_ATTRIBUTE_ACCESSED_BY Memory range has CU_MEM_ADVISE_SET_ACCESSED_BY set for specified device CU_MEM_RANGE_ATTRIBUTE_LAST_PREFETCH_LOCATION The last location to which the range was prefetched
enum CUmemAttach_flags
CUDA Mem Attach Flags
Enumerator: CU_MEM_ATTACH_GLOBAL Memory can be accessed by any stream on any device CU_MEM_ATTACH_HOST Memory cannot be accessed by any stream on any device CU_MEM_ATTACH_SINGLE Memory can only be accessed by a single stream on the associated device
enum CUmemorytype
Enumerator: CU_MEMORYTYPE_HOST Host memory CU_MEMORYTYPE_DEVICE Device memory CU_MEMORYTYPE_ARRAY Array memory CU_MEMORYTYPE_UNIFIED Unified device or host memory
enum CUoccupancy_flags
Occupancy calculator flag
Enumerator: CU_OCCUPANCY_DEFAULT Default behavior CU_OCCUPANCY_DISABLE_CACHING_OVERRIDE Assume global caching is enabled and cannot be automatically turned off
enum CUpointer_attribute
Enumerator: CU_POINTER_ATTRIBUTE_CONTEXT The CUcontext on which a pointer was allocated or registered CU_POINTER_ATTRIBUTE_MEMORY_TYPE The CUmemorytype describing the physical location of a pointer CU_POINTER_ATTRIBUTE_DEVICE_POINTER The address at which a pointer’s memory may be accessed on the device CU_POINTER_ATTRIBUTE_HOST_POINTER The address at which a pointer’s memory may be accessed on the host CU_POINTER_ATTRIBUTE_P2P_TOKENS A pair of tokens for use with the nv-p2p.h Linux kernel interface CU_POINTER_ATTRIBUTE_SYNC_MEMOPS Synchronize every synchronous memory operation initiated on this region CU_POINTER_ATTRIBUTE_BUFFER_ID A process-wide unique ID for an allocated memory region CU_POINTER_ATTRIBUTE_IS_MANAGED Indicates if the pointer points to managed memory
enum CUresourcetype
Enumerator: CU_RESOURCE_TYPE_ARRAY Array resource CU_RESOURCE_TYPE_MIPMAPPED_ARRAY Mipmapped array resource CU_RESOURCE_TYPE_LINEAR Linear resource CU_RESOURCE_TYPE_PITCH2D Pitch 2D resource
enum CUresourceViewFormat
Resource view format
Enumerator: CU_RES_VIEW_FORMAT_NONE No resource view format (use underlying resource format) CU_RES_VIEW_FORMAT_UINT_1X8 1 channel unsigned 8-bit integers CU_RES_VIEW_FORMAT_UINT_2X8 2 channel unsigned 8-bit integers CU_RES_VIEW_FORMAT_UINT_4X8 4 channel unsigned 8-bit integers CU_RES_VIEW_FORMAT_SINT_1X8 1 channel signed 8-bit integers CU_RES_VIEW_FORMAT_SINT_2X8 2 channel signed 8-bit integers CU_RES_VIEW_FORMAT_SINT_4X8 4 channel signed 8-bit integers CU_RES_VIEW_FORMAT_UINT_1X16 1 channel unsigned 16-bit integers CU_RES_VIEW_FORMAT_UINT_2X16 2 channel unsigned 16-bit integers CU_RES_VIEW_FORMAT_UINT_4X16 4 channel unsigned 16-bit integers CU_RES_VIEW_FORMAT_SINT_1X16 1 channel signed 16-bit integers CU_RES_VIEW_FORMAT_SINT_2X16 2 channel signed 16-bit integers CU_RES_VIEW_FORMAT_SINT_4X16 4 channel signed 16-bit integers CU_RES_VIEW_FORMAT_UINT_1X32 1 channel unsigned 32-bit integers CU_RES_VIEW_FORMAT_UINT_2X32 2 channel unsigned 32-bit integers CU_RES_VIEW_FORMAT_UINT_4X32 4 channel unsigned 32-bit integers CU_RES_VIEW_FORMAT_SINT_1X32 1 channel signed 32-bit integers CU_RES_VIEW_FORMAT_SINT_2X32 2 channel signed 32-bit integers CU_RES_VIEW_FORMAT_SINT_4X32 4 channel signed 32-bit integers CU_RES_VIEW_FORMAT_FLOAT_1X16 1 channel 16-bit floating point CU_RES_VIEW_FORMAT_FLOAT_2X16 2 channel 16-bit floating point CU_RES_VIEW_FORMAT_FLOAT_4X16 4 channel 16-bit floating point CU_RES_VIEW_FORMAT_FLOAT_1X32 1 channel 32-bit floating point CU_RES_VIEW_FORMAT_FLOAT_2X32 2 channel 32-bit floating point CU_RES_VIEW_FORMAT_FLOAT_4X32 4 channel 32-bit floating point CU_RES_VIEW_FORMAT_UNSIGNED_BC1 Block compressed 1 CU_RES_VIEW_FORMAT_UNSIGNED_BC2 Block compressed 2 CU_RES_VIEW_FORMAT_UNSIGNED_BC3 Block compressed 3 CU_RES_VIEW_FORMAT_UNSIGNED_BC4 Block compressed 4 unsigned CU_RES_VIEW_FORMAT_SIGNED_BC4 Block compressed 4 signed CU_RES_VIEW_FORMAT_UNSIGNED_BC5 Block compressed 5 unsigned CU_RES_VIEW_FORMAT_SIGNED_BC5 Block compressed 5 signed CU_RES_VIEW_FORMAT_UNSIGNED_BC6H Block compressed 6 unsigned half-float CU_RES_VIEW_FORMAT_SIGNED_BC6H Block compressed 6 signed half-float CU_RES_VIEW_FORMAT_UNSIGNED_BC7 Block compressed 7
enum CUresult
Enumerator: CUDA_SUCCESS The API call returned with no errors. In the case of query calls, this can also mean that the operation being queried is complete (see cuEventQuery() and cuStreamQuery()). CUDA_ERROR_INVALID_VALUE This indicates that one or more of the parameters passed to the API call is not within an acceptable range of values. CUDA_ERROR_OUT_OF_MEMORY The API call failed because it was unable to allocate enough memory to perform the requested operation. CUDA_ERROR_NOT_INITIALIZED This indicates that the CUDA driver has not been initialized with cuInit() or that initialization has failed. CUDA_ERROR_DEINITIALIZED This indicates that the CUDA driver is in the process of shutting down. CUDA_ERROR_PROFILER_DISABLED This indicates profiler is not initialized for this run. This can happen when the application is running with external profiling tools like visual profiler. CUDA_ERROR_PROFILER_NOT_INITIALIZED Deprecated This error return is deprecated as of CUDA 5.0. It is no longer an error to attempt to enable/disable the profiling via cuProfilerStart or cuProfilerStop without initialization.
CUDA_ERROR_PROFILER_ALREADY_STARTED Deprecated This error return is deprecated as of CUDA 5.0. It is no longer an error to call cuProfilerStart() when profiling is already enabled.
CUDA_ERROR_PROFILER_ALREADY_STOPPED Deprecated This error return is deprecated as of CUDA 5.0. It is no longer an error to call cuProfilerStop() when profiling is already disabled.
CUDA_ERROR_NO_DEVICE This indicates that no CUDA-capable devices were detected by the installed CUDA driver. CUDA_ERROR_INVALID_DEVICE This indicates that the device ordinal supplied by the user does not correspond to a valid CUDA device. CUDA_ERROR_INVALID_IMAGE This indicates that the device kernel image is invalid. This can also indicate an invalid CUDA module. CUDA_ERROR_INVALID_CONTEXT This most frequently indicates that there is no context bound to the current thread. This can also be returned if the context passed to an API call is not a valid handle (such as a context that has had cuCtxDestroy() invoked on it). This can also be returned if a user mixes different API versions (i.e. 3010 context with 3020 API calls). See cuCtxGetApiVersion() for more details. CUDA_ERROR_CONTEXT_ALREADY_CURRENT This indicated that the context being supplied as a parameter to the API call was already the active context.
Deprecated This error return is deprecated as of CUDA 3.2. It is no longer an error to attempt to push the active context via cuCtxPushCurrent().
CUDA_ERROR_MAP_FAILED This indicates that a map or register operation has failed. CUDA_ERROR_UNMAP_FAILED This indicates that an unmap or unregister operation has failed. CUDA_ERROR_ARRAY_IS_MAPPED This indicates that the specified array is currently mapped and thus cannot be destroyed. CUDA_ERROR_ALREADY_MAPPED This indicates that the resource is already mapped. CUDA_ERROR_NO_BINARY_FOR_GPU This indicates that there is no kernel image available that is suitable for the device. This can occur when a user specifies code generation options for a particular CUDA source file that do not include the corresponding device configuration. CUDA_ERROR_ALREADY_ACQUIRED This indicates that a resource has already been acquired. CUDA_ERROR_NOT_MAPPED This indicates that a resource is not mapped. CUDA_ERROR_NOT_MAPPED_AS_ARRAY This indicates that a mapped resource is not available for access as an array. CUDA_ERROR_NOT_MAPPED_AS_POINTER This indicates that a mapped resource is not available for access as a pointer. CUDA_ERROR_ECC_UNCORRECTABLE This indicates that an uncorrectable ECC error was detected during execution. CUDA_ERROR_UNSUPPORTED_LIMIT This indicates that the CUlimit passed to the API call is not supported by the active device. CUDA_ERROR_CONTEXT_ALREADY_IN_USE This indicates that the CUcontext passed to the API call can only be bound to a single CPU thread at a time but is already bound to a CPU thread. CUDA_ERROR_PEER_ACCESS_UNSUPPORTED This indicates that peer access is not supported across the given devices. CUDA_ERROR_INVALID_PTX This indicates that a PTX JIT compilation failed. CUDA_ERROR_INVALID_GRAPHICS_CONTEXT This indicates an error with OpenGL or DirectX context. CUDA_ERROR_NVLINK_UNCORRECTABLE This indicates that an uncorrectable NVLink error was detected during the execution. CUDA_ERROR_INVALID_SOURCE This indicates that the device kernel source is invalid. CUDA_ERROR_FILE_NOT_FOUND This indicates that the file specified was not found. CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND This indicates that a link to a shared object failed to resolve. CUDA_ERROR_SHARED_OBJECT_INIT_FAILED This indicates that initialization of a shared object failed. CUDA_ERROR_OPERATING_SYSTEM This indicates that an OS call failed. CUDA_ERROR_INVALID_HANDLE This indicates that a resource handle passed to the API call was not valid. Resource handles are opaque types like CUstream and CUevent. CUDA_ERROR_NOT_FOUND This indicates that a named symbol was not found. Examples of symbols are global/constant variable names, texture names, and surface names. CUDA_ERROR_NOT_READY This indicates that asynchronous operations issued previously have not completed yet. This result is not actually an error, but must be indicated differently than CUDA_SUCCESS (which indicates completion). Calls that may return this value include cuEventQuery() and cuStreamQuery(). CUDA_ERROR_ILLEGAL_ADDRESS While executing a kernel, the device encountered a load or store instruction on an invalid memory address. The context cannot be used, so it must be destroyed (and a new one should be created). All existing device memory allocations from this context are invalid and must be reconstructed if the program is to continue using CUDA. CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES This indicates that a launch did not occur because it did not have appropriate resources. This error usually indicates that the user has attempted to pass too many arguments to the device kernel, or the kernel launch specifies too many threads for the kernel’s register count. Passing arguments of the wrong size (i.e. a 64-bit pointer when a 32-bit int is expected) is equivalent to passing too many arguments and can also result in this error. CUDA_ERROR_LAUNCH_TIMEOUT This indicates that the device kernel took too long to execute. This can only occur if timeouts are enabled — see the device attribute CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT for more information. The context cannot be used (and must be destroyed similar to CUDA_ERROR_LAUNCH_FAILED). All existing device memory allocations from this context are invalid and must be reconstructed if the program is to continue using CUDA. CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING This error indicates a kernel launch that uses an incompatible texturing mode. CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED This error indicates that a call to cuCtxEnablePeerAccess() is trying to re-enable peer access to a context which has already had peer access to it enabled. CUDA_ERROR_PEER_ACCESS_NOT_ENABLED This error indicates that cuCtxDisablePeerAccess() is trying to disable peer access which has not been enabled yet via cuCtxEnablePeerAccess(). CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE This error indicates that the primary context for the specified device has already been initialized. CUDA_ERROR_CONTEXT_IS_DESTROYED This error indicates that the context current to the calling thread has been destroyed using cuCtxDestroy, or is a primary context which has not yet been initialized. CUDA_ERROR_ASSERT A device-side assert triggered during kernel execution. The context cannot be used anymore, and must be destroyed. All existing device memory allocations from this context are invalid and must be reconstructed if the program is to continue using CUDA. CUDA_ERROR_TOO_MANY_PEERS This error indicates that the hardware resources required to enable peer access have been exhausted for one or more of the devices passed to cuCtxEnablePeerAccess(). CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED This error indicates that the memory range passed to cuMemHostRegister() has already been registered. CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED This error indicates that the pointer passed to cuMemHostUnregister() does not correspond to any currently registered memory region. CUDA_ERROR_HARDWARE_STACK_ERROR While executing a kernel, the device encountered a stack error. This can be due to stack corruption or exceeding the stack size limit. The context cannot be used, so it must be destroyed (and a new one should be created). All existing device memory allocations from this context are invalid and must be reconstructed if the program is to continue using CUDA. CUDA_ERROR_ILLEGAL_INSTRUCTION While executing a kernel, the device encountered an illegal instruction. The context cannot be used, so it must be destroyed (and a new one should be created). All existing device memory allocations from this context are invalid and must be reconstructed if the program is to continue using CUDA. CUDA_ERROR_MISALIGNED_ADDRESS While executing a kernel, the device encountered a load or store instruction on a memory address which is not aligned. The context cannot be used, so it must be destroyed (and a new one should be created). All existing device memory allocations from this context are invalid and must be reconstructed if the program is to continue using CUDA. CUDA_ERROR_INVALID_ADDRESS_SPACE While executing a kernel, the device encountered an instruction which can only operate on memory locations in certain address spaces (global, shared, or local), but was supplied a memory address not belonging to an allowed address space. The context cannot be used, so it must be destroyed (and a new one should be created). All existing device memory allocations from this context are invalid and must be reconstructed if the program is to continue using CUDA. CUDA_ERROR_INVALID_PC While executing a kernel, the device program counter wrapped its address space. The context cannot be used, so it must be destroyed (and a new one should be created). All existing device memory allocations from this context are invalid and must be reconstructed if the program is to continue using CUDA. CUDA_ERROR_LAUNCH_FAILED An exception occurred on the device while executing a kernel. Common causes include dereferencing an invalid device pointer and accessing out of bounds shared memory. The context cannot be used, so it must be destroyed (and a new one should be created). All existing device memory allocations from this context are invalid and must be reconstructed if the program is to continue using CUDA. CUDA_ERROR_NOT_PERMITTED This error indicates that the attempted operation is not permitted. CUDA_ERROR_NOT_SUPPORTED This error indicates that the attempted operation is not supported on the current system or device. CUDA_ERROR_UNKNOWN This indicates that an unknown internal error has occurred.
enum CUsharedconfig
Shared memory configurations
Enumerator: CU_SHARED_MEM_CONFIG_DEFAULT_BANK_SIZE set default shared memory bank size CU_SHARED_MEM_CONFIG_FOUR_BYTE_BANK_SIZE set shared memory bank width to four bytes CU_SHARED_MEM_CONFIG_EIGHT_BYTE_BANK_SIZE set shared memory bank width to eight bytes
enum CUstream_flags
Stream creation flags
Enumerator: CU_STREAM_DEFAULT Default stream flag CU_STREAM_NON_BLOCKING Stream does not synchronize with stream 0 (the NULL stream)
enum CUstreamBatchMemOpType
Operations for cuStreamBatchMemOp
Enumerator: CU_STREAM_MEM_OP_WAIT_VALUE_32 Represents a cuStreamWaitValue32 operation CU_STREAM_MEM_OP_WRITE_VALUE_32 Represents a cuStreamWriteValue32 operation CU_STREAM_MEM_OP_FLUSH_REMOTE_WRITES This has the same effect as CU_STREAM_WAIT_VALUE_FLUSH, but as a standalone operation.
enum CUstreamWaitValue_flags
Flags for cuStreamWaitValue32
Enumerator: CU_STREAM_WAIT_VALUE_GEQ Wait until (int32_t)(*addr — value) >= 0. Note this is a cyclic comparison which ignores wraparound. (Default behavior.) CU_STREAM_WAIT_VALUE_EQ Wait until *addr == value. CU_STREAM_WAIT_VALUE_AND Wait until (*addr & value) != 0. CU_STREAM_WAIT_VALUE_FLUSH Follow the wait operation with a flush of outstanding remote writes. This means that, if a remote write operation is guaranteed to have reached the device before the wait can be satisfied, that write is guaranteed to be visible to downstream device work. The device is permitted to reorder remote writes internally. For example, this flag would be required if two remote writes arrive in a defined order, the wait is satisfied by the second write, and downstream work needs to observe the first write.
enum CUstreamWriteValue_flags
Flags for cuStreamWriteValue32
Enumerator: CU_STREAM_WRITE_VALUE_DEFAULT Default behavior CU_STREAM_WRITE_VALUE_NO_MEMORY_BARRIER Permits the write to be reordered with writes which were issued before it, as a performance optimization. Normally, cuStreamWriteValue32 will provide a memory fence before the write, which has similar semantics to __threadfence_system() but is scoped to the stream rather than a CUDA thread.
Generated automatically by Doxygen from the source code.
Источник
When I run this simple script
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
config=tf.compat.v1.ConfigProto(allow_soft_placement=True, log_device_placement=True)
config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=config)
I get this strange error where GPU is detected but error is generated(see 3rd last line CUDA_ERROR_INVALID_VALUE: invalid argument)
2020-04-23 18:02:12.062095: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcuda.so.1
2020-04-23 18:02:12.076166: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce RTX 2080 Ti major: 7 minor: 5 memoryClockRate(GHz): 1.545
pciBusID: 0000:b3:00.0
2020-04-23 18:02:12.076490: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0
2020-04-23 18:02:12.077444: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.0
2020-04-23 18:02:12.078345: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcufft.so.10.0
2020-04-23 18:02:12.078625: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcurand.so.10.0
2020-04-23 18:02:12.079732: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusolver.so.10.0
2020-04-23 18:02:12.080611: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusparse.so.10.0
2020-04-23 18:02:12.083012: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7
2020-04-23 18:02:12.083780: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
Num GPUs Available: 1
2020-04-23 18:02:12.094039: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 AVX512F FMA
2020-04-23 18:02:12.098687: W tensorflow/compiler/xla/service/platform_util.cc:256] unable to create StreamExecutor for CUDA:0: failed initializing StreamExecutor for CUDA device ordinal 0: Internal: failed call to cuDevicePrimaryCtxRetain: CUDA_ERROR_INVALID_VALUE: invalid argument
2020-04-23 18:02:12.098783: F tensorflow/stream_executor/lib/statusor.cc:34] Attempting to fetch value instead of handling error Internal: no supported devices found for platform CUDA
Aborted (core dumped)
Any ideas, how to resolve this?
Data types used by CUDA driver#
- class cuda.cuda.CUuuid_st(void_ptr _ptr=0)#
-
- bytes#
-
< CUDA definition of UUID
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUipcEventHandle_st(void_ptr _ptr=0)#
-
CUDA IPC event handle
- reserved#
-
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUipcMemHandle_st(void_ptr _ptr=0)#
-
CUDA IPC mem handle
- reserved#
-
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUstreamBatchMemOpParams_union(void_ptr _ptr=0)#
-
Per-operation parameters for cuStreamBatchMemOp
- operation#
-
- Type:
-
CUstreamBatchMemOpType
- waitValue#
-
- Type:
-
CUstreamMemOpWaitValueParams_st
- writeValue#
-
- Type:
-
CUstreamMemOpWriteValueParams_st
- flushRemoteWrites#
-
- Type:
-
CUstreamMemOpFlushRemoteWritesParams_st
- memoryBarrier#
-
- Type:
-
CUstreamMemOpMemoryBarrierParams_st
- pad#
-
- Type:
-
List[cuuint64_t]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_BATCH_MEM_OP_NODE_PARAMS_st(void_ptr _ptr=0)#
-
- ctx#
-
- Type:
-
CUcontext
- count#
-
- Type:
-
unsigned int
- paramArray#
-
- Type:
-
CUstreamBatchMemOpParams
- flags#
-
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUdevprop_st(void_ptr _ptr=0)#
-
Legacy device properties
- maxThreadsPerBlock#
-
Maximum number of threads per block
- Type:
-
int
- maxThreadsDim#
-
Maximum size of each dimension of a block
- Type:
-
List[int]
- maxGridSize#
-
Maximum size of each dimension of a grid
- Type:
-
List[int]
- sharedMemPerBlock#
-
Shared memory available per block in bytes
- Type:
-
int
- totalConstantMemory#
-
Constant memory available on device in bytes
- Type:
-
int
- SIMDWidth#
-
Warp size in threads
- Type:
-
int
- memPitch#
-
Maximum pitch in bytes allowed by memory copies
- Type:
-
int
- regsPerBlock#
-
32-bit registers available per block
- Type:
-
int
- clockRate#
-
Clock frequency in kilohertz
- Type:
-
int
- textureAlign#
-
Alignment requirement for textures
- Type:
-
int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUaccessPolicyWindow_st(void_ptr _ptr=0)#
-
Specifies an access policy for a window, a contiguous extent of
memory beginning at base_ptr and ending at base_ptr + num_bytes.
num_bytes is limited by
CU_DEVICE_ATTRIBUTE_MAX_ACCESS_POLICY_WINDOW_SIZE. Partition into
many segments and assign segments such that: sum of “hit segments”
/ window == approx. ratio. sum of “miss segments” / window ==
approx 1-ratio. Segments and ratio specifications are fitted to the
capabilities of the architecture. Accesses in a hit segment apply
the hitProp access policy. Accesses in a miss segment apply the
missProp access policy.- base_ptr#
-
Starting address of the access policy window. CUDA driver may align
it.- Type:
-
Any
- num_bytes#
-
Size in bytes of the window policy. CUDA driver may restrict the
maximum size and alignment.- Type:
-
size_t
- hitRatio#
-
hitRatio specifies percentage of lines assigned hitProp, rest are
assigned missProp.- Type:
-
float
- hitProp#
-
CUaccessProperty set for hit.
- Type:
-
CUaccessProperty
- missProp#
-
CUaccessProperty set for miss. Must be either NORMAL or STREAMING
- Type:
-
CUaccessProperty
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_KERNEL_NODE_PARAMS_st(void_ptr _ptr=0)#
-
GPU kernel node parameters
- func#
-
Kernel to launch
- Type:
-
CUfunction
- gridDimX#
-
Width of grid in blocks
- Type:
-
unsigned int
- gridDimY#
-
Height of grid in blocks
- Type:
-
unsigned int
- gridDimZ#
-
Depth of grid in blocks
- Type:
-
unsigned int
- blockDimX#
-
X dimension of each thread block
- Type:
-
unsigned int
- blockDimY#
-
Y dimension of each thread block
- Type:
-
unsigned int
- blockDimZ#
-
Z dimension of each thread block
- Type:
-
unsigned int
- sharedMemBytes#
-
Dynamic shared-memory size per thread block in bytes
- Type:
-
unsigned int
- kernelParams#
-
Array of pointers to kernel parameters
- Type:
-
Any
-
Extra options
- Type:
-
Any
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_KERNEL_NODE_PARAMS_v2_st(void_ptr _ptr=0)#
-
GPU kernel node parameters
- func#
-
Kernel to launch
- Type:
-
CUfunction
- gridDimX#
-
Width of grid in blocks
- Type:
-
unsigned int
- gridDimY#
-
Height of grid in blocks
- Type:
-
unsigned int
- gridDimZ#
-
Depth of grid in blocks
- Type:
-
unsigned int
- blockDimX#
-
X dimension of each thread block
- Type:
-
unsigned int
- blockDimY#
-
Y dimension of each thread block
- Type:
-
unsigned int
- blockDimZ#
-
Z dimension of each thread block
- Type:
-
unsigned int
- sharedMemBytes#
-
Dynamic shared-memory size per thread block in bytes
- Type:
-
unsigned int
- kernelParams#
-
Array of pointers to kernel parameters
- Type:
-
Any
-
Extra options
- Type:
-
Any
- kern#
-
Kernel to launch, will only be referenced if func is NULL
- Type:
-
CUkernel
- ctx#
-
Context for the kernel task to run in. The value NULL will indicate
the current context should be used by the api. This field is
ignored if func is set.- Type:
-
CUcontext
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEMSET_NODE_PARAMS_st(void_ptr _ptr=0)#
-
Memset node parameters
- dst#
-
Destination device pointer
- Type:
-
CUdeviceptr
- pitch#
-
Pitch of destination device pointer. Unused if height is 1
- Type:
-
size_t
- value#
-
Value to be set
- Type:
-
unsigned int
- elementSize#
-
Size of each element in bytes. Must be 1, 2, or 4.
- Type:
-
unsigned int
- width#
-
Width of the row in elements
- Type:
-
size_t
- height#
-
Number of rows
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_HOST_NODE_PARAMS_st(void_ptr _ptr=0)#
-
Host node parameters
- fn#
-
The function to call when the node executes
- Type:
-
CUhostFn
- userData#
-
Argument to pass to the function
- Type:
-
Any
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_GRAPH_INSTANTIATE_PARAMS_st(void_ptr _ptr=0)#
-
Graph instantiation parameters
- flags#
-
Instantiation flags
- Type:
-
cuuint64_t
- hUploadStream#
-
Upload stream
- Type:
-
CUstream
- hErrNode_out#
-
The node which caused instantiation to fail, if any
- Type:
-
CUgraphNode
- result_out#
-
Whether instantiation was successful. If it failed, the reason why
- Type:
-
CUgraphInstantiateResult
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUlaunchMemSyncDomainMap_st(void_ptr _ptr=0)#
-
- default_#
-
- Type:
-
bytes
- remote#
-
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUlaunchAttributeValue_union(void_ptr _ptr=0)#
-
- pad#
-
Pad to 64 bytes
- Type:
-
bytes
- accessPolicyWindow#
-
Attribute CUaccessPolicyWindow.
- Type:
-
CUaccessPolicyWindow
- cooperative#
-
Nonzero indicates a cooperative kernel (see
cuLaunchCooperativeKernel).- Type:
-
int
- syncPolicy#
-
::CUsynchronizationPolicy for work queued up in this stream
- Type:
-
CUsynchronizationPolicy
- clusterDim#
-
Cluster dimensions for the kernel node.
- Type:
-
anon_struct0
- clusterSchedulingPolicyPreference#
-
Cluster scheduling policy preference for the kernel node.
- Type:
-
CUclusterSchedulingPolicy
- programmaticStreamSerializationAllowed#
-
- Type:
-
int
- programmaticEvent#
-
- Type:
-
anon_struct1
- priority#
-
Execution priority of the kernel.
- Type:
-
int
- memSyncDomainMap#
-
- Type:
-
CUlaunchMemSyncDomainMap
- memSyncDomain#
-
- Type:
-
CUlaunchMemSyncDomain
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUlaunchAttribute_st(void_ptr _ptr=0)#
-
- id#
-
- Type:
-
CUlaunchAttributeID
- value#
-
- Type:
-
CUlaunchAttributeValue
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUlaunchConfig_st(void_ptr _ptr=0)#
-
- gridDimX#
-
Width of grid in blocks
- Type:
-
unsigned int
- gridDimY#
-
Height of grid in blocks
- Type:
-
unsigned int
- gridDimZ#
-
Depth of grid in blocks
- Type:
-
unsigned int
- blockDimX#
-
X dimension of each thread block
- Type:
-
unsigned int
- blockDimY#
-
Y dimension of each thread block
- Type:
-
unsigned int
- blockDimZ#
-
Z dimension of each thread block
- Type:
-
unsigned int
- sharedMemBytes#
-
Dynamic shared-memory size per thread block in bytes
- Type:
-
unsigned int
- hStream#
-
Stream identifier
- Type:
-
CUstream
- attrs#
-
nullable if numAttrs == 0
- Type:
-
CUlaunchAttribute
- numAttrs#
-
number of attributes populated in attrs
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUexecAffinitySmCount_st(void_ptr _ptr=0)#
-
Value for CU_EXEC_AFFINITY_TYPE_SM_COUNT
- val#
-
The number of SMs the context is limited to use.
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUexecAffinityParam_st(void_ptr _ptr=0)#
-
Execution Affinity Parameters
- type#
-
- Type:
-
CUexecAffinityType
- param#
-
- Type:
-
anon_union2
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUlibraryHostUniversalFunctionAndDataTable_st(void_ptr _ptr=0)#
-
- functionTable#
-
- Type:
-
Any
- functionWindowSize#
-
- Type:
-
size_t
- dataTable#
-
- Type:
-
Any
- dataWindowSize#
-
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEMCPY2D_st(void_ptr _ptr=0)#
-
2D memory copy parameters
- srcXInBytes#
-
Source X in bytes
- Type:
-
size_t
- srcY#
-
Source Y
- Type:
-
size_t
- srcMemoryType#
-
Source memory type (host, device, array)
- Type:
-
CUmemorytype
- srcHost#
-
Source host pointer
- Type:
-
Any
- srcDevice#
-
Source device pointer
- Type:
-
CUdeviceptr
- srcArray#
-
Source array reference
- Type:
-
CUarray
- srcPitch#
-
Source pitch (ignored when src is array)
- Type:
-
size_t
- dstXInBytes#
-
Destination X in bytes
- Type:
-
size_t
- dstY#
-
Destination Y
- Type:
-
size_t
- dstMemoryType#
-
Destination memory type (host, device, array)
- Type:
-
CUmemorytype
- dstHost#
-
Destination host pointer
- Type:
-
Any
- dstDevice#
-
Destination device pointer
- Type:
-
CUdeviceptr
- dstArray#
-
Destination array reference
- Type:
-
CUarray
- dstPitch#
-
Destination pitch (ignored when dst is array)
- Type:
-
size_t
- WidthInBytes#
-
Width of 2D memory copy in bytes
- Type:
-
size_t
- Height#
-
Height of 2D memory copy
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEMCPY3D_st(void_ptr _ptr=0)#
-
3D memory copy parameters
- srcXInBytes#
-
Source X in bytes
- Type:
-
size_t
- srcY#
-
Source Y
- Type:
-
size_t
- srcZ#
-
Source Z
- Type:
-
size_t
- srcLOD#
-
Source LOD
- Type:
-
size_t
- srcMemoryType#
-
Source memory type (host, device, array)
- Type:
-
CUmemorytype
- srcHost#
-
Source host pointer
- Type:
-
Any
- srcDevice#
-
Source device pointer
- Type:
-
CUdeviceptr
- srcArray#
-
Source array reference
- Type:
-
CUarray
- reserved0#
-
Must be NULL
- Type:
-
Any
- srcPitch#
-
Source pitch (ignored when src is array)
- Type:
-
size_t
- srcHeight#
-
Source height (ignored when src is array; may be 0 if Depth==1)
- Type:
-
size_t
- dstXInBytes#
-
Destination X in bytes
- Type:
-
size_t
- dstY#
-
Destination Y
- Type:
-
size_t
- dstZ#
-
Destination Z
- Type:
-
size_t
- dstLOD#
-
Destination LOD
- Type:
-
size_t
- dstMemoryType#
-
Destination memory type (host, device, array)
- Type:
-
CUmemorytype
- dstHost#
-
Destination host pointer
- Type:
-
Any
- dstDevice#
-
Destination device pointer
- Type:
-
CUdeviceptr
- dstArray#
-
Destination array reference
- Type:
-
CUarray
- reserved1#
-
Must be NULL
- Type:
-
Any
- dstPitch#
-
Destination pitch (ignored when dst is array)
- Type:
-
size_t
- dstHeight#
-
Destination height (ignored when dst is array; may be 0 if
Depth==1)- Type:
-
size_t
- WidthInBytes#
-
Width of 3D memory copy in bytes
- Type:
-
size_t
- Height#
-
Height of 3D memory copy
- Type:
-
size_t
- Depth#
-
Depth of 3D memory copy
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEMCPY3D_PEER_st(void_ptr _ptr=0)#
-
3D memory cross-context copy parameters
- srcXInBytes#
-
Source X in bytes
- Type:
-
size_t
- srcY#
-
Source Y
- Type:
-
size_t
- srcZ#
-
Source Z
- Type:
-
size_t
- srcLOD#
-
Source LOD
- Type:
-
size_t
- srcMemoryType#
-
Source memory type (host, device, array)
- Type:
-
CUmemorytype
- srcHost#
-
Source host pointer
- Type:
-
Any
- srcDevice#
-
Source device pointer
- Type:
-
CUdeviceptr
- srcArray#
-
Source array reference
- Type:
-
CUarray
- srcContext#
-
Source context (ignored with srcMemoryType is CU_MEMORYTYPE_ARRAY)
- Type:
-
CUcontext
- srcPitch#
-
Source pitch (ignored when src is array)
- Type:
-
size_t
- srcHeight#
-
Source height (ignored when src is array; may be 0 if Depth==1)
- Type:
-
size_t
- dstXInBytes#
-
Destination X in bytes
- Type:
-
size_t
- dstY#
-
Destination Y
- Type:
-
size_t
- dstZ#
-
Destination Z
- Type:
-
size_t
- dstLOD#
-
Destination LOD
- Type:
-
size_t
- dstMemoryType#
-
Destination memory type (host, device, array)
- Type:
-
CUmemorytype
- dstHost#
-
Destination host pointer
- Type:
-
Any
- dstDevice#
-
Destination device pointer
- Type:
-
CUdeviceptr
- dstArray#
-
Destination array reference
- Type:
-
CUarray
- dstContext#
-
Destination context (ignored with dstMemoryType is
CU_MEMORYTYPE_ARRAY)- Type:
-
CUcontext
- dstPitch#
-
Destination pitch (ignored when dst is array)
- Type:
-
size_t
- dstHeight#
-
Destination height (ignored when dst is array; may be 0 if
Depth==1)- Type:
-
size_t
- WidthInBytes#
-
Width of 3D memory copy in bytes
- Type:
-
size_t
- Height#
-
Height of 3D memory copy
- Type:
-
size_t
- Depth#
-
Depth of 3D memory copy
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_ARRAY_DESCRIPTOR_st(void_ptr _ptr=0)#
-
Array descriptor
- Width#
-
Width of array
- Type:
-
size_t
- Height#
-
Height of array
- Type:
-
size_t
- Format#
-
Array format
- Type:
-
CUarray_format
- NumChannels#
-
Channels per array element
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_ARRAY3D_DESCRIPTOR_st(void_ptr _ptr=0)#
-
3D array descriptor
- Width#
-
Width of 3D array
- Type:
-
size_t
- Height#
-
Height of 3D array
- Type:
-
size_t
- Depth#
-
Depth of 3D array
- Type:
-
size_t
- Format#
-
Array format
- Type:
-
CUarray_format
- NumChannels#
-
Channels per array element
- Type:
-
unsigned int
- Flags#
-
Flags
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_ARRAY_SPARSE_PROPERTIES_st(void_ptr _ptr=0)#
-
CUDA array sparse properties
- tileExtent#
-
- Type:
-
anon_struct2
- miptailFirstLevel#
-
First mip level at which the mip tail begins.
- Type:
-
unsigned int
- miptailSize#
-
Total size of the mip tail.
- Type:
-
unsigned long long
- flags#
-
Flags will either be zero or
CU_ARRAY_SPARSE_PROPERTIES_SINGLE_MIPTAIL- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_ARRAY_MEMORY_REQUIREMENTS_st(void_ptr _ptr=0)#
-
CUDA array memory requirements
- size#
-
Total required memory size
- Type:
-
size_t
- alignment#
-
alignment requirement
- Type:
-
size_t
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_RESOURCE_DESC_st(void_ptr _ptr=0)#
-
CUDA Resource descriptor
- resType#
-
Resource type
- Type:
-
CUresourcetype
- res#
-
- Type:
-
anon_union3
- flags#
-
Flags (must be zero)
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_TEXTURE_DESC_st(void_ptr _ptr=0)#
-
Texture descriptor
- addressMode#
-
Address modes
- Type:
-
List[CUaddress_mode]
- filterMode#
-
Filter mode
- Type:
-
CUfilter_mode
- flags#
-
Flags
- Type:
-
unsigned int
- maxAnisotropy#
-
Maximum anisotropy ratio
- Type:
-
unsigned int
- mipmapFilterMode#
-
Mipmap filter mode
- Type:
-
CUfilter_mode
- mipmapLevelBias#
-
Mipmap level bias
- Type:
-
float
- minMipmapLevelClamp#
-
Mipmap minimum level clamp
- Type:
-
float
- maxMipmapLevelClamp#
-
Mipmap maximum level clamp
- Type:
-
float
- borderColor#
-
Border Color
- Type:
-
List[float]
- reserved#
-
- Type:
-
List[int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_RESOURCE_VIEW_DESC_st(void_ptr _ptr=0)#
-
Resource view descriptor
- format#
-
Resource view format
- Type:
-
CUresourceViewFormat
- width#
-
Width of the resource view
- Type:
-
size_t
- height#
-
Height of the resource view
- Type:
-
size_t
- depth#
-
Depth of the resource view
- Type:
-
size_t
- firstMipmapLevel#
-
First defined mipmap level
- Type:
-
unsigned int
- lastMipmapLevel#
-
Last defined mipmap level
- Type:
-
unsigned int
- firstLayer#
-
First layer index
- Type:
-
unsigned int
- lastLayer#
-
Last layer index
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUtensorMap_st(void_ptr _ptr=0)#
-
Tensor map descriptor. Requires compiler support for aligning to 64
bytes.- opaque#
-
- Type:
-
List[cuuint64_t]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_POINTER_ATTRIBUTE_P2P_TOKENS_st(void_ptr _ptr=0)#
-
GPU Direct v3 tokens
- p2pToken#
-
- Type:
-
unsigned long long
- vaSpaceToken#
-
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_LAUNCH_PARAMS_st(void_ptr _ptr=0)#
-
Kernel launch parameters
- function#
-
Kernel to launch
- Type:
-
CUfunction
- gridDimX#
-
Width of grid in blocks
- Type:
-
unsigned int
- gridDimY#
-
Height of grid in blocks
- Type:
-
unsigned int
- gridDimZ#
-
Depth of grid in blocks
- Type:
-
unsigned int
- blockDimX#
-
X dimension of each thread block
- Type:
-
unsigned int
- blockDimY#
-
Y dimension of each thread block
- Type:
-
unsigned int
- blockDimZ#
-
Z dimension of each thread block
- Type:
-
unsigned int
- sharedMemBytes#
-
Dynamic shared-memory size per thread block in bytes
- Type:
-
unsigned int
- hStream#
-
Stream identifier
- Type:
-
CUstream
- kernelParams#
-
Array of pointers to kernel parameters
- Type:
-
Any
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_MEMORY_HANDLE_DESC_st(void_ptr _ptr=0)#
-
External memory handle descriptor
- type#
-
Type of the handle
- Type:
-
CUexternalMemoryHandleType
- handle#
-
- Type:
-
anon_union4
- size#
-
Size of the memory allocation
- Type:
-
unsigned long long
- flags#
-
Flags must either be zero or CUDA_EXTERNAL_MEMORY_DEDICATED
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_MEMORY_BUFFER_DESC_st(void_ptr _ptr=0)#
-
External memory buffer descriptor
- offset#
-
Offset into the memory object where the buffer’s base is
- Type:
-
unsigned long long
- size#
-
Size of the buffer
- Type:
-
unsigned long long
- flags#
-
Flags reserved for future use. Must be zero.
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC_st(void_ptr _ptr=0)#
-
External memory mipmap descriptor
- offset#
-
Offset into the memory object where the base level of the mipmap
chain is.- Type:
-
unsigned long long
- arrayDesc#
-
Format, dimension and type of base level of the mipmap chain
- Type:
-
CUDA_ARRAY3D_DESCRIPTOR
- numLevels#
-
Total number of levels in the mipmap chain
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC_st(void_ptr _ptr=0)#
-
External semaphore handle descriptor
- type#
-
Type of the handle
- Type:
-
CUexternalSemaphoreHandleType
- handle#
-
- Type:
-
anon_union5
- flags#
-
Flags reserved for the future. Must be zero.
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS_st(void_ptr _ptr=0)#
-
External semaphore signal parameters
- params#
-
- Type:
-
anon_struct12
- flags#
-
Only when ::CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS is used to signal
a CUexternalSemaphore of type
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNC, the valid flag is
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_SKIP_NVSCIBUF_MEMSYNC which
indicates that while signaling the CUexternalSemaphore, no memory
synchronization operations should be performed for any external
memory object imported as CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF.
For all other types of CUexternalSemaphore, flags must be zero.- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS_st(void_ptr _ptr=0)#
-
External semaphore wait parameters
- params#
-
- Type:
-
anon_struct15
- flags#
-
Only when ::CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS is used to wait on
a CUexternalSemaphore of type
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNC, the valid flag is
CUDA_EXTERNAL_SEMAPHORE_WAIT_SKIP_NVSCIBUF_MEMSYNC which indicates
that while waiting for the CUexternalSemaphore, no memory
synchronization operations should be performed for any external
memory object imported as CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF.
For all other types of CUexternalSemaphore, flags must be zero.- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXT_SEM_SIGNAL_NODE_PARAMS_st(void_ptr _ptr=0)#
-
Semaphore signal node parameters
- extSemArray#
-
Array of external semaphore handles.
- Type:
-
CUexternalSemaphore
- paramsArray#
-
Array of external semaphore signal parameters.
- Type:
-
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS
- numExtSems#
-
Number of handles and parameters supplied in extSemArray and
paramsArray.- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXT_SEM_WAIT_NODE_PARAMS_st(void_ptr _ptr=0)#
-
Semaphore wait node parameters
- extSemArray#
-
Array of external semaphore handles.
- Type:
-
CUexternalSemaphore
- paramsArray#
-
Array of external semaphore wait parameters.
- Type:
-
CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS
- numExtSems#
-
Number of handles and parameters supplied in extSemArray and
paramsArray.- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUarrayMapInfo_st(void_ptr _ptr=0)#
-
Specifies the CUDA array or CUDA mipmapped array memory mapping
information- resourceType#
-
Resource type
- Type:
-
CUresourcetype
- resource#
-
- Type:
-
anon_union8
- subresourceType#
-
Sparse subresource type
- Type:
-
CUarraySparseSubresourceType
- subresource#
-
- Type:
-
anon_union9
- memOperationType#
-
Memory operation type
- Type:
-
CUmemOperationType
- memHandleType#
-
Memory handle type
- Type:
-
CUmemHandleType
- memHandle#
-
- Type:
-
anon_union10
- offset#
-
Offset within mip tail Offset within the memory
- Type:
-
unsigned long long
- deviceBitMask#
-
Device ordinal bit mask
- Type:
-
unsigned int
- flags#
-
flags for future use, must be zero now.
- Type:
-
unsigned int
- reserved#
-
Reserved for future use, must be zero now.
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemLocation_st(void_ptr _ptr=0)#
-
Specifies a memory location.
- type#
-
Specifies the location type, which modifies the meaning of id.
- Type:
-
CUmemLocationType
- id#
-
identifier for a given this location’s CUmemLocationType.
- Type:
-
int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemAllocationProp_st(void_ptr _ptr=0)#
-
Specifies the allocation properties for a allocation.
- type#
-
Allocation type
- Type:
-
CUmemAllocationType
- requestedHandleTypes#
-
requested CUmemAllocationHandleType
- Type:
-
CUmemAllocationHandleType
- location#
-
Location of allocation
- Type:
-
CUmemLocation
- win32HandleMetaData#
-
Windows-specific POBJECT_ATTRIBUTES required when
CU_MEM_HANDLE_TYPE_WIN32 is specified. This object atributes
structure includes security attributes that define the scope of
which exported allocations may be tranferred to other processes. In
all other cases, this field is required to be zero.- Type:
-
Any
- allocFlags#
-
- Type:
-
anon_struct18
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemAccessDesc_st(void_ptr _ptr=0)#
-
Memory access descriptor
- location#
-
Location on which the request is to change it’s accessibility
- Type:
-
CUmemLocation
- flags#
-
::CUmemProt accessibility flags to set on the request
- Type:
-
CUmemAccess_flags
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUgraphExecUpdateResultInfo_st(void_ptr _ptr=0)#
-
Result information returned by cuGraphExecUpdate
- result#
-
Gives more specific detail when a cuda graph update fails.
- Type:
-
CUgraphExecUpdateResult
- errorNode#
-
The “to node” of the error edge when the topologies do not match.
The error node when the error is associated with a specific node.
NULL when the error is generic.- Type:
-
CUgraphNode
- errorFromNode#
-
The from node of error edge when the topologies do not match.
Otherwise NULL.- Type:
-
CUgraphNode
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemPoolProps_st(void_ptr _ptr=0)#
-
Specifies the properties of allocations made from the pool.
- allocType#
-
Allocation type. Currently must be specified as
CU_MEM_ALLOCATION_TYPE_PINNED- Type:
-
CUmemAllocationType
- handleTypes#
-
Handle types that will be supported by allocations from the pool.
- Type:
-
CUmemAllocationHandleType
- location#
-
Location where allocations should reside.
- Type:
-
CUmemLocation
- win32SecurityAttributes#
-
Windows-specific LPSECURITYATTRIBUTES required when
CU_MEM_HANDLE_TYPE_WIN32 is specified. This security attribute
defines the scope of which exported allocations may be tranferred
to other processes. In all other cases, this field is required to
be zero.- Type:
-
Any
- reserved#
-
reserved for future use, must be 0
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemPoolPtrExportData_st(void_ptr _ptr=0)#
-
Opaque data for exporting a pool allocation
- reserved#
-
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEM_ALLOC_NODE_PARAMS_st(void_ptr _ptr=0)#
-
Memory allocation node parameters
- poolProps#
-
in: location where the allocation should reside (specified in
::location). ::handleTypes must be CU_MEM_HANDLE_TYPE_NONE. IPC is
not supported.- Type:
-
CUmemPoolProps
- accessDescs#
-
in: array of memory access descriptors. Used to describe peer GPU
access- Type:
-
CUmemAccessDesc
- accessDescCount#
-
in: number of memory access descriptors. Must not exceed the number
of GPUs.- Type:
-
size_t
- bytesize#
-
in: size in bytes of the requested allocation
- Type:
-
size_t
- dptr#
-
out: address of the allocation returned by CUDA
- Type:
-
CUdeviceptr
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUeglFrame_st(void_ptr _ptr=0)#
-
CUDA EGLFrame structure Descriptor — structure defining one frame
of EGL. Each frame may contain one or more planes depending on
whether the surface * is Multiplanar or not.- frame#
-
- Type:
-
anon_union11
- width#
-
Width of first plane
- Type:
-
unsigned int
- height#
-
Height of first plane
- Type:
-
unsigned int
- depth#
-
Depth of first plane
- Type:
-
unsigned int
- pitch#
-
Pitch of first plane
- Type:
-
unsigned int
- planeCount#
-
Number of planes
- Type:
-
unsigned int
- numChannels#
-
Number of channels for the plane
- Type:
-
unsigned int
- frameType#
-
Array or Pitch
- Type:
-
CUeglFrameType
- eglColorFormat#
-
CUDA EGL Color Format
- Type:
-
CUeglColorFormat
- cuFormat#
-
CUDA Array Format
- Type:
-
CUarray_format
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUipcMem_flags(value)#
-
CUDA Ipc Mem Flags
- CU_IPC_MEM_LAZY_ENABLE_PEER_ACCESS = 1#
-
Automatically enable peer access between remote devices as needed
- class cuda.cuda.CUmemAttach_flags(value)#
-
CUDA Mem Attach Flags
- CU_MEM_ATTACH_GLOBAL = 1#
-
Memory can be accessed by any stream on any device
- CU_MEM_ATTACH_HOST = 2#
-
Memory cannot be accessed by any stream on any device
- CU_MEM_ATTACH_SINGLE = 4#
-
Memory can only be accessed by a single stream on the associated device
- class cuda.cuda.CUctx_flags(value)#
-
Context creation flags
- CU_CTX_SCHED_AUTO = 0#
-
Automatic scheduling
- CU_CTX_SCHED_SPIN = 1#
-
Set spin as default scheduling
- CU_CTX_SCHED_YIELD = 2#
-
Set yield as default scheduling
- CU_CTX_SCHED_BLOCKING_SYNC = 4#
-
Set blocking synchronization as default scheduling
- CU_CTX_BLOCKING_SYNC = 4#
-
Set blocking synchronization as default scheduling [Deprecated]
- CU_CTX_SCHED_MASK = 7#
- CU_CTX_MAP_HOST = 8#
-
[Deprecated]
- CU_CTX_LMEM_RESIZE_TO_MAX = 16#
-
Keep local memory allocation after launch
- CU_CTX_FLAGS_MASK = 31#
- class cuda.cuda.CUevent_sched_flags(value)#
-
Event sched flags
- CU_EVENT_SCHED_AUTO = 0#
-
Automatic scheduling
- CU_EVENT_SCHED_SPIN = 1#
-
Set spin as default scheduling
- CU_EVENT_SCHED_YIELD = 2#
-
Set yield as default scheduling
- CU_EVENT_SCHED_BLOCKING_SYNC = 4#
-
Set blocking synchronization as default scheduling
- class cuda.cuda.cl_event_flags(value)#
-
NVCL event scheduling flags
- NVCL_EVENT_SCHED_AUTO = 0#
-
Automatic scheduling
- NVCL_EVENT_SCHED_SPIN = 1#
-
Set spin as default scheduling
- NVCL_EVENT_SCHED_YIELD = 2#
-
Set yield as default scheduling
- NVCL_EVENT_SCHED_BLOCKING_SYNC = 4#
-
Set blocking synchronization as default scheduling
- class cuda.cuda.cl_context_flags(value)#
-
NVCL context scheduling flags
- NVCL_CTX_SCHED_AUTO = 0#
-
Automatic scheduling
- NVCL_CTX_SCHED_SPIN = 1#
-
Set spin as default scheduling
- NVCL_CTX_SCHED_YIELD = 2#
-
Set yield as default scheduling
- NVCL_CTX_SCHED_BLOCKING_SYNC = 4#
-
Set blocking synchronization as default scheduling
- class cuda.cuda.CUstream_flags(value)#
-
Stream creation flags
- CU_STREAM_DEFAULT = 0#
-
Default stream flag
- CU_STREAM_NON_BLOCKING = 1#
-
Stream does not synchronize with stream 0 (the NULL stream)
- class cuda.cuda.CUevent_flags(value)#
-
Event creation flags
- CU_EVENT_DEFAULT = 0#
-
Default event flag
- CU_EVENT_BLOCKING_SYNC = 1#
-
Event uses blocking synchronization
- CU_EVENT_DISABLE_TIMING = 2#
-
Event will not record timing data
- CU_EVENT_INTERPROCESS = 4#
-
Event is suitable for interprocess use. CU_EVENT_DISABLE_TIMING must be set
- class cuda.cuda.CUevent_record_flags(value)#
-
Event record flags
- CU_EVENT_RECORD_DEFAULT = 0#
-
Default event record flag
- CU_EVENT_RECORD_EXTERNAL = 1#
-
When using stream capture, create an event record node instead of the default behavior. This flag is invalid when used outside of capture.
- class cuda.cuda.CUevent_wait_flags(value)#
-
Event wait flags
- CU_EVENT_WAIT_DEFAULT = 0#
-
Default event wait flag
- CU_EVENT_WAIT_EXTERNAL = 1#
-
When using stream capture, create an event wait node instead of the default behavior. This flag is invalid when used outside of capture.
- class cuda.cuda.CUstreamWaitValue_flags(value)#
-
Flags for
cuStreamWaitValue32and
cuStreamWaitValue64- CU_STREAM_WAIT_VALUE_GEQ = 0#
-
Wait until (int32_t)(*addr — value) >= 0 (or int64_t for 64 bit values). Note this is a cyclic comparison which ignores wraparound. (Default behavior.)
- CU_STREAM_WAIT_VALUE_EQ = 1#
-
Wait until *addr == value.
- CU_STREAM_WAIT_VALUE_AND = 2#
-
Wait until (*addr & value) != 0.
- CU_STREAM_WAIT_VALUE_NOR = 3#
-
Wait until ~(*addr | value) != 0. Support for this operation can be queried with
cuDeviceGetAttribute()andCU_DEVICE_ATTRIBUTE_CAN_USE_STREAM_WAIT_VALUE_NOR.
- CU_STREAM_WAIT_VALUE_FLUSH = 1073741824#
-
Follow the wait operation with a flush of outstanding remote writes. This means that, if a remote write operation is guaranteed to have reached the device before the wait can be satisfied, that write is guaranteed to be visible to downstream device work. The device is permitted to reorder remote writes internally. For example, this flag would be required if two remote writes arrive in a defined order, the wait is satisfied by the second write, and downstream work needs to observe the first write. Support for this operation is restricted to selected platforms and can be queried with
CU_DEVICE_ATTRIBUTE_CAN_FLUSH_REMOTE_WRITES.
- class cuda.cuda.CUstreamWriteValue_flags(value)#
-
Flags for
cuStreamWriteValue32- CU_STREAM_WRITE_VALUE_DEFAULT = 0#
-
Default behavior
- CU_STREAM_WRITE_VALUE_NO_MEMORY_BARRIER = 1#
-
Permits the write to be reordered with writes which were issued before it, as a performance optimization. Normally,
cuStreamWriteValue32will provide a memory fence before the write, which has similar semantics to __threadfence_system() but is scoped to the stream rather than a CUDA thread. This flag is not supported in the v2 API.
- class cuda.cuda.CUstreamBatchMemOpType(value)#
-
Operations for
cuStreamBatchMemOp- CU_STREAM_MEM_OP_WAIT_VALUE_32 = 1#
-
Represents a
cuStreamWaitValue32operation
- CU_STREAM_MEM_OP_WRITE_VALUE_32 = 2#
-
Represents a
cuStreamWriteValue32operation
- CU_STREAM_MEM_OP_WAIT_VALUE_64 = 4#
-
Represents a
cuStreamWaitValue64operation
- CU_STREAM_MEM_OP_WRITE_VALUE_64 = 5#
-
Represents a
cuStreamWriteValue64operation
- CU_STREAM_MEM_OP_BARRIER = 6#
-
Insert a memory barrier of the specified type
- CU_STREAM_MEM_OP_FLUSH_REMOTE_WRITES = 3#
-
This has the same effect as
CU_STREAM_WAIT_VALUE_FLUSH, but as a standalone operation.
- class cuda.cuda.CUstreamMemoryBarrier_flags(value)#
-
Flags for
cuStreamMemoryBarrier- CU_STREAM_MEMORY_BARRIER_TYPE_SYS = 0#
-
System-wide memory barrier.
- CU_STREAM_MEMORY_BARRIER_TYPE_GPU = 1#
-
Limit memory barrier scope to the GPU.
- class cuda.cuda.CUoccupancy_flags(value)#
-
Occupancy calculator flag
- CU_OCCUPANCY_DEFAULT = 0#
-
Default behavior
- CU_OCCUPANCY_DISABLE_CACHING_OVERRIDE = 1#
-
Assume global caching is enabled and cannot be automatically turned off
- class cuda.cuda.CUstreamUpdateCaptureDependencies_flags(value)#
-
Flags for
cuStreamUpdateCaptureDependencies- CU_STREAM_ADD_CAPTURE_DEPENDENCIES = 0#
-
Add new nodes to the dependency set
- CU_STREAM_SET_CAPTURE_DEPENDENCIES = 1#
-
Replace the dependency set with the new nodes
- class cuda.cuda.CUarray_format(value)#
-
Array formats
- CU_AD_FORMAT_UNSIGNED_INT8 = 1#
-
Unsigned 8-bit integers
- CU_AD_FORMAT_UNSIGNED_INT16 = 2#
-
Unsigned 16-bit integers
- CU_AD_FORMAT_UNSIGNED_INT32 = 3#
-
Unsigned 32-bit integers
- CU_AD_FORMAT_SIGNED_INT8 = 8#
-
Signed 8-bit integers
- CU_AD_FORMAT_SIGNED_INT16 = 9#
-
Signed 16-bit integers
- CU_AD_FORMAT_SIGNED_INT32 = 10#
-
Signed 32-bit integers
- CU_AD_FORMAT_HALF = 16#
-
16-bit floating point
- CU_AD_FORMAT_FLOAT = 32#
-
32-bit floating point
- CU_AD_FORMAT_NV12 = 176#
-
8-bit YUV planar format, with 4:2:0 sampling
- CU_AD_FORMAT_UNORM_INT8X1 = 192#
-
1 channel unsigned 8-bit normalized integer
- CU_AD_FORMAT_UNORM_INT8X2 = 193#
-
2 channel unsigned 8-bit normalized integer
- CU_AD_FORMAT_UNORM_INT8X4 = 194#
-
4 channel unsigned 8-bit normalized integer
- CU_AD_FORMAT_UNORM_INT16X1 = 195#
-
1 channel unsigned 16-bit normalized integer
- CU_AD_FORMAT_UNORM_INT16X2 = 196#
-
2 channel unsigned 16-bit normalized integer
- CU_AD_FORMAT_UNORM_INT16X4 = 197#
-
4 channel unsigned 16-bit normalized integer
- CU_AD_FORMAT_SNORM_INT8X1 = 198#
-
1 channel signed 8-bit normalized integer
- CU_AD_FORMAT_SNORM_INT8X2 = 199#
-
2 channel signed 8-bit normalized integer
- CU_AD_FORMAT_SNORM_INT8X4 = 200#
-
4 channel signed 8-bit normalized integer
- CU_AD_FORMAT_SNORM_INT16X1 = 201#
-
1 channel signed 16-bit normalized integer
- CU_AD_FORMAT_SNORM_INT16X2 = 202#
-
2 channel signed 16-bit normalized integer
- CU_AD_FORMAT_SNORM_INT16X4 = 203#
-
4 channel signed 16-bit normalized integer
- CU_AD_FORMAT_BC1_UNORM = 145#
-
4 channel unsigned normalized block-compressed (BC1 compression) format
- CU_AD_FORMAT_BC1_UNORM_SRGB = 146#
-
4 channel unsigned normalized block-compressed (BC1 compression) format with sRGB encoding
- CU_AD_FORMAT_BC2_UNORM = 147#
-
4 channel unsigned normalized block-compressed (BC2 compression) format
- CU_AD_FORMAT_BC2_UNORM_SRGB = 148#
-
4 channel unsigned normalized block-compressed (BC2 compression) format with sRGB encoding
- CU_AD_FORMAT_BC3_UNORM = 149#
-
4 channel unsigned normalized block-compressed (BC3 compression) format
- CU_AD_FORMAT_BC3_UNORM_SRGB = 150#
-
4 channel unsigned normalized block-compressed (BC3 compression) format with sRGB encoding
- CU_AD_FORMAT_BC4_UNORM = 151#
-
1 channel unsigned normalized block-compressed (BC4 compression) format
- CU_AD_FORMAT_BC4_SNORM = 152#
-
1 channel signed normalized block-compressed (BC4 compression) format
- CU_AD_FORMAT_BC5_UNORM = 153#
-
2 channel unsigned normalized block-compressed (BC5 compression) format
- CU_AD_FORMAT_BC5_SNORM = 154#
-
2 channel signed normalized block-compressed (BC5 compression) format
- CU_AD_FORMAT_BC6H_UF16 = 155#
-
3 channel unsigned half-float block-compressed (BC6H compression) format
- CU_AD_FORMAT_BC6H_SF16 = 156#
-
3 channel signed half-float block-compressed (BC6H compression) format
- CU_AD_FORMAT_BC7_UNORM = 157#
-
4 channel unsigned normalized block-compressed (BC7 compression) format
- CU_AD_FORMAT_BC7_UNORM_SRGB = 158#
-
4 channel unsigned normalized block-compressed (BC7 compression) format with sRGB encoding
- class cuda.cuda.CUaddress_mode(value)#
-
Texture reference addressing modes
- CU_TR_ADDRESS_MODE_WRAP = 0#
-
Wrapping address mode
- CU_TR_ADDRESS_MODE_CLAMP = 1#
-
Clamp to edge address mode
- CU_TR_ADDRESS_MODE_MIRROR = 2#
-
Mirror address mode
- CU_TR_ADDRESS_MODE_BORDER = 3#
-
Border address mode
- class cuda.cuda.CUfilter_mode(value)#
-
Texture reference filtering modes
- CU_TR_FILTER_MODE_POINT = 0#
-
Point filter mode
- CU_TR_FILTER_MODE_LINEAR = 1#
-
Linear filter mode
- class cuda.cuda.CUdevice_attribute(value)#
-
Device properties
- CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK = 1#
-
Maximum number of threads per block
- CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X = 2#
-
Maximum block dimension X
- CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y = 3#
-
Maximum block dimension Y
- CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z = 4#
-
Maximum block dimension Z
- CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X = 5#
-
Maximum grid dimension X
- CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y = 6#
-
Maximum grid dimension Y
- CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z = 7#
-
Maximum grid dimension Z
- CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK = 8#
-
Maximum shared memory available per block in bytes
- CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK = 8#
-
Deprecated, use CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK
- CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY = 9#
-
Memory available on device for constant variables in a CUDA C kernel in bytes
- CU_DEVICE_ATTRIBUTE_WARP_SIZE = 10#
-
Warp size in threads
- CU_DEVICE_ATTRIBUTE_MAX_PITCH = 11#
-
Maximum pitch in bytes allowed by memory copies
- CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK = 12#
-
Maximum number of 32-bit registers available per block
- CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK = 12#
-
Deprecated, use CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK
- CU_DEVICE_ATTRIBUTE_CLOCK_RATE = 13#
-
Typical clock frequency in kilohertz
- CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT = 14#
-
Alignment requirement for textures
- CU_DEVICE_ATTRIBUTE_GPU_OVERLAP = 15#
-
Device can possibly copy memory and execute a kernel concurrently. Deprecated. Use instead CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT.
- CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT = 16#
-
Number of multiprocessors on device
- CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT = 17#
-
Specifies whether there is a run time limit on kernels
- CU_DEVICE_ATTRIBUTE_INTEGRATED = 18#
-
Device is integrated with host memory
- CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY = 19#
-
Device can map host memory into CUDA address space
- CU_DEVICE_ATTRIBUTE_COMPUTE_MODE = 20#
-
Compute mode (See
CUcomputemodefor details)
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH = 21#
-
Maximum 1D texture width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH = 22#
-
Maximum 2D texture width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT = 23#
-
Maximum 2D texture height
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH = 24#
-
Maximum 3D texture width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT = 25#
-
Maximum 3D texture height
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH = 26#
-
Maximum 3D texture depth
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH = 27#
-
Maximum 2D layered texture width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT = 28#
-
Maximum 2D layered texture height
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS = 29#
-
Maximum layers in a 2D layered texture
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_WIDTH = 27#
-
Deprecated, use CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_HEIGHT = 28#
-
Deprecated, use CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_NUMSLICES = 29#
-
Deprecated, use CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS
- CU_DEVICE_ATTRIBUTE_SURFACE_ALIGNMENT = 30#
-
Alignment requirement for surfaces
- CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS = 31#
-
Device can possibly execute multiple kernels concurrently
- CU_DEVICE_ATTRIBUTE_ECC_ENABLED = 32#
-
Device has ECC support enabled
- CU_DEVICE_ATTRIBUTE_PCI_BUS_ID = 33#
-
PCI bus ID of the device
- CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID = 34#
-
PCI device ID of the device
- CU_DEVICE_ATTRIBUTE_TCC_DRIVER = 35#
-
Device is using TCC driver model
- CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE = 36#
-
Peak memory clock frequency in kilohertz
- CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH = 37#
-
Global memory bus width in bits
- CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE = 38#
-
Size of L2 cache in bytes
- CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR = 39#
-
Maximum resident threads per multiprocessor
- CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT = 40#
-
Number of asynchronous engines
- CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING = 41#
-
Device shares a unified address space with the host
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_WIDTH = 42#
-
Maximum 1D layered texture width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_LAYERS = 43#
-
Maximum layers in a 1D layered texture
- CU_DEVICE_ATTRIBUTE_CAN_TEX2D_GATHER = 44#
-
Deprecated, do not use.
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_WIDTH = 45#
-
Maximum 2D texture width if CUDA_ARRAY3D_TEXTURE_GATHER is set
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_HEIGHT = 46#
-
Maximum 2D texture height if CUDA_ARRAY3D_TEXTURE_GATHER is set
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH_ALTERNATE = 47#
-
Alternate maximum 3D texture width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT_ALTERNATE = 48#
-
Alternate maximum 3D texture height
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH_ALTERNATE = 49#
-
Alternate maximum 3D texture depth
- CU_DEVICE_ATTRIBUTE_PCI_DOMAIN_ID = 50#
-
PCI domain ID of the device
- CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT = 51#
-
Pitch alignment requirement for textures
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_WIDTH = 52#
-
Maximum cubemap texture width/height
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_WIDTH = 53#
-
Maximum cubemap layered texture width/height
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_LAYERS = 54#
-
Maximum layers in a cubemap layered texture
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_WIDTH = 55#
-
Maximum 1D surface width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_WIDTH = 56#
-
Maximum 2D surface width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_HEIGHT = 57#
-
Maximum 2D surface height
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_WIDTH = 58#
-
Maximum 3D surface width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_HEIGHT = 59#
-
Maximum 3D surface height
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_DEPTH = 60#
-
Maximum 3D surface depth
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_WIDTH = 61#
-
Maximum 1D layered surface width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_LAYERS = 62#
-
Maximum layers in a 1D layered surface
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_WIDTH = 63#
-
Maximum 2D layered surface width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_HEIGHT = 64#
-
Maximum 2D layered surface height
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_LAYERS = 65#
-
Maximum layers in a 2D layered surface
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_WIDTH = 66#
-
Maximum cubemap surface width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_WIDTH = 67#
-
Maximum cubemap layered surface width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_LAYERS = 68#
-
Maximum layers in a cubemap layered surface
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LINEAR_WIDTH = 69#
-
Deprecated, do not use. Use cudaDeviceGetTexture1DLinearMaxWidth() or
cuDeviceGetTexture1DLinearMaxWidth()instead.
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_WIDTH = 70#
-
Maximum 2D linear texture width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_HEIGHT = 71#
-
Maximum 2D linear texture height
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_PITCH = 72#
-
Maximum 2D linear texture pitch in bytes
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_WIDTH = 73#
-
Maximum mipmapped 2D texture width
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_HEIGHT = 74#
-
Maximum mipmapped 2D texture height
- CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR = 75#
-
Major compute capability version number
- CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR = 76#
-
Minor compute capability version number
- CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_MIPMAPPED_WIDTH = 77#
-
Maximum mipmapped 1D texture width
- CU_DEVICE_ATTRIBUTE_STREAM_PRIORITIES_SUPPORTED = 78#
-
Device supports stream priorities
- CU_DEVICE_ATTRIBUTE_GLOBAL_L1_CACHE_SUPPORTED = 79#
-
Device supports caching globals in L1
- CU_DEVICE_ATTRIBUTE_LOCAL_L1_CACHE_SUPPORTED = 80#
-
Device supports caching locals in L1
- CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR = 81#
-
Maximum shared memory available per multiprocessor in bytes
- CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_MULTIPROCESSOR = 82#
-
Maximum number of 32-bit registers available per multiprocessor
- CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY = 83#
-
Device can allocate managed memory on this system
- CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD = 84#
-
Device is on a multi-GPU board
- CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD_GROUP_ID = 85#
-
Unique id for a group of devices on the same multi-GPU board
- CU_DEVICE_ATTRIBUTE_HOST_NATIVE_ATOMIC_SUPPORTED = 86#
-
Link between the device and the host supports native atomic operations (this is a placeholder attribute, and is not supported on any current hardware)
- CU_DEVICE_ATTRIBUTE_SINGLE_TO_DOUBLE_PRECISION_PERF_RATIO = 87#
-
Ratio of single precision performance (in floating-point operations per second) to double precision performance
- CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS = 88#
-
Device supports coherently accessing pageable memory without calling cudaHostRegister on it
- CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS = 89#
-
Device can coherently access managed memory concurrently with the CPU
- CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED = 90#
-
Device supports compute preemption.
- CU_DEVICE_ATTRIBUTE_CAN_USE_HOST_POINTER_FOR_REGISTERED_MEM = 91#
-
Device can access host registered memory at the same virtual address as the CPU
- CU_DEVICE_ATTRIBUTE_CAN_USE_STREAM_MEM_OPS_V1 = 92#
-
Deprecated, along with v1 MemOps API,
cuStreamBatchMemOpand related APIs are supported.
- CU_DEVICE_ATTRIBUTE_CAN_USE_64_BIT_STREAM_MEM_OPS_V1 = 93#
-
Deprecated, along with v1 MemOps API, 64-bit operations are supported in
cuStreamBatchMemOpand related APIs.
- CU_DEVICE_ATTRIBUTE_CAN_USE_STREAM_WAIT_VALUE_NOR_V1 = 94#
-
Deprecated, along with v1 MemOps API,
CU_STREAM_WAIT_VALUE_NORis supported.
- CU_DEVICE_ATTRIBUTE_COOPERATIVE_LAUNCH = 95#
-
Device supports launching cooperative kernels via
cuLaunchCooperativeKernel
- CU_DEVICE_ATTRIBUTE_COOPERATIVE_MULTI_DEVICE_LAUNCH = 96#
-
Deprecated,
cuLaunchCooperativeKernelMultiDeviceis deprecated.
- CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN = 97#
-
Maximum optin shared memory per block
- CU_DEVICE_ATTRIBUTE_CAN_FLUSH_REMOTE_WRITES = 98#
-
The
CU_STREAM_WAIT_VALUE_FLUSHflag and theCU_STREAM_MEM_OP_FLUSH_REMOTE_WRITESMemOp are supported on the device. SeeStream Memory Operationsfor additional details.
- CU_DEVICE_ATTRIBUTE_HOST_REGISTER_SUPPORTED = 99#
-
Device supports host memory registration via
cudaHostRegister.
- CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS_USES_HOST_PAGE_TABLES = 100#
-
Device accesses pageable memory via the host’s page tables.
- CU_DEVICE_ATTRIBUTE_DIRECT_MANAGED_MEM_ACCESS_FROM_HOST = 101#
-
The host can directly access managed memory on the device without migration.
- CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED = 102#
-
Deprecated, Use CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED
- CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED = 102#
-
Device supports virtual memory management APIs like
cuMemAddressReserve,cuMemCreate,cuMemMapand related APIs
- CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR_SUPPORTED = 103#
-
Device supports exporting memory to a posix file descriptor with
cuMemExportToShareableHandle, if requested viacuMemCreate
- CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_WIN32_HANDLE_SUPPORTED = 104#
-
Device supports exporting memory to a Win32 NT handle with
cuMemExportToShareableHandle, if requested viacuMemCreate
- CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_WIN32_KMT_HANDLE_SUPPORTED = 105#
-
Device supports exporting memory to a Win32 KMT handle with
cuMemExportToShareableHandle, if requested viacuMemCreate
- CU_DEVICE_ATTRIBUTE_MAX_BLOCKS_PER_MULTIPROCESSOR = 106#
-
Maximum number of blocks per multiprocessor
- CU_DEVICE_ATTRIBUTE_GENERIC_COMPRESSION_SUPPORTED = 107#
-
Device supports compression of memory
- CU_DEVICE_ATTRIBUTE_MAX_PERSISTING_L2_CACHE_SIZE = 108#
-
Maximum L2 persisting lines capacity setting in bytes.
- CU_DEVICE_ATTRIBUTE_MAX_ACCESS_POLICY_WINDOW_SIZE = 109#
-
Maximum value of
num_bytes.
- CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_WITH_CUDA_VMM_SUPPORTED = 110#
-
Device supports specifying the GPUDirect RDMA flag with
cuMemCreate
- CU_DEVICE_ATTRIBUTE_RESERVED_SHARED_MEMORY_PER_BLOCK = 111#
-
Shared memory reserved by CUDA driver per block in bytes
- CU_DEVICE_ATTRIBUTE_SPARSE_CUDA_ARRAY_SUPPORTED = 112#
-
Device supports sparse CUDA arrays and sparse CUDA mipmapped arrays
- CU_DEVICE_ATTRIBUTE_READ_ONLY_HOST_REGISTER_SUPPORTED = 113#
-
Device supports using the
cuMemHostRegisterflagCU_MEMHOSTERGISTER_READ_ONLYto register memory that must be mapped as read-only to the GPU
- CU_DEVICE_ATTRIBUTE_TIMELINE_SEMAPHORE_INTEROP_SUPPORTED = 114#
-
External timeline semaphore interop is supported on the device
- CU_DEVICE_ATTRIBUTE_MEMORY_POOLS_SUPPORTED = 115#
-
Device supports using the
cuMemAllocAsyncandcuMemPoolfamily of APIs
- CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_SUPPORTED = 116#
-
Device supports GPUDirect RDMA APIs, like nvidia_p2p_get_pages (see https://docs.nvidia.com/cuda/gpudirect-rdma for more information)
- CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_FLUSH_WRITES_OPTIONS = 117#
-
The returned attribute shall be interpreted as a bitmask, where the individual bits are described by the
CUflushGPUDirectRDMAWritesOptionsenum
- CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_WRITES_ORDERING = 118#
-
GPUDirect RDMA writes to the device do not need to be flushed for consumers within the scope indicated by the returned attribute. See
CUGPUDirectRDMAWritesOrderingfor the numerical values returned here.
- CU_DEVICE_ATTRIBUTE_MEMPOOL_SUPPORTED_HANDLE_TYPES = 119#
-
Handle types supported with mempool based IPC
- CU_DEVICE_ATTRIBUTE_CLUSTER_LAUNCH = 120#
-
Indicates device supports cluster launch
- CU_DEVICE_ATTRIBUTE_DEFERRED_MAPPING_CUDA_ARRAY_SUPPORTED = 121#
-
Device supports deferred mapping CUDA arrays and CUDA mipmapped arrays
- CU_DEVICE_ATTRIBUTE_CAN_USE_64_BIT_STREAM_MEM_OPS = 122#
-
64-bit operations are supported in
cuStreamBatchMemOpand related MemOp APIs.
- CU_DEVICE_ATTRIBUTE_CAN_USE_STREAM_WAIT_VALUE_NOR = 123#
-
CU_STREAM_WAIT_VALUE_NORis supported by MemOp APIs.
- CU_DEVICE_ATTRIBUTE_DMA_BUF_SUPPORTED = 124#
-
Device supports buffer sharing with dma_buf mechanism.
- CU_DEVICE_ATTRIBUTE_IPC_EVENT_SUPPORTED = 125#
-
Device supports IPC Events.
- CU_DEVICE_ATTRIBUTE_MEM_SYNC_DOMAIN_COUNT = 126#
-
Number of memory domains the device supports.
- CU_DEVICE_ATTRIBUTE_TENSOR_MAP_ACCESS_SUPPORTED = 127#
-
Device supports accessing memory using Tensor Map.
- CU_DEVICE_ATTRIBUTE_UNIFIED_FUNCTION_POINTERS = 129#
-
Device supports unified function pointers.
- CU_DEVICE_ATTRIBUTE_MAX = 130#
- class cuda.cuda.CUpointer_attribute(value)#
-
Pointer information
- CU_POINTER_ATTRIBUTE_CONTEXT = 1#
-
The
CUcontexton which a pointer was allocated or registered
- CU_POINTER_ATTRIBUTE_MEMORY_TYPE = 2#
-
The
CUmemorytypedescribing the physical location of a pointer
- CU_POINTER_ATTRIBUTE_DEVICE_POINTER = 3#
-
The address at which a pointer’s memory may be accessed on the device
- CU_POINTER_ATTRIBUTE_HOST_POINTER = 4#
-
The address at which a pointer’s memory may be accessed on the host
- CU_POINTER_ATTRIBUTE_P2P_TOKENS = 5#
-
A pair of tokens for use with the nv-p2p.h Linux kernel interface
- CU_POINTER_ATTRIBUTE_SYNC_MEMOPS = 6#
-
Synchronize every synchronous memory operation initiated on this region
- CU_POINTER_ATTRIBUTE_BUFFER_ID = 7#
-
A process-wide unique ID for an allocated memory region
- CU_POINTER_ATTRIBUTE_IS_MANAGED = 8#
-
Indicates if the pointer points to managed memory
- CU_POINTER_ATTRIBUTE_DEVICE_ORDINAL = 9#
-
A device ordinal of a device on which a pointer was allocated or registered
- CU_POINTER_ATTRIBUTE_IS_LEGACY_CUDA_IPC_CAPABLE = 10#
-
1 if this pointer maps to an allocation that is suitable for
cudaIpcGetMemHandle, 0 otherwise
- CU_POINTER_ATTRIBUTE_RANGE_START_ADDR = 11#
-
Starting address for this requested pointer
- CU_POINTER_ATTRIBUTE_RANGE_SIZE = 12#
-
Size of the address range for this requested pointer
- CU_POINTER_ATTRIBUTE_MAPPED = 13#
-
1 if this pointer is in a valid address range that is mapped to a backing allocation, 0 otherwise
- CU_POINTER_ATTRIBUTE_ALLOWED_HANDLE_TYPES = 14#
-
Bitmask of allowed
CUmemAllocationHandleTypefor this allocation
- CU_POINTER_ATTRIBUTE_IS_GPU_DIRECT_RDMA_CAPABLE = 15#
-
1 if the memory this pointer is referencing can be used with the GPUDirect RDMA API
- CU_POINTER_ATTRIBUTE_ACCESS_FLAGS = 16#
-
Returns the access flags the device associated with the current context has on the corresponding memory referenced by the pointer given
- CU_POINTER_ATTRIBUTE_MEMPOOL_HANDLE = 17#
-
Returns the mempool handle for the allocation if it was allocated from a mempool. Otherwise returns NULL.
- CU_POINTER_ATTRIBUTE_MAPPING_SIZE = 18#
-
Size of the actual underlying mapping that the pointer belongs to
- CU_POINTER_ATTRIBUTE_MAPPING_BASE_ADDR = 19#
-
The start address of the mapping that the pointer belongs to
- CU_POINTER_ATTRIBUTE_MEMORY_BLOCK_ID = 20#
-
A process-wide unique id corresponding to the physical allocation the pointer belongs to
- class cuda.cuda.CUfunction_attribute(value)#
-
Function properties
- CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK = 0#
-
The maximum number of threads per block, beyond which a launch of the function would fail. This number depends on both the function and the device on which the function is currently loaded.
- CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES = 1#
-
The size in bytes of statically-allocated shared memory required by this function. This does not include dynamically-allocated shared memory requested by the user at runtime.
- CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES = 2#
-
The size in bytes of user-allocated constant memory required by this function.
- CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES = 3#
-
The size in bytes of local memory used by each thread of this function.
- CU_FUNC_ATTRIBUTE_NUM_REGS = 4#
-
The number of registers used by each thread of this function.
- CU_FUNC_ATTRIBUTE_PTX_VERSION = 5#
-
The PTX virtual architecture version for which the function was compiled. This value is the major PTX version * 10 + the minor PTX version, so a PTX version 1.3 function would return the value 13. Note that this may return the undefined value of 0 for cubins compiled prior to CUDA 3.0.
- CU_FUNC_ATTRIBUTE_BINARY_VERSION = 6#
-
The binary architecture version for which the function was compiled. This value is the major binary version * 10 + the minor binary version, so a binary version 1.3 function would return the value 13. Note that this will return a value of 10 for legacy cubins that do not have a properly-encoded binary architecture version.
- CU_FUNC_ATTRIBUTE_CACHE_MODE_CA = 7#
-
The attribute to indicate whether the function has been compiled with user specified option “-Xptxas –dlcm=ca” set .
- CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES = 8#
-
The maximum size in bytes of dynamically-allocated shared memory that can be used by this function. If the user-specified dynamic shared memory size is larger than this value, the launch will fail. See
cuFuncSetAttribute,cuKernelSetAttribute
- CU_FUNC_ATTRIBUTE_PREFERRED_SHARED_MEMORY_CARVEOUT = 9#
-
On devices where the L1 cache and shared memory use the same hardware resources, this sets the shared memory carveout preference, in percent of the total shared memory. Refer to
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR. This is only a hint, and the driver can choose a different ratio if required to execute the function. SeecuFuncSetAttribute,cuKernelSetAttribute
- CU_FUNC_ATTRIBUTE_CLUSTER_SIZE_MUST_BE_SET = 10#
-
If this attribute is set, the kernel must launch with a valid cluster size specified. See
cuFuncSetAttribute,cuKernelSetAttribute
- CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_WIDTH = 11#
-
The required cluster width in blocks. The values must either all be 0 or all be positive. The validity of the cluster dimensions is otherwise checked at launch time.
If the value is set during compile time, it cannot be set at runtime. Setting it at runtime will return CUDA_ERROR_NOT_PERMITTED. See
cuFuncSetAttribute,cuKernelSetAttribute
- CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_HEIGHT = 12#
-
The required cluster height in blocks. The values must either all be 0 or all be positive. The validity of the cluster dimensions is otherwise checked at launch time.
If the value is set during compile time, it cannot be set at runtime. Setting it at runtime should return CUDA_ERROR_NOT_PERMITTED. See
cuFuncSetAttribute,cuKernelSetAttribute
- CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_DEPTH = 13#
-
The required cluster depth in blocks. The values must either all be 0 or all be positive. The validity of the cluster dimensions is otherwise checked at launch time.
If the value is set during compile time, it cannot be set at runtime. Setting it at runtime should return CUDA_ERROR_NOT_PERMITTED. See
cuFuncSetAttribute,cuKernelSetAttribute
- CU_FUNC_ATTRIBUTE_NON_PORTABLE_CLUSTER_SIZE_ALLOWED = 14#
-
Whether the function can be launched with non-portable cluster size. 1 is allowed, 0 is disallowed. A non-portable cluster size may only function on the specific SKUs the program is tested on. The launch might fail if the program is run on a different hardware platform.
CUDA API provides cudaOccupancyMaxActiveClusters to assist with checking whether the desired size can be launched on the current device.
Portable Cluster Size
A portable cluster size is guaranteed to be functional on all compute capabilities higher than the target compute capability. The portable cluster size for sm_90 is 8 blocks per cluster. This value may increase for future compute capabilities.
The specific hardware unit may support higher cluster sizes that’s not guaranteed to be portable. See
cuFuncSetAttribute,cuKernelSetAttribute
- CU_FUNC_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE = 15#
-
The block scheduling policy of a function. The value type is CUclusterSchedulingPolicy / cudaClusterSchedulingPolicy. See
cuFuncSetAttribute,cuKernelSetAttribute
- CU_FUNC_ATTRIBUTE_MAX = 16#
- class cuda.cuda.CUfunc_cache(value)#
-
Function cache configurations
- CU_FUNC_CACHE_PREFER_NONE = 0#
-
no preference for shared memory or L1 (default)
- CU_FUNC_CACHE_PREFER_SHARED = 1#
-
prefer larger shared memory and smaller L1 cache
- CU_FUNC_CACHE_PREFER_L1 = 2#
-
prefer larger L1 cache and smaller shared memory
- CU_FUNC_CACHE_PREFER_EQUAL = 3#
-
prefer equal sized L1 cache and shared memory
- class cuda.cuda.CUsharedconfig(value)#
-
Shared memory configurations
- CU_SHARED_MEM_CONFIG_DEFAULT_BANK_SIZE = 0#
-
set default shared memory bank size
- CU_SHARED_MEM_CONFIG_FOUR_BYTE_BANK_SIZE = 1#
-
set shared memory bank width to four bytes
- CU_SHARED_MEM_CONFIG_EIGHT_BYTE_BANK_SIZE = 2#
-
set shared memory bank width to eight bytes
- class cuda.cuda.CUshared_carveout(value)#
-
Shared memory carveout configurations. These may be passed to
cuFuncSetAttributeorcuKernelSetAttribute- CU_SHAREDMEM_CARVEOUT_DEFAULT = -1#
-
No preference for shared memory or L1 (default)
- CU_SHAREDMEM_CARVEOUT_MAX_SHARED = 100#
-
Prefer maximum available shared memory, minimum L1 cache
- CU_SHAREDMEM_CARVEOUT_MAX_L1 = 0#
-
Prefer maximum available L1 cache, minimum shared memory
- class cuda.cuda.CUmemorytype(value)#
-
Memory types
- CU_MEMORYTYPE_HOST = 1#
-
Host memory
- CU_MEMORYTYPE_DEVICE = 2#
-
Device memory
- CU_MEMORYTYPE_ARRAY = 3#
-
Array memory
- CU_MEMORYTYPE_UNIFIED = 4#
-
Unified device or host memory
- class cuda.cuda.CUcomputemode(value)#
-
Compute Modes
- CU_COMPUTEMODE_DEFAULT = 0#
-
Default compute mode (Multiple contexts allowed per device)
- CU_COMPUTEMODE_PROHIBITED = 2#
-
Compute-prohibited mode (No contexts can be created on this device at this time)
- CU_COMPUTEMODE_EXCLUSIVE_PROCESS = 3#
-
Compute-exclusive-process mode (Only one context used by a single process can be present on this device at a time)
- class cuda.cuda.CUmem_advise(value)#
-
Memory advise values
- CU_MEM_ADVISE_SET_READ_MOSTLY = 1#
-
Data will mostly be read and only occassionally be written to
- CU_MEM_ADVISE_UNSET_READ_MOSTLY = 2#
-
Undo the effect of
CU_MEM_ADVISE_SET_READ_MOSTLY
- CU_MEM_ADVISE_SET_PREFERRED_LOCATION = 3#
-
Set the preferred location for the data as the specified device
- CU_MEM_ADVISE_UNSET_PREFERRED_LOCATION = 4#
-
Clear the preferred location for the data
- CU_MEM_ADVISE_SET_ACCESSED_BY = 5#
-
Data will be accessed by the specified device, so prevent page faults as much as possible
- CU_MEM_ADVISE_UNSET_ACCESSED_BY = 6#
-
Let the Unified Memory subsystem decide on the page faulting policy for the specified device
- class cuda.cuda.CUmem_range_attribute(value)#
-
- CU_MEM_RANGE_ATTRIBUTE_READ_MOSTLY = 1#
-
Whether the range will mostly be read and only occassionally be written to
- CU_MEM_RANGE_ATTRIBUTE_PREFERRED_LOCATION = 2#
-
The preferred location of the range
- CU_MEM_RANGE_ATTRIBUTE_ACCESSED_BY = 3#
-
Memory range has
CU_MEM_ADVISE_SET_ACCESSED_BYset for specified device
- CU_MEM_RANGE_ATTRIBUTE_LAST_PREFETCH_LOCATION = 4#
-
The last location to which the range was prefetched
- class cuda.cuda.CUjit_option(value)#
-
Online compiler and linker options
- CU_JIT_MAX_REGISTERS = 0#
-
Max number of registers that a thread may use.
Option type: unsigned int
Applies to: compiler only
- CU_JIT_THREADS_PER_BLOCK = 1#
-
IN: Specifies minimum number of threads per block to target compilation for
OUT: Returns the number of threads the compiler actually targeted. This restricts the resource utilization fo the compiler (e.g. max registers) such that a block with the given number of threads should be able to launch based on register limitations. Note, this option does not currently take into account any other resource limitations, such as shared memory utilization.
Cannot be combined with
CU_JIT_TARGET.Option type: unsigned int
Applies to: compiler only
- CU_JIT_WALL_TIME = 2#
-
Overwrites the option value with the total wall clock time, in milliseconds, spent in the compiler and linker
Option type: float
Applies to: compiler and linker
- CU_JIT_INFO_LOG_BUFFER = 3#
-
Pointer to a buffer in which to print any log messages that are informational in nature (the buffer size is specified via option
CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES)Option type: char *
Applies to: compiler and linker
- CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES = 4#
-
IN: Log buffer size in bytes. Log messages will be capped at this size (including null terminator)
OUT: Amount of log buffer filled with messages
Option type: unsigned int
Applies to: compiler and linker
- CU_JIT_ERROR_LOG_BUFFER = 5#
-
Pointer to a buffer in which to print any log messages that reflect errors (the buffer size is specified via option
CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES)Option type: char *
Applies to: compiler and linker
- CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES = 6#
-
IN: Log buffer size in bytes. Log messages will be capped at this size (including null terminator)
OUT: Amount of log buffer filled with messages
Option type: unsigned int
Applies to: compiler and linker
- CU_JIT_OPTIMIZATION_LEVEL = 7#
-
Level of optimizations to apply to generated code (0 — 4), with 4 being the default and highest level of optimizations.
Option type: unsigned int
Applies to: compiler only
- CU_JIT_TARGET_FROM_CUCONTEXT = 8#
-
No option value required. Determines the target based on the current attached context (default)
Option type: No option value needed
Applies to: compiler and linker
- CU_JIT_TARGET = 9#
-
Target is chosen based on supplied
CUjit_target. Cannot be combined withCU_JIT_THREADS_PER_BLOCK.Option type: unsigned int for enumerated type
CUjit_targetApplies to: compiler and linker
- CU_JIT_FALLBACK_STRATEGY = 10#
-
Specifies choice of fallback strategy if matching cubin is not found. Choice is based on supplied
CUjit_fallback. This option cannot be used with cuLink* APIs as the linker requires exact matches.Option type: unsigned int for enumerated type
CUjit_fallbackApplies to: compiler only
- CU_JIT_GENERATE_DEBUG_INFO = 11#
-
Specifies whether to create debug information in output (-g) (0: false, default)
Option type: int
Applies to: compiler and linker
- CU_JIT_LOG_VERBOSE = 12#
-
Generate verbose log messages (0: false, default)
Option type: int
Applies to: compiler and linker
- CU_JIT_GENERATE_LINE_INFO = 13#
-
Generate line number information (-lineinfo) (0: false, default)
Option type: int
Applies to: compiler only
- CU_JIT_CACHE_MODE = 14#
-
Specifies whether to enable caching explicitly (-dlcm)
Choice is based on supplied
CUjit_cacheMode_enum.Option type: unsigned int for enumerated type
CUjit_cacheMode_enumApplies to: compiler only
- CU_JIT_NEW_SM3X_OPT = 15#
-
[Deprecated]
- CU_JIT_FAST_COMPILE = 16#
-
This jit option is used for internal purpose only.
- CU_JIT_GLOBAL_SYMBOL_NAMES = 17#
-
Array of device symbol names that will be relocated to the corresponing host addresses stored in
CU_JIT_GLOBAL_SYMBOL_ADDRESSES.Must contain
CU_JIT_GLOBAL_SYMBOL_COUNTentries.When loding a device module, driver will relocate all encountered unresolved symbols to the host addresses.
It is only allowed to register symbols that correspond to unresolved global variables.
It is illegal to register the same device symbol at multiple addresses.
Option type: const char **
Applies to: dynamic linker only
- CU_JIT_GLOBAL_SYMBOL_ADDRESSES = 18#
-
Array of host addresses that will be used to relocate corresponding device symbols stored in
CU_JIT_GLOBAL_SYMBOL_NAMES.Must contain
CU_JIT_GLOBAL_SYMBOL_COUNTentries.Option type: void **
Applies to: dynamic linker only
- CU_JIT_GLOBAL_SYMBOL_COUNT = 19#
-
Number of entries in
CU_JIT_GLOBAL_SYMBOL_NAMESandCU_JIT_GLOBAL_SYMBOL_ADDRESSESarrays.Option type: unsigned int
Applies to: dynamic linker only
- CU_JIT_LTO = 20#
-
[Deprecated]
Only valid with LTO-IR compiled with toolkits prior to CUDA 12.0
- CU_JIT_FTZ = 21#
-
[Deprecated]
Only valid with LTO-IR compiled with toolkits prior to CUDA 12.0
- CU_JIT_PREC_DIV = 22#
-
[Deprecated]
Only valid with LTO-IR compiled with toolkits prior to CUDA 12.0
- CU_JIT_PREC_SQRT = 23#
-
[Deprecated]
Only valid with LTO-IR compiled with toolkits prior to CUDA 12.0
- CU_JIT_FMA = 24#
-
[Deprecated]
Only valid with LTO-IR compiled with toolkits prior to CUDA 12.0
- CU_JIT_REFERENCED_KERNEL_NAMES = 25#
-
[Deprecated]
Only valid with LTO-IR compiled with toolkits prior to CUDA 12.0
- CU_JIT_REFERENCED_KERNEL_COUNT = 26#
-
[Deprecated]
Only valid with LTO-IR compiled with toolkits prior to CUDA 12.0
- CU_JIT_REFERENCED_VARIABLE_NAMES = 27#
-
[Deprecated]
Only valid with LTO-IR compiled with toolkits prior to CUDA 12.0
- CU_JIT_REFERENCED_VARIABLE_COUNT = 28#
-
[Deprecated]
Only valid with LTO-IR compiled with toolkits prior to CUDA 12.0
- CU_JIT_OPTIMIZE_UNUSED_DEVICE_VARIABLES = 29#
-
[Deprecated]
Only valid with LTO-IR compiled with toolkits prior to CUDA 12.0
- CU_JIT_POSITION_INDEPENDENT_CODE = 30#
-
Generate position independent code (0: false)
Option type: int
Applies to: compiler only
- CU_JIT_NUM_OPTIONS = 31#
- class cuda.cuda.CUjit_target(value)#
-
Online compilation targets
- CU_TARGET_COMPUTE_30 = 30#
-
Compute device class 3.0
- CU_TARGET_COMPUTE_32 = 32#
-
Compute device class 3.2
- CU_TARGET_COMPUTE_35 = 35#
-
Compute device class 3.5
- CU_TARGET_COMPUTE_37 = 37#
-
Compute device class 3.7
- CU_TARGET_COMPUTE_50 = 50#
-
Compute device class 5.0
- CU_TARGET_COMPUTE_52 = 52#
-
Compute device class 5.2
- CU_TARGET_COMPUTE_53 = 53#
-
Compute device class 5.3
- CU_TARGET_COMPUTE_60 = 60#
-
Compute device class 6.0.
- CU_TARGET_COMPUTE_61 = 61#
-
Compute device class 6.1.
- CU_TARGET_COMPUTE_62 = 62#
-
Compute device class 6.2.
- CU_TARGET_COMPUTE_70 = 70#
-
Compute device class 7.0.
- CU_TARGET_COMPUTE_72 = 72#
-
Compute device class 7.2.
- CU_TARGET_COMPUTE_75 = 75#
-
Compute device class 7.5.
- CU_TARGET_COMPUTE_80 = 80#
-
Compute device class 8.0.
- CU_TARGET_COMPUTE_86 = 86#
-
Compute device class 8.6.
- CU_TARGET_COMPUTE_87 = 87#
-
Compute device class 8.7.
- CU_TARGET_COMPUTE_89 = 89#
-
Compute device class 8.9.
- CU_TARGET_COMPUTE_90 = 90#
-
Compute device class 9.0. Compute device class 9.0. with accelerated features.
- CU_TARGET_COMPUTE_90A = 65626#
- class cuda.cuda.CUjit_fallback(value)#
-
Cubin matching fallback strategies
- CU_PREFER_PTX = 0#
-
Prefer to compile ptx if exact binary match not found
- CU_PREFER_BINARY = 1#
-
Prefer to fall back to compatible binary code if exact match not found
- class cuda.cuda.CUjit_cacheMode(value)#
-
Caching modes for dlcm
- CU_JIT_CACHE_OPTION_NONE = 0#
-
Compile with no -dlcm flag specified
- CU_JIT_CACHE_OPTION_CG = 1#
-
Compile with L1 cache disabled
- CU_JIT_CACHE_OPTION_CA = 2#
-
Compile with L1 cache enabled
- class cuda.cuda.CUjitInputType(value)#
-
Device code formats
- CU_JIT_INPUT_CUBIN = 0#
-
Compiled device-class-specific device code
Applicable options: none
- CU_JIT_INPUT_PTX = 1#
-
PTX source code
Applicable options: PTX compiler options
- CU_JIT_INPUT_FATBINARY = 2#
-
Bundle of multiple cubins and/or PTX of some device code
Applicable options: PTX compiler options,
CU_JIT_FALLBACK_STRATEGY
- CU_JIT_INPUT_OBJECT = 3#
-
Host object with embedded device code
Applicable options: PTX compiler options,
CU_JIT_FALLBACK_STRATEGY
- CU_JIT_INPUT_LIBRARY = 4#
-
Archive of host objects with embedded device code
Applicable options: PTX compiler options,
CU_JIT_FALLBACK_STRATEGY
- CU_JIT_INPUT_NVVM = 5#
-
[Deprecated]
Only valid with LTO-IR compiled with toolkits prior to CUDA 12.0
- CU_JIT_NUM_INPUT_TYPES = 6#
- class cuda.cuda.CUgraphicsRegisterFlags(value)#
-
Flags to register a graphics resource
- CU_GRAPHICS_REGISTER_FLAGS_NONE = 0#
- CU_GRAPHICS_REGISTER_FLAGS_READ_ONLY = 1#
- CU_GRAPHICS_REGISTER_FLAGS_WRITE_DISCARD = 2#
- CU_GRAPHICS_REGISTER_FLAGS_SURFACE_LDST = 4#
- CU_GRAPHICS_REGISTER_FLAGS_TEXTURE_GATHER = 8#
- class cuda.cuda.CUgraphicsMapResourceFlags(value)#
-
Flags for mapping and unmapping interop resources
- CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE = 0#
- CU_GRAPHICS_MAP_RESOURCE_FLAGS_READ_ONLY = 1#
- CU_GRAPHICS_MAP_RESOURCE_FLAGS_WRITE_DISCARD = 2#
- class cuda.cuda.CUarray_cubemap_face(value)#
-
Array indices for cube faces
- CU_CUBEMAP_FACE_POSITIVE_X = 0#
-
Positive X face of cubemap
- CU_CUBEMAP_FACE_NEGATIVE_X = 1#
-
Negative X face of cubemap
- CU_CUBEMAP_FACE_POSITIVE_Y = 2#
-
Positive Y face of cubemap
- CU_CUBEMAP_FACE_NEGATIVE_Y = 3#
-
Negative Y face of cubemap
- CU_CUBEMAP_FACE_POSITIVE_Z = 4#
-
Positive Z face of cubemap
- CU_CUBEMAP_FACE_NEGATIVE_Z = 5#
-
Negative Z face of cubemap
- class cuda.cuda.CUlimit(value)#
-
Limits
- CU_LIMIT_STACK_SIZE = 0#
-
GPU thread stack size
- CU_LIMIT_PRINTF_FIFO_SIZE = 1#
-
GPU printf FIFO size
- CU_LIMIT_MALLOC_HEAP_SIZE = 2#
-
GPU malloc heap size
- CU_LIMIT_DEV_RUNTIME_SYNC_DEPTH = 3#
-
GPU device runtime launch synchronize depth
- CU_LIMIT_DEV_RUNTIME_PENDING_LAUNCH_COUNT = 4#
-
GPU device runtime pending launch count
- CU_LIMIT_MAX_L2_FETCH_GRANULARITY = 5#
-
A value between 0 and 128 that indicates the maximum fetch granularity of L2 (in Bytes). This is a hint
- CU_LIMIT_PERSISTING_L2_CACHE_SIZE = 6#
-
A size in bytes for L2 persisting lines cache size
- CU_LIMIT_MAX = 7#
- class cuda.cuda.CUresourcetype(value)#
-
Resource types
- CU_RESOURCE_TYPE_ARRAY = 0#
-
Array resoure
- CU_RESOURCE_TYPE_MIPMAPPED_ARRAY = 1#
-
Mipmapped array resource
- CU_RESOURCE_TYPE_LINEAR = 2#
-
Linear resource
- CU_RESOURCE_TYPE_PITCH2D = 3#
-
Pitch 2D resource
- class cuda.cuda.CUaccessProperty(value)#
-
Specifies performance hint with
CUaccessPolicyWindow
for hitProp and missProp members.- CU_ACCESS_PROPERTY_NORMAL = 0#
-
Normal cache persistence.
- CU_ACCESS_PROPERTY_STREAMING = 1#
-
Streaming access is less likely to persit from cache.
- CU_ACCESS_PROPERTY_PERSISTING = 2#
-
Persisting access is more likely to persist in cache.
- class cuda.cuda.CUgraphNodeType(value)#
-
Graph node types
- CU_GRAPH_NODE_TYPE_KERNEL = 0#
-
GPU kernel node
- CU_GRAPH_NODE_TYPE_MEMCPY = 1#
-
Memcpy node
- CU_GRAPH_NODE_TYPE_MEMSET = 2#
-
Memset node
- CU_GRAPH_NODE_TYPE_HOST = 3#
-
Host (executable) node
- CU_GRAPH_NODE_TYPE_GRAPH = 4#
-
Node which executes an embedded graph
- CU_GRAPH_NODE_TYPE_EMPTY = 5#
-
Empty (no-op) node
- CU_GRAPH_NODE_TYPE_WAIT_EVENT = 6#
-
External event wait node
- CU_GRAPH_NODE_TYPE_EVENT_RECORD = 7#
-
External event record node
- CU_GRAPH_NODE_TYPE_EXT_SEMAS_SIGNAL = 8#
-
External semaphore signal node
- CU_GRAPH_NODE_TYPE_EXT_SEMAS_WAIT = 9#
-
External semaphore wait node
- CU_GRAPH_NODE_TYPE_MEM_ALLOC = 10#
-
Memory Allocation Node
- CU_GRAPH_NODE_TYPE_MEM_FREE = 11#
-
Memory Free Node
- CU_GRAPH_NODE_TYPE_BATCH_MEM_OP = 12#
-
Batch MemOp Node
- class cuda.cuda.CUgraphInstantiateResult(value)#
-
Graph instantiation results
- CUDA_GRAPH_INSTANTIATE_SUCCESS = 0#
-
Instantiation succeeded
- CUDA_GRAPH_INSTANTIATE_ERROR = 1#
-
Instantiation failed for an unexpected reason which is described in the return value of the function
- CUDA_GRAPH_INSTANTIATE_INVALID_STRUCTURE = 2#
-
Instantiation failed due to invalid structure, such as cycles
- CUDA_GRAPH_INSTANTIATE_NODE_OPERATION_NOT_SUPPORTED = 3#
-
Instantiation for device launch failed because the graph contained an unsupported operation
- CUDA_GRAPH_INSTANTIATE_MULTIPLE_CTXS_NOT_SUPPORTED = 4#
-
Instantiation for device launch failed due to the nodes belonging to different contexts
- class cuda.cuda.CUsynchronizationPolicy(value)#
-
- CU_SYNC_POLICY_AUTO = 1#
- CU_SYNC_POLICY_SPIN = 2#
- CU_SYNC_POLICY_YIELD = 3#
- CU_SYNC_POLICY_BLOCKING_SYNC = 4#
- class cuda.cuda.CUclusterSchedulingPolicy(value)#
-
Cluster scheduling policies. These may be passed to
cuFuncSetAttributeorcuKernelSetAttribute- CU_CLUSTER_SCHEDULING_POLICY_DEFAULT = 0#
-
the default policy
- CU_CLUSTER_SCHEDULING_POLICY_SPREAD = 1#
-
spread the blocks within a cluster to the SMs
- CU_CLUSTER_SCHEDULING_POLICY_LOAD_BALANCING = 2#
-
allow the hardware to load-balance the blocks in a cluster to the SMs
- class cuda.cuda.CUlaunchMemSyncDomain(value)#
-
- CU_LAUNCH_MEM_SYNC_DOMAIN_DEFAULT = 0#
- CU_LAUNCH_MEM_SYNC_DOMAIN_REMOTE = 1#
- class cuda.cuda.CUlaunchAttributeID(value)#
-
- CU_LAUNCH_ATTRIBUTE_IGNORE = 0#
-
Ignored entry, for convenient composition
- CU_LAUNCH_ATTRIBUTE_ACCESS_POLICY_WINDOW = 1#
-
Valid for streams, graph nodes, launches.
- CU_LAUNCH_ATTRIBUTE_COOPERATIVE = 2#
-
Valid for graph nodes, launches.
- CU_LAUNCH_ATTRIBUTE_SYNCHRONIZATION_POLICY = 3#
-
Valid for streams.
- CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION = 4#
-
Valid for graph nodes, launches.
- CU_LAUNCH_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE = 5#
-
Valid for graph nodes, launches.
- CU_LAUNCH_ATTRIBUTE_PROGRAMMATIC_STREAM_SERIALIZATION = 6#
-
Valid for launches. Setting programmaticStreamSerializationAllowed to non-0 signals that the kernel will use programmatic means to resolve its stream dependency, so that the CUDA runtime should opportunistically allow the grid’s execution to overlap with the previous kernel in the stream, if that kernel requests the overlap. The dependent launches can choose to wait on the dependency using the programmatic sync (cudaGridDependencySynchronize() or equivalent PTX instructions).
- CU_LAUNCH_ATTRIBUTE_PROGRAMMATIC_EVENT = 7#
-
Valid for launches. Event recorded through this launch attribute is guaranteed to only trigger after all block in the associated kernel trigger the event. A block can trigger the event through PTX launchdep.release or CUDA builtin function cudaTriggerProgrammaticLaunchCompletion(). A trigger can also be inserted at the beginning of each block’s execution if triggerAtBlockStart is set to non-0. The dependent launches can choose to wait on the dependency using the programmatic sync (cudaGridDependencySynchronize() or equivalent PTX instructions). Note that dependents (including the CPU thread calling
cuEventSynchronize()) are not guaranteed to observe the release precisely when it is released. For example,cuEventSynchronize()may only observe the event trigger long after the associated kernel has completed. This recording type is primarily meant for establishing programmatic dependency between device tasks. The event supplied must not be an interprocess or interop event. The event must disable timing (i.e. created withCU_EVENT_DISABLE_TIMINGflag set).
- CU_LAUNCH_ATTRIBUTE_PRIORITY = 8#
-
Valid for streams, graph nodes, launches.
- CU_LAUNCH_ATTRIBUTE_MEM_SYNC_DOMAIN_MAP = 9#
- CU_LAUNCH_ATTRIBUTE_MEM_SYNC_DOMAIN = 10#
- class cuda.cuda.CUstreamCaptureStatus(value)#
-
Possible stream capture statuses returned by
cuStreamIsCapturing- CU_STREAM_CAPTURE_STATUS_NONE = 0#
-
Stream is not capturing
- CU_STREAM_CAPTURE_STATUS_ACTIVE = 1#
-
Stream is actively capturing
- CU_STREAM_CAPTURE_STATUS_INVALIDATED = 2#
-
Stream is part of a capture sequence that has been invalidated, but not terminated
- class cuda.cuda.CUstreamCaptureMode(value)#
-
Possible modes for stream capture thread interactions. For more
details seecuStreamBeginCaptureand
cuThreadExchangeStreamCaptureMode- CU_STREAM_CAPTURE_MODE_GLOBAL = 0#
- CU_STREAM_CAPTURE_MODE_THREAD_LOCAL = 1#
- CU_STREAM_CAPTURE_MODE_RELAXED = 2#
- class cuda.cuda.CUdriverProcAddress_flags(value)#
-
Flags to specify search options. For more details see
cuGetProcAddress- CU_GET_PROC_ADDRESS_DEFAULT = 0#
-
Default search mode for driver symbols.
- CU_GET_PROC_ADDRESS_LEGACY_STREAM = 1#
-
Search for legacy versions of driver symbols.
- CU_GET_PROC_ADDRESS_PER_THREAD_DEFAULT_STREAM = 2#
-
Search for per-thread versions of driver symbols.
- class cuda.cuda.CUdriverProcAddressQueryResult(value)#
-
Flags to indicate search status. For more details see
cuGetProcAddress- CU_GET_PROC_ADDRESS_SUCCESS = 0#
-
Symbol was succesfully found
- CU_GET_PROC_ADDRESS_SYMBOL_NOT_FOUND = 1#
-
Symbol was not found in search
- CU_GET_PROC_ADDRESS_VERSION_NOT_SUFFICIENT = 2#
-
Symbol was found but version supplied was not sufficient
- class cuda.cuda.CUexecAffinityType(value)#
-
Execution Affinity Types
- CU_EXEC_AFFINITY_TYPE_SM_COUNT = 0#
-
Create a context with limited SMs.
- CU_EXEC_AFFINITY_TYPE_MAX = 1#
- class cuda.cuda.CUlibraryOption(value)#
-
Library options to be specified with
cuLibraryLoadData()or
cuLibraryLoadFromFile()- CU_LIBRARY_HOST_UNIVERSAL_FUNCTION_AND_DATA_TABLE = 0#
- CU_LIBRARY_BINARY_IS_PRESERVED = 1#
-
Specifes that the argument code passed to
cuLibraryLoadData()will be preserved. Specifying this option will let the driver know that code can be accessed at any point untilcuLibraryUnload(). The default behavior is for the driver to allocate and maintain its own copy of code. Note that this is only a memory usage optimization hint and the driver can choose to ignore it if required. Specifying this option withcuLibraryLoadFromFile()is invalid and will returnCUDA_ERROR_INVALID_VALUE.
- CU_LIBRARY_NUM_OPTIONS = 2#
- class cuda.cuda.CUresult(value)#
-
Error codes
- CUDA_SUCCESS = 0#
-
The API call returned with no errors. In the case of query calls, this also means that the operation being queried is complete (see
cuEventQuery()andcuStreamQuery()).
- CUDA_ERROR_INVALID_VALUE = 1#
-
This indicates that one or more of the parameters passed to the API call is not within an acceptable range of values.
- CUDA_ERROR_OUT_OF_MEMORY = 2#
-
The API call failed because it was unable to allocate enough memory to perform the requested operation.
- CUDA_ERROR_NOT_INITIALIZED = 3#
-
This indicates that the CUDA driver has not been initialized with
cuInit()or that initialization has failed.
- CUDA_ERROR_DEINITIALIZED = 4#
-
This indicates that the CUDA driver is in the process of shutting down.
- CUDA_ERROR_PROFILER_DISABLED = 5#
-
This indicates profiler is not initialized for this run. This can happen when the application is running with external profiling tools like visual profiler.
- CUDA_ERROR_PROFILER_NOT_INITIALIZED = 6#
-
[Deprecated]
- CUDA_ERROR_PROFILER_ALREADY_STARTED = 7#
-
[Deprecated]
- CUDA_ERROR_PROFILER_ALREADY_STOPPED = 8#
-
[Deprecated]
- CUDA_ERROR_STUB_LIBRARY = 34#
-
This indicates that the CUDA driver that the application has loaded is a stub library. Applications that run with the stub rather than a real driver loaded will result in CUDA API returning this error.
- CUDA_ERROR_DEVICE_UNAVAILABLE = 46#
-
This indicates that requested CUDA device is unavailable at the current time. Devices are often unavailable due to use of
CU_COMPUTEMODE_EXCLUSIVE_PROCESSorCU_COMPUTEMODE_PROHIBITED.
- CUDA_ERROR_NO_DEVICE = 100#
-
This indicates that no CUDA-capable devices were detected by the installed CUDA driver.
- CUDA_ERROR_INVALID_DEVICE = 101#
-
This indicates that the device ordinal supplied by the user does not correspond to a valid CUDA device or that the action requested is invalid for the specified device.
- CUDA_ERROR_DEVICE_NOT_LICENSED = 102#
-
This error indicates that the Grid license is not applied.
- CUDA_ERROR_INVALID_IMAGE = 200#
-
This indicates that the device kernel image is invalid. This can also indicate an invalid CUDA module.
- CUDA_ERROR_INVALID_CONTEXT = 201#
-
This most frequently indicates that there is no context bound to the current thread. This can also be returned if the context passed to an API call is not a valid handle (such as a context that has had
cuCtxDestroy()invoked on it). This can also be returned if a user mixes different API versions (i.e. 3010 context with 3020 API calls). SeecuCtxGetApiVersion()for more details.
- CUDA_ERROR_CONTEXT_ALREADY_CURRENT = 202#
-
This indicated that the context being supplied as a parameter to the API call was already the active context. [Deprecated]
- CUDA_ERROR_MAP_FAILED = 205#
-
This indicates that a map or register operation has failed.
- CUDA_ERROR_UNMAP_FAILED = 206#
-
This indicates that an unmap or unregister operation has failed.
- CUDA_ERROR_ARRAY_IS_MAPPED = 207#
-
This indicates that the specified array is currently mapped and thus cannot be destroyed.
- CUDA_ERROR_ALREADY_MAPPED = 208#
-
This indicates that the resource is already mapped.
- CUDA_ERROR_NO_BINARY_FOR_GPU = 209#
-
This indicates that there is no kernel image available that is suitable for the device. This can occur when a user specifies code generation options for a particular CUDA source file that do not include the corresponding device configuration.
- CUDA_ERROR_ALREADY_ACQUIRED = 210#
-
This indicates that a resource has already been acquired.
- CUDA_ERROR_NOT_MAPPED = 211#
-
This indicates that a resource is not mapped.
- CUDA_ERROR_NOT_MAPPED_AS_ARRAY = 212#
-
This indicates that a mapped resource is not available for access as an array.
- CUDA_ERROR_NOT_MAPPED_AS_POINTER = 213#
-
This indicates that a mapped resource is not available for access as a pointer.
- CUDA_ERROR_ECC_UNCORRECTABLE = 214#
-
This indicates that an uncorrectable ECC error was detected during execution.
- CUDA_ERROR_UNSUPPORTED_LIMIT = 215#
-
This indicates that the
CUlimitpassed to the API call is not supported by the active device.
- CUDA_ERROR_CONTEXT_ALREADY_IN_USE = 216#
-
This indicates that the
CUcontextpassed to the API call can only be bound to a single CPU thread at a time but is already bound to a CPU thread.
- CUDA_ERROR_PEER_ACCESS_UNSUPPORTED = 217#
-
This indicates that peer access is not supported across the given devices.
- CUDA_ERROR_INVALID_PTX = 218#
-
This indicates that a PTX JIT compilation failed.
- CUDA_ERROR_INVALID_GRAPHICS_CONTEXT = 219#
-
This indicates an error with OpenGL or DirectX context.
- CUDA_ERROR_NVLINK_UNCORRECTABLE = 220#
-
This indicates that an uncorrectable NVLink error was detected during the execution.
- CUDA_ERROR_JIT_COMPILER_NOT_FOUND = 221#
-
This indicates that the PTX JIT compiler library was not found.
- CUDA_ERROR_UNSUPPORTED_PTX_VERSION = 222#
-
This indicates that the provided PTX was compiled with an unsupported toolchain.
- CUDA_ERROR_JIT_COMPILATION_DISABLED = 223#
-
This indicates that the PTX JIT compilation was disabled.
- CUDA_ERROR_UNSUPPORTED_EXEC_AFFINITY = 224#
-
This indicates that the
CUexecAffinityTypepassed to the API call is not supported by the active device.
- CUDA_ERROR_INVALID_SOURCE = 300#
-
This indicates that the device kernel source is invalid. This includes compilation/linker errors encountered in device code or user error.
- CUDA_ERROR_FILE_NOT_FOUND = 301#
-
This indicates that the file specified was not found.
- CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND = 302#
-
This indicates that a link to a shared object failed to resolve.
- CUDA_ERROR_SHARED_OBJECT_INIT_FAILED = 303#
-
This indicates that initialization of a shared object failed.
- CUDA_ERROR_OPERATING_SYSTEM = 304#
-
This indicates that an OS call failed.
- CUDA_ERROR_INVALID_HANDLE = 400#
-
This indicates that a resource handle passed to the API call was not valid. Resource handles are opaque types like
CUstreamandCUevent.
- CUDA_ERROR_ILLEGAL_STATE = 401#
-
This indicates that a resource required by the API call is not in a valid state to perform the requested operation.
- CUDA_ERROR_NOT_FOUND = 500#
-
This indicates that a named symbol was not found. Examples of symbols are global/constant variable names, driver function names, texture names, and surface names.
- CUDA_ERROR_NOT_READY = 600#
-
This indicates that asynchronous operations issued previously have not completed yet. This result is not actually an error, but must be indicated differently than
CUDA_SUCCESS(which indicates completion). Calls that may return this value includecuEventQuery()andcuStreamQuery().
- CUDA_ERROR_ILLEGAL_ADDRESS = 700#
-
While executing a kernel, the device encountered a load or store instruction on an invalid memory address. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
- CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES = 701#
-
This indicates that a launch did not occur because it did not have appropriate resources. This error usually indicates that the user has attempted to pass too many arguments to the device kernel, or the kernel launch specifies too many threads for the kernel’s register count. Passing arguments of the wrong size (i.e. a 64-bit pointer when a 32-bit int is expected) is equivalent to passing too many arguments and can also result in this error.
- CUDA_ERROR_LAUNCH_TIMEOUT = 702#
-
This indicates that the device kernel took too long to execute. This can only occur if timeouts are enabled — see the device attribute
CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUTfor more information. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
- CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING = 703#
-
This error indicates a kernel launch that uses an incompatible texturing mode.
- CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED = 704#
-
This error indicates that a call to
cuCtxEnablePeerAccess()is trying to re-enable peer access to a context which has already had peer access to it enabled.
- CUDA_ERROR_PEER_ACCESS_NOT_ENABLED = 705#
-
This error indicates that
cuCtxDisablePeerAccess()is trying to disable peer access which has not been enabled yet viacuCtxEnablePeerAccess().
- CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE = 708#
-
This error indicates that the primary context for the specified device has already been initialized.
- CUDA_ERROR_CONTEXT_IS_DESTROYED = 709#
-
This error indicates that the context current to the calling thread has been destroyed using
cuCtxDestroy, or is a primary context which has not yet been initialized.
- CUDA_ERROR_ASSERT = 710#
-
A device-side assert triggered during kernel execution. The context cannot be used anymore, and must be destroyed. All existing device memory allocations from this context are invalid and must be reconstructed if the program is to continue using CUDA.
- CUDA_ERROR_TOO_MANY_PEERS = 711#
-
This error indicates that the hardware resources required to enable peer access have been exhausted for one or more of the devices passed to
cuCtxEnablePeerAccess().
- CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED = 712#
-
This error indicates that the memory range passed to
cuMemHostRegister()has already been registered.
- CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED = 713#
-
This error indicates that the pointer passed to
cuMemHostUnregister()does not correspond to any currently registered memory region.
- CUDA_ERROR_HARDWARE_STACK_ERROR = 714#
-
While executing a kernel, the device encountered a stack error. This can be due to stack corruption or exceeding the stack size limit. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
- CUDA_ERROR_ILLEGAL_INSTRUCTION = 715#
-
While executing a kernel, the device encountered an illegal instruction. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
- CUDA_ERROR_MISALIGNED_ADDRESS = 716#
-
While executing a kernel, the device encountered a load or store instruction on a memory address which is not aligned. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
- CUDA_ERROR_INVALID_ADDRESS_SPACE = 717#
-
While executing a kernel, the device encountered an instruction which can only operate on memory locations in certain address spaces (global, shared, or local), but was supplied a memory address not belonging to an allowed address space. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
- CUDA_ERROR_INVALID_PC = 718#
-
While executing a kernel, the device program counter wrapped its address space. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
- CUDA_ERROR_LAUNCH_FAILED = 719#
-
An exception occurred on the device while executing a kernel. Common causes include dereferencing an invalid device pointer and accessing out of bounds shared memory. Less common cases can be system specific — more information about these cases can be found in the system specific user guide. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
- CUDA_ERROR_COOPERATIVE_LAUNCH_TOO_LARGE = 720#
-
This error indicates that the number of blocks launched per grid for a kernel that was launched via either
cuLaunchCooperativeKernelorcuLaunchCooperativeKernelMultiDeviceexceeds the maximum number of blocks as allowed bycuOccupancyMaxActiveBlocksPerMultiprocessororcuOccupancyMaxActiveBlocksPerMultiprocessorWithFlagstimes the number of multiprocessors as specified by the device attributeCU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT.
- CUDA_ERROR_NOT_PERMITTED = 800#
-
This error indicates that the attempted operation is not permitted.
- CUDA_ERROR_NOT_SUPPORTED = 801#
-
This error indicates that the attempted operation is not supported on the current system or device.
- CUDA_ERROR_SYSTEM_NOT_READY = 802#
-
This error indicates that the system is not yet ready to start any CUDA work. To continue using CUDA, verify the system configuration is in a valid state and all required driver daemons are actively running. More information about this error can be found in the system specific user guide.
- CUDA_ERROR_SYSTEM_DRIVER_MISMATCH = 803#
-
This error indicates that there is a mismatch between the versions of the display driver and the CUDA driver. Refer to the compatibility documentation for supported versions.
- CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE = 804#
-
This error indicates that the system was upgraded to run with forward compatibility but the visible hardware detected by CUDA does not support this configuration. Refer to the compatibility documentation for the supported hardware matrix or ensure that only supported hardware is visible during initialization via the CUDA_VISIBLE_DEVICES environment variable.
- CUDA_ERROR_MPS_CONNECTION_FAILED = 805#
-
This error indicates that the MPS client failed to connect to the MPS control daemon or the MPS server.
- CUDA_ERROR_MPS_RPC_FAILURE = 806#
-
This error indicates that the remote procedural call between the MPS server and the MPS client failed.
- CUDA_ERROR_MPS_SERVER_NOT_READY = 807#
-
This error indicates that the MPS server is not ready to accept new MPS client requests. This error can be returned when the MPS server is in the process of recovering from a fatal failure.
- CUDA_ERROR_MPS_MAX_CLIENTS_REACHED = 808#
-
This error indicates that the hardware resources required to create MPS client have been exhausted.
- CUDA_ERROR_MPS_MAX_CONNECTIONS_REACHED = 809#
-
This error indicates the the hardware resources required to support device connections have been exhausted.
- CUDA_ERROR_MPS_CLIENT_TERMINATED = 810#
-
This error indicates that the MPS client has been terminated by the server. To continue using CUDA, the process must be terminated and relaunched.
- CUDA_ERROR_CDP_NOT_SUPPORTED = 811#
-
This error indicates that the module is using CUDA Dynamic Parallelism, but the current configuration, like MPS, does not support it.
- CUDA_ERROR_CDP_VERSION_MISMATCH = 812#
-
This error indicates that a module contains an unsupported interaction between different versions of CUDA Dynamic Parallelism.
- CUDA_ERROR_STREAM_CAPTURE_UNSUPPORTED = 900#
-
This error indicates that the operation is not permitted when the stream is capturing.
- CUDA_ERROR_STREAM_CAPTURE_INVALIDATED = 901#
-
This error indicates that the current capture sequence on the stream has been invalidated due to a previous error.
- CUDA_ERROR_STREAM_CAPTURE_MERGE = 902#
-
This error indicates that the operation would have resulted in a merge of two independent capture sequences.
- CUDA_ERROR_STREAM_CAPTURE_UNMATCHED = 903#
-
This error indicates that the capture was not initiated in this stream.
- CUDA_ERROR_STREAM_CAPTURE_UNJOINED = 904#
-
This error indicates that the capture sequence contains a fork that was not joined to the primary stream.
- CUDA_ERROR_STREAM_CAPTURE_ISOLATION = 905#
-
This error indicates that a dependency would have been created which crosses the capture sequence boundary. Only implicit in-stream ordering dependencies are allowed to cross the boundary.
- CUDA_ERROR_STREAM_CAPTURE_IMPLICIT = 906#
-
This error indicates a disallowed implicit dependency on a current capture sequence from cudaStreamLegacy.
- CUDA_ERROR_CAPTURED_EVENT = 907#
-
This error indicates that the operation is not permitted on an event which was last recorded in a capturing stream.
- CUDA_ERROR_STREAM_CAPTURE_WRONG_THREAD = 908#
-
A stream capture sequence not initiated with the
CU_STREAM_CAPTURE_MODE_RELAXEDargument tocuStreamBeginCapturewas passed tocuStreamEndCapturein a different thread.
- CUDA_ERROR_TIMEOUT = 909#
-
This error indicates that the timeout specified for the wait operation has lapsed.
- CUDA_ERROR_GRAPH_EXEC_UPDATE_FAILURE = 910#
-
This error indicates that the graph update was not performed because it included changes which violated constraints specific to instantiated graph update.
- CUDA_ERROR_EXTERNAL_DEVICE = 911#
-
This indicates that an async error has occurred in a device outside of CUDA. If CUDA was waiting for an external device’s signal before consuming shared data, the external device signaled an error indicating that the data is not valid for consumption. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
- CUDA_ERROR_INVALID_CLUSTER_SIZE = 912#
-
Indicates a kernel launch error due to cluster misconfiguration.
- CUDA_ERROR_UNKNOWN = 999#
-
This indicates that an unknown internal error has occurred.
- class cuda.cuda.CUdevice_P2PAttribute(value)#
-
P2P Attributes
- CU_DEVICE_P2P_ATTRIBUTE_PERFORMANCE_RANK = 1#
-
A relative value indicating the performance of the link between two devices
- CU_DEVICE_P2P_ATTRIBUTE_ACCESS_SUPPORTED = 2#
-
P2P Access is enable
- CU_DEVICE_P2P_ATTRIBUTE_NATIVE_ATOMIC_SUPPORTED = 3#
-
Atomic operation over the link supported
- CU_DEVICE_P2P_ATTRIBUTE_ACCESS_ACCESS_SUPPORTED = 4#
-
[Deprecated]
- CU_DEVICE_P2P_ATTRIBUTE_CUDA_ARRAY_ACCESS_SUPPORTED = 4#
-
Accessing CUDA arrays over the link supported
- class cuda.cuda.CUresourceViewFormat(value)#
-
Resource view format
- CU_RES_VIEW_FORMAT_NONE = 0#
-
No resource view format (use underlying resource format)
- CU_RES_VIEW_FORMAT_UINT_1X8 = 1#
-
1 channel unsigned 8-bit integers
- CU_RES_VIEW_FORMAT_UINT_2X8 = 2#
-
2 channel unsigned 8-bit integers
- CU_RES_VIEW_FORMAT_UINT_4X8 = 3#
-
4 channel unsigned 8-bit integers
- CU_RES_VIEW_FORMAT_SINT_1X8 = 4#
-
1 channel signed 8-bit integers
- CU_RES_VIEW_FORMAT_SINT_2X8 = 5#
-
2 channel signed 8-bit integers
- CU_RES_VIEW_FORMAT_SINT_4X8 = 6#
-
4 channel signed 8-bit integers
- CU_RES_VIEW_FORMAT_UINT_1X16 = 7#
-
1 channel unsigned 16-bit integers
- CU_RES_VIEW_FORMAT_UINT_2X16 = 8#
-
2 channel unsigned 16-bit integers
- CU_RES_VIEW_FORMAT_UINT_4X16 = 9#
-
4 channel unsigned 16-bit integers
- CU_RES_VIEW_FORMAT_SINT_1X16 = 10#
-
1 channel signed 16-bit integers
- CU_RES_VIEW_FORMAT_SINT_2X16 = 11#
-
2 channel signed 16-bit integers
- CU_RES_VIEW_FORMAT_SINT_4X16 = 12#
-
4 channel signed 16-bit integers
- CU_RES_VIEW_FORMAT_UINT_1X32 = 13#
-
1 channel unsigned 32-bit integers
- CU_RES_VIEW_FORMAT_UINT_2X32 = 14#
-
2 channel unsigned 32-bit integers
- CU_RES_VIEW_FORMAT_UINT_4X32 = 15#
-
4 channel unsigned 32-bit integers
- CU_RES_VIEW_FORMAT_SINT_1X32 = 16#
-
1 channel signed 32-bit integers
- CU_RES_VIEW_FORMAT_SINT_2X32 = 17#
-
2 channel signed 32-bit integers
- CU_RES_VIEW_FORMAT_SINT_4X32 = 18#
-
4 channel signed 32-bit integers
- CU_RES_VIEW_FORMAT_FLOAT_1X16 = 19#
-
1 channel 16-bit floating point
- CU_RES_VIEW_FORMAT_FLOAT_2X16 = 20#
-
2 channel 16-bit floating point
- CU_RES_VIEW_FORMAT_FLOAT_4X16 = 21#
-
4 channel 16-bit floating point
- CU_RES_VIEW_FORMAT_FLOAT_1X32 = 22#
-
1 channel 32-bit floating point
- CU_RES_VIEW_FORMAT_FLOAT_2X32 = 23#
-
2 channel 32-bit floating point
- CU_RES_VIEW_FORMAT_FLOAT_4X32 = 24#
-
4 channel 32-bit floating point
- CU_RES_VIEW_FORMAT_UNSIGNED_BC1 = 25#
-
Block compressed 1
- CU_RES_VIEW_FORMAT_UNSIGNED_BC2 = 26#
-
Block compressed 2
- CU_RES_VIEW_FORMAT_UNSIGNED_BC3 = 27#
-
Block compressed 3
- CU_RES_VIEW_FORMAT_UNSIGNED_BC4 = 28#
-
Block compressed 4 unsigned
- CU_RES_VIEW_FORMAT_SIGNED_BC4 = 29#
-
Block compressed 4 signed
- CU_RES_VIEW_FORMAT_UNSIGNED_BC5 = 30#
-
Block compressed 5 unsigned
- CU_RES_VIEW_FORMAT_SIGNED_BC5 = 31#
-
Block compressed 5 signed
- CU_RES_VIEW_FORMAT_UNSIGNED_BC6H = 32#
-
Block compressed 6 unsigned half-float
- CU_RES_VIEW_FORMAT_SIGNED_BC6H = 33#
-
Block compressed 6 signed half-float
- CU_RES_VIEW_FORMAT_UNSIGNED_BC7 = 34#
-
Block compressed 7
- class cuda.cuda.CUtensorMapDataType(value)#
-
Tensor map data type
- CU_TENSOR_MAP_DATA_TYPE_UINT8 = 0#
- CU_TENSOR_MAP_DATA_TYPE_UINT16 = 1#
- CU_TENSOR_MAP_DATA_TYPE_UINT32 = 2#
- CU_TENSOR_MAP_DATA_TYPE_INT32 = 3#
- CU_TENSOR_MAP_DATA_TYPE_UINT64 = 4#
- CU_TENSOR_MAP_DATA_TYPE_INT64 = 5#
- CU_TENSOR_MAP_DATA_TYPE_FLOAT16 = 6#
- CU_TENSOR_MAP_DATA_TYPE_FLOAT32 = 7#
- CU_TENSOR_MAP_DATA_TYPE_FLOAT64 = 8#
- CU_TENSOR_MAP_DATA_TYPE_BFLOAT16 = 9#
- CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ = 10#
- CU_TENSOR_MAP_DATA_TYPE_TFLOAT32 = 11#
- CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ = 12#
- class cuda.cuda.CUtensorMapInterleave(value)#
-
Tensor map interleave layout type
- CU_TENSOR_MAP_INTERLEAVE_NONE = 0#
- CU_TENSOR_MAP_INTERLEAVE_16B = 1#
- CU_TENSOR_MAP_INTERLEAVE_32B = 2#
- class cuda.cuda.CUtensorMapSwizzle(value)#
-
Tensor map swizzling mode of shared memory banks
- CU_TENSOR_MAP_SWIZZLE_NONE = 0#
- CU_TENSOR_MAP_SWIZZLE_32B = 1#
- CU_TENSOR_MAP_SWIZZLE_64B = 2#
- CU_TENSOR_MAP_SWIZZLE_128B = 3#
- class cuda.cuda.CUtensorMapL2promotion(value)#
-
Tensor map L2 promotion type
- CU_TENSOR_MAP_L2_PROMOTION_NONE = 0#
- CU_TENSOR_MAP_L2_PROMOTION_L2_64B = 1#
- CU_TENSOR_MAP_L2_PROMOTION_L2_128B = 2#
- CU_TENSOR_MAP_L2_PROMOTION_L2_256B = 3#
- class cuda.cuda.CUtensorMapFloatOOBfill(value)#
-
Tensor map out-of-bounds fill type
- CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE = 0#
- CU_TENSOR_MAP_FLOAT_OOB_FILL_NAN_REQUEST_ZERO_FMA = 1#
- class cuda.cuda.CUDA_POINTER_ATTRIBUTE_ACCESS_FLAGS(value)#
-
Access flags that specify the level of access the current context’s
device has on the memory referenced.- CU_POINTER_ATTRIBUTE_ACCESS_FLAG_NONE = 0#
-
No access, meaning the device cannot access this memory at all, thus must be staged through accessible memory in order to complete certain operations
- CU_POINTER_ATTRIBUTE_ACCESS_FLAG_READ = 1#
-
Read-only access, meaning writes to this memory are considered invalid accesses and thus return error in that case.
- CU_POINTER_ATTRIBUTE_ACCESS_FLAG_READWRITE = 3#
-
Read-write access, the device has full read-write access to the memory
- class cuda.cuda.CUexternalMemoryHandleType(value)#
-
External memory handle types
- CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD = 1#
-
Handle is an opaque file descriptor
- CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32 = 2#
-
Handle is an opaque shared NT handle
- CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT = 3#
-
Handle is an opaque, globally shared handle
- CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP = 4#
-
Handle is a D3D12 heap object
- CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE = 5#
-
Handle is a D3D12 committed resource
- CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_RESOURCE = 6#
-
Handle is a shared NT handle to a D3D11 resource
- CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_RESOURCE_KMT = 7#
-
Handle is a globally shared handle to a D3D11 resource
- CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF = 8#
-
Handle is an NvSciBuf object
- class cuda.cuda.CUexternalSemaphoreHandleType(value)#
-
External semaphore handle types
- CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD = 1#
-
Handle is an opaque file descriptor
- CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32 = 2#
-
Handle is an opaque shared NT handle
- CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT = 3#
-
Handle is an opaque, globally shared handle
- CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE = 4#
-
Handle is a shared NT handle referencing a D3D12 fence object
- CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_FENCE = 5#
-
Handle is a shared NT handle referencing a D3D11 fence object
- CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNC = 6#
-
Opaque handle to NvSciSync Object
- CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_KEYED_MUTEX = 7#
-
Handle is a shared NT handle referencing a D3D11 keyed mutex object
- CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_KEYED_MUTEX_KMT = 8#
-
Handle is a globally shared handle referencing a D3D11 keyed mutex object
- CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_FD = 9#
-
Handle is an opaque file descriptor referencing a timeline semaphore
- CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_WIN32 = 10#
-
Handle is an opaque shared NT handle referencing a timeline semaphore
- class cuda.cuda.CUmemAllocationHandleType(value)#
-
Flags for specifying particular handle types
- CU_MEM_HANDLE_TYPE_NONE = 0#
-
Does not allow any export mechanism. >
- CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR = 1#
-
Allows a file descriptor to be used for exporting. Permitted only on POSIX systems. (int)
- CU_MEM_HANDLE_TYPE_WIN32 = 2#
-
Allows a Win32 NT handle to be used for exporting. (HANDLE)
- CU_MEM_HANDLE_TYPE_WIN32_KMT = 4#
-
Allows a Win32 KMT handle to be used for exporting. (D3DKMT_HANDLE)
- CU_MEM_HANDLE_TYPE_MAX = 2147483647#
- class cuda.cuda.CUmemAccess_flags(value)#
-
Specifies the memory protection flags for mapping.
- CU_MEM_ACCESS_FLAGS_PROT_NONE = 0#
-
Default, make the address range not accessible
- CU_MEM_ACCESS_FLAGS_PROT_READ = 1#
-
Make the address range read accessible
- CU_MEM_ACCESS_FLAGS_PROT_READWRITE = 3#
-
Make the address range read-write accessible
- CU_MEM_ACCESS_FLAGS_PROT_MAX = 2147483647#
- class cuda.cuda.CUmemLocationType(value)#
-
Specifies the type of location
- CU_MEM_LOCATION_TYPE_INVALID = 0#
- CU_MEM_LOCATION_TYPE_DEVICE = 1#
-
Location is a device location, thus id is a device ordinal
- CU_MEM_LOCATION_TYPE_MAX = 2147483647#
- class cuda.cuda.CUmemAllocationType(value)#
-
Defines the allocation types available
- CU_MEM_ALLOCATION_TYPE_INVALID = 0#
- CU_MEM_ALLOCATION_TYPE_PINNED = 1#
-
This allocation type is ‘pinned’, i.e. cannot migrate from its current location while the application is actively using it
- CU_MEM_ALLOCATION_TYPE_MAX = 2147483647#
- class cuda.cuda.CUmemAllocationGranularity_flags(value)#
-
Flag for requesting different optimal and required granularities
for an allocation.- CU_MEM_ALLOC_GRANULARITY_MINIMUM = 0#
-
Minimum required granularity for allocation
- CU_MEM_ALLOC_GRANULARITY_RECOMMENDED = 1#
-
Recommended granularity for allocation for best performance
- class cuda.cuda.CUmemRangeHandleType(value)#
-
Specifies the handle type for address range
- CU_MEM_RANGE_HANDLE_TYPE_DMA_BUF_FD = 1#
- CU_MEM_RANGE_HANDLE_TYPE_MAX = 2147483647#
- class cuda.cuda.CUarraySparseSubresourceType(value)#
-
Sparse subresource types
- CU_ARRAY_SPARSE_SUBRESOURCE_TYPE_SPARSE_LEVEL = 0#
- CU_ARRAY_SPARSE_SUBRESOURCE_TYPE_MIPTAIL = 1#
- class cuda.cuda.CUmemOperationType(value)#
-
Memory operation types
- CU_MEM_OPERATION_TYPE_MAP = 1#
- CU_MEM_OPERATION_TYPE_UNMAP = 2#
- class cuda.cuda.CUmemHandleType(value)#
-
Memory handle types
- CU_MEM_HANDLE_TYPE_GENERIC = 0#
- class cuda.cuda.CUmemAllocationCompType(value)#
-
Specifies compression attribute for an allocation.
- CU_MEM_ALLOCATION_COMP_NONE = 0#
-
Allocating non-compressible memory
- CU_MEM_ALLOCATION_COMP_GENERIC = 1#
-
Allocating compressible memory
- class cuda.cuda.CUgraphExecUpdateResult(value)#
-
CUDA Graph Update error types
- CU_GRAPH_EXEC_UPDATE_SUCCESS = 0#
-
The update succeeded
- CU_GRAPH_EXEC_UPDATE_ERROR = 1#
-
The update failed for an unexpected reason which is described in the return value of the function
- CU_GRAPH_EXEC_UPDATE_ERROR_TOPOLOGY_CHANGED = 2#
-
The update failed because the topology changed
- CU_GRAPH_EXEC_UPDATE_ERROR_NODE_TYPE_CHANGED = 3#
-
The update failed because a node type changed
- CU_GRAPH_EXEC_UPDATE_ERROR_FUNCTION_CHANGED = 4#
-
The update failed because the function of a kernel node changed (CUDA driver < 11.2)
- CU_GRAPH_EXEC_UPDATE_ERROR_PARAMETERS_CHANGED = 5#
-
The update failed because the parameters changed in a way that is not supported
- CU_GRAPH_EXEC_UPDATE_ERROR_NOT_SUPPORTED = 6#
-
The update failed because something about the node is not supported
- CU_GRAPH_EXEC_UPDATE_ERROR_UNSUPPORTED_FUNCTION_CHANGE = 7#
-
The update failed because the function of a kernel node changed in an unsupported way
- CU_GRAPH_EXEC_UPDATE_ERROR_ATTRIBUTES_CHANGED = 8#
-
The update failed because the node attributes changed in a way that is not supported
- class cuda.cuda.CUmemPool_attribute(value)#
-
CUDA memory pool attributes
- CU_MEMPOOL_ATTR_REUSE_FOLLOW_EVENT_DEPENDENCIES = 1#
-
(value type = int) Allow cuMemAllocAsync to use memory asynchronously freed in another streams as long as a stream ordering dependency of the allocating stream on the free action exists. Cuda events and null stream interactions can create the required stream ordered dependencies. (default enabled)
- CU_MEMPOOL_ATTR_REUSE_ALLOW_OPPORTUNISTIC = 2#
-
(value type = int) Allow reuse of already completed frees when there is no dependency between the free and allocation. (default enabled)
- CU_MEMPOOL_ATTR_REUSE_ALLOW_INTERNAL_DEPENDENCIES = 3#
-
(value type = int) Allow cuMemAllocAsync to insert new stream dependencies in order to establish the stream ordering required to reuse a piece of memory released by cuFreeAsync (default enabled).
- CU_MEMPOOL_ATTR_RELEASE_THRESHOLD = 4#
-
(value type = cuuint64_t) Amount of reserved memory in bytes to hold onto before trying to release memory back to the OS. When more than the release threshold bytes of memory are held by the memory pool, the allocator will try to release memory back to the OS on the next call to stream, event or context synchronize. (default 0)
- CU_MEMPOOL_ATTR_RESERVED_MEM_CURRENT = 5#
-
(value type = cuuint64_t) Amount of backing memory currently allocated for the mempool.
- CU_MEMPOOL_ATTR_RESERVED_MEM_HIGH = 6#
-
(value type = cuuint64_t) High watermark of backing memory allocated for the mempool since the last time it was reset. High watermark can only be reset to zero.
- CU_MEMPOOL_ATTR_USED_MEM_CURRENT = 7#
-
(value type = cuuint64_t) Amount of memory from the pool that is currently in use by the application.
- CU_MEMPOOL_ATTR_USED_MEM_HIGH = 8#
-
(value type = cuuint64_t) High watermark of the amount of memory from the pool that was in use by the application since the last time it was reset. High watermark can only be reset to zero.
- class cuda.cuda.CUgraphMem_attribute(value)#
-
- CU_GRAPH_MEM_ATTR_USED_MEM_CURRENT = 0#
-
(value type = cuuint64_t) Amount of memory, in bytes, currently associated with graphs
- CU_GRAPH_MEM_ATTR_USED_MEM_HIGH = 1#
-
(value type = cuuint64_t) High watermark of memory, in bytes, associated with graphs since the last time it was reset. High watermark can only be reset to zero.
- CU_GRAPH_MEM_ATTR_RESERVED_MEM_CURRENT = 2#
-
(value type = cuuint64_t) Amount of memory, in bytes, currently allocated for use by the CUDA graphs asynchronous allocator.
- CU_GRAPH_MEM_ATTR_RESERVED_MEM_HIGH = 3#
-
(value type = cuuint64_t) High watermark of memory, in bytes, currently allocated for use by the CUDA graphs asynchronous allocator.
- class cuda.cuda.CUflushGPUDirectRDMAWritesOptions(value)#
-
Bitmasks for
CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_FLUSH_WRITES_OPTIONS- CU_FLUSH_GPU_DIRECT_RDMA_WRITES_OPTION_HOST = 1#
-
cuFlushGPUDirectRDMAWrites()and its CUDA Runtime API counterpart are supported on the device.
- CU_FLUSH_GPU_DIRECT_RDMA_WRITES_OPTION_MEMOPS = 2#
-
The
CU_STREAM_WAIT_VALUE_FLUSHflag and theCU_STREAM_MEM_OP_FLUSH_REMOTE_WRITESMemOp are supported on the device.
- class cuda.cuda.CUGPUDirectRDMAWritesOrdering(value)#
-
Platform native ordering for GPUDirect RDMA writes
- CU_GPU_DIRECT_RDMA_WRITES_ORDERING_NONE = 0#
-
The device does not natively support ordering of remote writes.
cuFlushGPUDirectRDMAWrites()can be leveraged if supported.
- CU_GPU_DIRECT_RDMA_WRITES_ORDERING_OWNER = 100#
-
Natively, the device can consistently consume remote writes, although other CUDA devices may not.
- CU_GPU_DIRECT_RDMA_WRITES_ORDERING_ALL_DEVICES = 200#
-
Any CUDA device in the system can consistently consume remote writes to this device.
- class cuda.cuda.CUflushGPUDirectRDMAWritesScope(value)#
-
The scopes for
cuFlushGPUDirectRDMAWrites- CU_FLUSH_GPU_DIRECT_RDMA_WRITES_TO_OWNER = 100#
-
Blocks until remote writes are visible to the CUDA device context owning the data.
- CU_FLUSH_GPU_DIRECT_RDMA_WRITES_TO_ALL_DEVICES = 200#
-
Blocks until remote writes are visible to all CUDA device contexts.
- class cuda.cuda.CUflushGPUDirectRDMAWritesTarget(value)#
-
The targets for
cuFlushGPUDirectRDMAWrites- CU_FLUSH_GPU_DIRECT_RDMA_WRITES_TARGET_CURRENT_CTX = 0#
-
Sets the target for
cuFlushGPUDirectRDMAWrites()to the currently active CUDA device context.
- class cuda.cuda.CUgraphDebugDot_flags(value)#
-
The additional write options for
cuGraphDebugDotPrint- CU_GRAPH_DEBUG_DOT_FLAGS_VERBOSE = 1#
- CU_GRAPH_DEBUG_DOT_FLAGS_RUNTIME_TYPES = 2#
-
Output all debug data as if every debug flag is enabled
- CU_GRAPH_DEBUG_DOT_FLAGS_KERNEL_NODE_PARAMS = 4#
-
Use CUDA Runtime structures for output
- CU_GRAPH_DEBUG_DOT_FLAGS_MEMCPY_NODE_PARAMS = 8#
-
Adds CUDA_KERNEL_NODE_PARAMS values to output
- CU_GRAPH_DEBUG_DOT_FLAGS_MEMSET_NODE_PARAMS = 16#
-
Adds CUDA_MEMCPY3D values to output
- CU_GRAPH_DEBUG_DOT_FLAGS_HOST_NODE_PARAMS = 32#
-
Adds CUDA_MEMSET_NODE_PARAMS values to output
- CU_GRAPH_DEBUG_DOT_FLAGS_EVENT_NODE_PARAMS = 64#
-
Adds CUDA_HOST_NODE_PARAMS values to output
- CU_GRAPH_DEBUG_DOT_FLAGS_EXT_SEMAS_SIGNAL_NODE_PARAMS = 128#
-
Adds CUevent handle from record and wait nodes to output
- CU_GRAPH_DEBUG_DOT_FLAGS_EXT_SEMAS_WAIT_NODE_PARAMS = 256#
-
Adds CUDA_EXT_SEM_SIGNAL_NODE_PARAMS values to output
- CU_GRAPH_DEBUG_DOT_FLAGS_KERNEL_NODE_ATTRIBUTES = 512#
-
Adds CUDA_EXT_SEM_WAIT_NODE_PARAMS values to output
- CU_GRAPH_DEBUG_DOT_FLAGS_HANDLES = 1024#
-
Adds CUkernelNodeAttrValue values to output
- CU_GRAPH_DEBUG_DOT_FLAGS_MEM_ALLOC_NODE_PARAMS = 2048#
-
Adds node handles and every kernel function handle to output
- CU_GRAPH_DEBUG_DOT_FLAGS_MEM_FREE_NODE_PARAMS = 4096#
-
Adds memory alloc node parameters to output
- CU_GRAPH_DEBUG_DOT_FLAGS_BATCH_MEM_OP_NODE_PARAMS = 8192#
-
Adds memory free node parameters to output
- class cuda.cuda.CUuserObject_flags(value)#
-
Flags for user objects for graphs
- CU_USER_OBJECT_NO_DESTRUCTOR_SYNC = 1#
-
Indicates the destructor execution is not synchronized by any CUDA handle.
- class cuda.cuda.CUuserObjectRetain_flags(value)#
-
Flags for retaining user object references for graphs
- CU_GRAPH_USER_OBJECT_MOVE = 1#
-
Transfer references from the caller rather than creating new references.
- class cuda.cuda.CUgraphInstantiate_flags(value)#
-
Flags for instantiating a graph
- CUDA_GRAPH_INSTANTIATE_FLAG_AUTO_FREE_ON_LAUNCH = 1#
-
Automatically free memory allocated in a graph before relaunching.
- CUDA_GRAPH_INSTANTIATE_FLAG_UPLOAD = 2#
-
Automatically upload the graph after instantiaton.
- CUDA_GRAPH_INSTANTIATE_FLAG_DEVICE_LAUNCH = 4#
-
Instantiate the graph to be launchable from the device.
- CUDA_GRAPH_INSTANTIATE_FLAG_USE_NODE_PRIORITY = 8#
-
Run the graph using the per-node priority attributes rather than the priority of the stream it is launched into.
- class cuda.cuda.CUeglFrameType(value)#
-
CUDA EglFrame type — array or pointer
- CU_EGL_FRAME_TYPE_ARRAY = 0#
-
Frame type CUDA array
- CU_EGL_FRAME_TYPE_PITCH = 1#
-
Frame type pointer
- class cuda.cuda.CUeglResourceLocationFlags(value)#
-
Resource location flags- sysmem or vidmem For CUDA context on
iGPU, since video and system memory are equivalent — these flags
will not have an effect on the execution. For CUDA context on
dGPU, applications can use the flag
CUeglResourceLocationFlagsto give a hint about the
desired location.CU_EGL_RESOURCE_LOCATION_SYSMEM—
the frame data is made resident on the system memory to be accessed
by CUDA.CU_EGL_RESOURCE_LOCATION_VIDMEM— the frame
data is made resident on the dedicated video memory to be accessed
by CUDA. There may be an additional latency due to new allocation
and data migration, if the frame is produced on a different memory.- CU_EGL_RESOURCE_LOCATION_SYSMEM = 0#
-
Resource location sysmem
- CU_EGL_RESOURCE_LOCATION_VIDMEM = 1#
-
Resource location vidmem
- class cuda.cuda.CUeglColorFormat(value)#
-
CUDA EGL Color Format — The different planar and multiplanar
formats currently supported for CUDA_EGL interops. Three channel
formats are currently not supported for
CU_EGL_FRAME_TYPE_ARRAY- CU_EGL_COLOR_FORMAT_YUV420_PLANAR = 0#
-
Y, U, V in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_YUV420_SEMIPLANAR = 1#
-
Y, UV in two surfaces (UV as one surface) with VU byte ordering, width, height ratio same as YUV420Planar.
- CU_EGL_COLOR_FORMAT_YUV422_PLANAR = 2#
-
Y, U, V each in a separate surface, U/V width = 1/2 Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YUV422_SEMIPLANAR = 3#
-
Y, UV in two surfaces with VU byte ordering, width, height ratio same as YUV422Planar.
- CU_EGL_COLOR_FORMAT_RGB = 4#
-
R/G/B three channels in one surface with BGR byte ordering. Only pitch linear format supported.
- CU_EGL_COLOR_FORMAT_BGR = 5#
-
R/G/B three channels in one surface with RGB byte ordering. Only pitch linear format supported.
- CU_EGL_COLOR_FORMAT_ARGB = 6#
-
R/G/B/A four channels in one surface with BGRA byte ordering.
- CU_EGL_COLOR_FORMAT_RGBA = 7#
-
R/G/B/A four channels in one surface with ABGR byte ordering.
- CU_EGL_COLOR_FORMAT_L = 8#
-
single luminance channel in one surface.
- CU_EGL_COLOR_FORMAT_R = 9#
-
single color channel in one surface.
- CU_EGL_COLOR_FORMAT_YUV444_PLANAR = 10#
-
Y, U, V in three surfaces, each in a separate surface, U/V width = Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YUV444_SEMIPLANAR = 11#
-
Y, UV in two surfaces (UV as one surface) with VU byte ordering, width, height ratio same as YUV444Planar.
- CU_EGL_COLOR_FORMAT_YUYV_422 = 12#
-
Y, U, V in one surface, interleaved as UYVY in one channel.
- CU_EGL_COLOR_FORMAT_UYVY_422 = 13#
-
Y, U, V in one surface, interleaved as YUYV in one channel.
- CU_EGL_COLOR_FORMAT_ABGR = 14#
-
R/G/B/A four channels in one surface with RGBA byte ordering.
- CU_EGL_COLOR_FORMAT_BGRA = 15#
-
R/G/B/A four channels in one surface with ARGB byte ordering.
- CU_EGL_COLOR_FORMAT_A = 16#
-
Alpha color format — one channel in one surface.
- CU_EGL_COLOR_FORMAT_RG = 17#
-
R/G color format — two channels in one surface with GR byte ordering
- CU_EGL_COLOR_FORMAT_AYUV = 18#
-
Y, U, V, A four channels in one surface, interleaved as VUYA.
- CU_EGL_COLOR_FORMAT_YVU444_SEMIPLANAR = 19#
-
Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YVU422_SEMIPLANAR = 20#
-
Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YVU420_SEMIPLANAR = 21#
-
Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_Y10V10U10_444_SEMIPLANAR = 22#
-
Y10, V10U10 in two surfaces (VU as one surface) with UV byte ordering, U/V width = Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_Y10V10U10_420_SEMIPLANAR = 23#
-
Y10, V10U10 in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_Y12V12U12_444_SEMIPLANAR = 24#
-
Y12, V12U12 in two surfaces (VU as one surface) with UV byte ordering, U/V width = Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_Y12V12U12_420_SEMIPLANAR = 25#
-
Y12, V12U12 in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_VYUY_ER = 26#
-
Extended Range Y, U, V in one surface, interleaved as YVYU in one channel.
- CU_EGL_COLOR_FORMAT_UYVY_ER = 27#
-
Extended Range Y, U, V in one surface, interleaved as YUYV in one channel.
- CU_EGL_COLOR_FORMAT_YUYV_ER = 28#
-
Extended Range Y, U, V in one surface, interleaved as UYVY in one channel.
- CU_EGL_COLOR_FORMAT_YVYU_ER = 29#
-
Extended Range Y, U, V in one surface, interleaved as VYUY in one channel.
- CU_EGL_COLOR_FORMAT_YUV_ER = 30#
-
Extended Range Y, U, V three channels in one surface, interleaved as VUY. Only pitch linear format supported.
- CU_EGL_COLOR_FORMAT_YUVA_ER = 31#
-
Extended Range Y, U, V, A four channels in one surface, interleaved as AVUY.
- CU_EGL_COLOR_FORMAT_AYUV_ER = 32#
-
Extended Range Y, U, V, A four channels in one surface, interleaved as VUYA.
- CU_EGL_COLOR_FORMAT_YUV444_PLANAR_ER = 33#
-
Extended Range Y, U, V in three surfaces, U/V width = Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YUV422_PLANAR_ER = 34#
-
Extended Range Y, U, V in three surfaces, U/V width = 1/2 Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YUV420_PLANAR_ER = 35#
-
Extended Range Y, U, V in three surfaces, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_YUV444_SEMIPLANAR_ER = 36#
-
Extended Range Y, UV in two surfaces (UV as one surface) with VU byte ordering, U/V width = Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YUV422_SEMIPLANAR_ER = 37#
-
Extended Range Y, UV in two surfaces (UV as one surface) with VU byte ordering, U/V width = 1/2 Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YUV420_SEMIPLANAR_ER = 38#
-
Extended Range Y, UV in two surfaces (UV as one surface) with VU byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_YVU444_PLANAR_ER = 39#
-
Extended Range Y, V, U in three surfaces, U/V width = Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YVU422_PLANAR_ER = 40#
-
Extended Range Y, V, U in three surfaces, U/V width = 1/2 Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YVU420_PLANAR_ER = 41#
-
Extended Range Y, V, U in three surfaces, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_YVU444_SEMIPLANAR_ER = 42#
-
Extended Range Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YVU422_SEMIPLANAR_ER = 43#
-
Extended Range Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YVU420_SEMIPLANAR_ER = 44#
-
Extended Range Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_BAYER_RGGB = 45#
-
Bayer format — one channel in one surface with interleaved RGGB ordering.
- CU_EGL_COLOR_FORMAT_BAYER_BGGR = 46#
-
Bayer format — one channel in one surface with interleaved BGGR ordering.
- CU_EGL_COLOR_FORMAT_BAYER_GRBG = 47#
-
Bayer format — one channel in one surface with interleaved GRBG ordering.
- CU_EGL_COLOR_FORMAT_BAYER_GBRG = 48#
-
Bayer format — one channel in one surface with interleaved GBRG ordering.
- CU_EGL_COLOR_FORMAT_BAYER10_RGGB = 49#
-
Bayer10 format — one channel in one surface with interleaved RGGB ordering. Out of 16 bits, 10 bits used 6 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER10_BGGR = 50#
-
Bayer10 format — one channel in one surface with interleaved BGGR ordering. Out of 16 bits, 10 bits used 6 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER10_GRBG = 51#
-
Bayer10 format — one channel in one surface with interleaved GRBG ordering. Out of 16 bits, 10 bits used 6 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER10_GBRG = 52#
-
Bayer10 format — one channel in one surface with interleaved GBRG ordering. Out of 16 bits, 10 bits used 6 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER12_RGGB = 53#
-
Bayer12 format — one channel in one surface with interleaved RGGB ordering. Out of 16 bits, 12 bits used 4 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER12_BGGR = 54#
-
Bayer12 format — one channel in one surface with interleaved BGGR ordering. Out of 16 bits, 12 bits used 4 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER12_GRBG = 55#
-
Bayer12 format — one channel in one surface with interleaved GRBG ordering. Out of 16 bits, 12 bits used 4 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER12_GBRG = 56#
-
Bayer12 format — one channel in one surface with interleaved GBRG ordering. Out of 16 bits, 12 bits used 4 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER14_RGGB = 57#
-
Bayer14 format — one channel in one surface with interleaved RGGB ordering. Out of 16 bits, 14 bits used 2 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER14_BGGR = 58#
-
Bayer14 format — one channel in one surface with interleaved BGGR ordering. Out of 16 bits, 14 bits used 2 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER14_GRBG = 59#
-
Bayer14 format — one channel in one surface with interleaved GRBG ordering. Out of 16 bits, 14 bits used 2 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER14_GBRG = 60#
-
Bayer14 format — one channel in one surface with interleaved GBRG ordering. Out of 16 bits, 14 bits used 2 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER20_RGGB = 61#
-
Bayer20 format — one channel in one surface with interleaved RGGB ordering. Out of 32 bits, 20 bits used 12 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER20_BGGR = 62#
-
Bayer20 format — one channel in one surface with interleaved BGGR ordering. Out of 32 bits, 20 bits used 12 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER20_GRBG = 63#
-
Bayer20 format — one channel in one surface with interleaved GRBG ordering. Out of 32 bits, 20 bits used 12 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER20_GBRG = 64#
-
Bayer20 format — one channel in one surface with interleaved GBRG ordering. Out of 32 bits, 20 bits used 12 bits No-op.
- CU_EGL_COLOR_FORMAT_YVU444_PLANAR = 65#
-
Y, V, U in three surfaces, each in a separate surface, U/V width = Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YVU422_PLANAR = 66#
-
Y, V, U in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_YVU420_PLANAR = 67#
-
Y, V, U in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_BAYER_ISP_RGGB = 68#
-
Nvidia proprietary Bayer ISP format — one channel in one surface with interleaved RGGB ordering and mapped to opaque integer datatype.
- CU_EGL_COLOR_FORMAT_BAYER_ISP_BGGR = 69#
-
Nvidia proprietary Bayer ISP format — one channel in one surface with interleaved BGGR ordering and mapped to opaque integer datatype.
- CU_EGL_COLOR_FORMAT_BAYER_ISP_GRBG = 70#
-
Nvidia proprietary Bayer ISP format — one channel in one surface with interleaved GRBG ordering and mapped to opaque integer datatype.
- CU_EGL_COLOR_FORMAT_BAYER_ISP_GBRG = 71#
-
Nvidia proprietary Bayer ISP format — one channel in one surface with interleaved GBRG ordering and mapped to opaque integer datatype.
- CU_EGL_COLOR_FORMAT_BAYER_BCCR = 72#
-
Bayer format — one channel in one surface with interleaved BCCR ordering.
- CU_EGL_COLOR_FORMAT_BAYER_RCCB = 73#
-
Bayer format — one channel in one surface with interleaved RCCB ordering.
- CU_EGL_COLOR_FORMAT_BAYER_CRBC = 74#
-
Bayer format — one channel in one surface with interleaved CRBC ordering.
- CU_EGL_COLOR_FORMAT_BAYER_CBRC = 75#
-
Bayer format — one channel in one surface with interleaved CBRC ordering.
- CU_EGL_COLOR_FORMAT_BAYER10_CCCC = 76#
-
Bayer10 format — one channel in one surface with interleaved CCCC ordering. Out of 16 bits, 10 bits used 6 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER12_BCCR = 77#
-
Bayer12 format — one channel in one surface with interleaved BCCR ordering. Out of 16 bits, 12 bits used 4 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER12_RCCB = 78#
-
Bayer12 format — one channel in one surface with interleaved RCCB ordering. Out of 16 bits, 12 bits used 4 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER12_CRBC = 79#
-
Bayer12 format — one channel in one surface with interleaved CRBC ordering. Out of 16 bits, 12 bits used 4 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER12_CBRC = 80#
-
Bayer12 format — one channel in one surface with interleaved CBRC ordering. Out of 16 bits, 12 bits used 4 bits No-op.
- CU_EGL_COLOR_FORMAT_BAYER12_CCCC = 81#
-
Bayer12 format — one channel in one surface with interleaved CCCC ordering. Out of 16 bits, 12 bits used 4 bits No-op.
- CU_EGL_COLOR_FORMAT_Y = 82#
-
Color format for single Y plane.
- CU_EGL_COLOR_FORMAT_YUV420_SEMIPLANAR_2020 = 83#
-
Y, UV in two surfaces (UV as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_YVU420_SEMIPLANAR_2020 = 84#
-
Y, VU in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_YUV420_PLANAR_2020 = 85#
-
Y, U, V each in a separate surface, U/V width = 1/2 Y width, U/V height= 1/2 Y height.
- CU_EGL_COLOR_FORMAT_YVU420_PLANAR_2020 = 86#
-
Y, V, U each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_YUV420_SEMIPLANAR_709 = 87#
-
Y, UV in two surfaces (UV as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_YVU420_SEMIPLANAR_709 = 88#
-
Y, VU in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_YUV420_PLANAR_709 = 89#
-
Y, U, V each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_YVU420_PLANAR_709 = 90#
-
Y, V, U each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_Y10V10U10_420_SEMIPLANAR_709 = 91#
-
Y10, V10U10 in two surfaces (VU as one surface), U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_Y10V10U10_420_SEMIPLANAR_2020 = 92#
-
Y10, V10U10 in two surfaces (VU as one surface), U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_Y10V10U10_422_SEMIPLANAR_2020 = 93#
-
Y10, V10U10 in two surfaces(VU as one surface) U/V width = 1/2 Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_Y10V10U10_422_SEMIPLANAR = 94#
-
Y10, V10U10 in two surfaces(VU as one surface) U/V width = 1/2 Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_Y10V10U10_422_SEMIPLANAR_709 = 95#
-
Y10, V10U10 in two surfaces(VU as one surface) U/V width = 1/2 Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_Y_ER = 96#
-
Extended Range Color format for single Y plane.
- CU_EGL_COLOR_FORMAT_Y_709_ER = 97#
-
Extended Range Color format for single Y plane.
- CU_EGL_COLOR_FORMAT_Y10_ER = 98#
-
Extended Range Color format for single Y10 plane.
- CU_EGL_COLOR_FORMAT_Y10_709_ER = 99#
-
Extended Range Color format for single Y10 plane.
- CU_EGL_COLOR_FORMAT_Y12_ER = 100#
-
Extended Range Color format for single Y12 plane.
- CU_EGL_COLOR_FORMAT_Y12_709_ER = 101#
-
Extended Range Color format for single Y12 plane.
- CU_EGL_COLOR_FORMAT_YUVA = 102#
-
Y, U, V, A four channels in one surface, interleaved as AVUY.
- CU_EGL_COLOR_FORMAT_YUV = 103#
-
Y, U, V three channels in one surface, interleaved as VUY. Only pitch linear format supported.
- CU_EGL_COLOR_FORMAT_YVYU = 104#
-
Y, U, V in one surface, interleaved as YVYU in one channel.
- CU_EGL_COLOR_FORMAT_VYUY = 105#
-
Y, U, V in one surface, interleaved as VYUY in one channel.
- CU_EGL_COLOR_FORMAT_Y10V10U10_420_SEMIPLANAR_ER = 106#
-
Extended Range Y10, V10U10 in two surfaces(VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_Y10V10U10_420_SEMIPLANAR_709_ER = 107#
-
Extended Range Y10, V10U10 in two surfaces(VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_Y10V10U10_444_SEMIPLANAR_ER = 108#
-
Extended Range Y10, V10U10 in two surfaces (VU as one surface) U/V width = Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_Y10V10U10_444_SEMIPLANAR_709_ER = 109#
-
Extended Range Y10, V10U10 in two surfaces (VU as one surface) U/V width = Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_Y12V12U12_420_SEMIPLANAR_ER = 110#
-
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_Y12V12U12_420_SEMIPLANAR_709_ER = 111#
-
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
- CU_EGL_COLOR_FORMAT_Y12V12U12_444_SEMIPLANAR_ER = 112#
-
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_Y12V12U12_444_SEMIPLANAR_709_ER = 113#
-
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = Y width, U/V height = Y height.
- CU_EGL_COLOR_FORMAT_MAX = 114#
- class cuda.cuda.CUdeviceptr_v2#
-
CUDA device pointer CUdeviceptr is defined as an unsigned integer type whose size matches the size of a pointer on the target platform.
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUdeviceptr#
-
CUDA device pointer CUdeviceptr is defined as an unsigned integer type whose size matches the size of a pointer on the target platform.
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUdevice_v1#
-
CUDA device
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUdevice#
-
CUDA device
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUcontext(*args, **kwargs)#
-
CUDA context
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmodule(*args, **kwargs)#
-
CUDA module
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUfunction(*args, **kwargs)#
-
CUDA function
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUlibrary(*args, **kwargs)#
-
CUDA library
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUkernel(*args, **kwargs)#
-
CUDA kernel
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUarray(*args, **kwargs)#
-
CUDA array
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmipmappedArray(*args, **kwargs)#
-
CUDA mipmapped array
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUtexref(*args, **kwargs)#
-
CUDA texture reference
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUsurfref(*args, **kwargs)#
-
CUDA surface reference
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUevent(*args, **kwargs)#
-
CUDA event
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUstream(*args, **kwargs)#
-
CUDA stream
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUgraphicsResource(*args, **kwargs)#
-
CUDA graphics interop resource
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUtexObject_v1#
-
An opaque value that represents a CUDA texture object
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUtexObject#
-
An opaque value that represents a CUDA texture object
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUsurfObject_v1#
-
An opaque value that represents a CUDA surface object
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUsurfObject#
-
An opaque value that represents a CUDA surface object
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUexternalMemory(*args, **kwargs)#
-
CUDA external memory
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUexternalSemaphore(*args, **kwargs)#
-
CUDA external semaphore
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUgraph(*args, **kwargs)#
-
CUDA graph
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUgraphNode(*args, **kwargs)#
-
CUDA graph node
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUgraphExec(*args, **kwargs)#
-
CUDA executable graph
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemoryPool(*args, **kwargs)#
-
CUDA memory pool
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUuserObject(*args, **kwargs)#
-
CUDA user object for graphs
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUuuid#
-
- bytes#
-
< CUDA definition of UUID
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUipcEventHandle_v1#
-
CUDA IPC event handle
- reserved#
-
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUipcEventHandle#
-
CUDA IPC event handle
- reserved#
-
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUipcMemHandle_v1#
-
CUDA IPC mem handle
- reserved#
-
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUipcMemHandle#
-
CUDA IPC mem handle
- reserved#
-
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUstreamBatchMemOpParams_v1#
-
Per-operation parameters for cuStreamBatchMemOp
- operation#
-
- Type:
-
CUstreamBatchMemOpType
- waitValue#
-
- Type:
-
CUstreamMemOpWaitValueParams_st
- writeValue#
-
- Type:
-
CUstreamMemOpWriteValueParams_st
- flushRemoteWrites#
-
- Type:
-
CUstreamMemOpFlushRemoteWritesParams_st
- memoryBarrier#
-
- Type:
-
CUstreamMemOpMemoryBarrierParams_st
- pad#
-
- Type:
-
List[cuuint64_t]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUstreamBatchMemOpParams#
-
Per-operation parameters for cuStreamBatchMemOp
- operation#
-
- Type:
-
CUstreamBatchMemOpType
- waitValue#
-
- Type:
-
CUstreamMemOpWaitValueParams_st
- writeValue#
-
- Type:
-
CUstreamMemOpWriteValueParams_st
- flushRemoteWrites#
-
- Type:
-
CUstreamMemOpFlushRemoteWritesParams_st
- memoryBarrier#
-
- Type:
-
CUstreamMemOpMemoryBarrierParams_st
- pad#
-
- Type:
-
List[cuuint64_t]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_BATCH_MEM_OP_NODE_PARAMS#
-
- ctx#
-
- Type:
-
CUcontext
- count#
-
- Type:
-
unsigned int
- paramArray#
-
- Type:
-
CUstreamBatchMemOpParams
- flags#
-
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUdevprop_v1#
-
Legacy device properties
- maxThreadsPerBlock#
-
Maximum number of threads per block
- Type:
-
int
- maxThreadsDim#
-
Maximum size of each dimension of a block
- Type:
-
List[int]
- maxGridSize#
-
Maximum size of each dimension of a grid
- Type:
-
List[int]
- sharedMemPerBlock#
-
Shared memory available per block in bytes
- Type:
-
int
- totalConstantMemory#
-
Constant memory available on device in bytes
- Type:
-
int
- SIMDWidth#
-
Warp size in threads
- Type:
-
int
- memPitch#
-
Maximum pitch in bytes allowed by memory copies
- Type:
-
int
- regsPerBlock#
-
32-bit registers available per block
- Type:
-
int
- clockRate#
-
Clock frequency in kilohertz
- Type:
-
int
- textureAlign#
-
Alignment requirement for textures
- Type:
-
int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUdevprop#
-
Legacy device properties
- maxThreadsPerBlock#
-
Maximum number of threads per block
- Type:
-
int
- maxThreadsDim#
-
Maximum size of each dimension of a block
- Type:
-
List[int]
- maxGridSize#
-
Maximum size of each dimension of a grid
- Type:
-
List[int]
- sharedMemPerBlock#
-
Shared memory available per block in bytes
- Type:
-
int
- totalConstantMemory#
-
Constant memory available on device in bytes
- Type:
-
int
- SIMDWidth#
-
Warp size in threads
- Type:
-
int
- memPitch#
-
Maximum pitch in bytes allowed by memory copies
- Type:
-
int
- regsPerBlock#
-
32-bit registers available per block
- Type:
-
int
- clockRate#
-
Clock frequency in kilohertz
- Type:
-
int
- textureAlign#
-
Alignment requirement for textures
- Type:
-
int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUlinkState(*args, **kwargs)#
-
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUhostFn(*args, **kwargs)#
-
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUaccessPolicyWindow_v1#
-
Specifies an access policy for a window, a contiguous extent of
memory beginning at base_ptr and ending at base_ptr + num_bytes.
num_bytes is limited by
CU_DEVICE_ATTRIBUTE_MAX_ACCESS_POLICY_WINDOW_SIZE. Partition into
many segments and assign segments such that: sum of “hit segments”
/ window == approx. ratio. sum of “miss segments” / window ==
approx 1-ratio. Segments and ratio specifications are fitted to the
capabilities of the architecture. Accesses in a hit segment apply
the hitProp access policy. Accesses in a miss segment apply the
missProp access policy.- base_ptr#
-
Starting address of the access policy window. CUDA driver may align
it.- Type:
-
Any
- num_bytes#
-
Size in bytes of the window policy. CUDA driver may restrict the
maximum size and alignment.- Type:
-
size_t
- hitRatio#
-
hitRatio specifies percentage of lines assigned hitProp, rest are
assigned missProp.- Type:
-
float
- hitProp#
-
CUaccessProperty set for hit.
- Type:
-
CUaccessProperty
- missProp#
-
CUaccessProperty set for miss. Must be either NORMAL or STREAMING
- Type:
-
CUaccessProperty
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUaccessPolicyWindow#
-
Specifies an access policy for a window, a contiguous extent of
memory beginning at base_ptr and ending at base_ptr + num_bytes.
num_bytes is limited by
CU_DEVICE_ATTRIBUTE_MAX_ACCESS_POLICY_WINDOW_SIZE. Partition into
many segments and assign segments such that: sum of “hit segments”
/ window == approx. ratio. sum of “miss segments” / window ==
approx 1-ratio. Segments and ratio specifications are fitted to the
capabilities of the architecture. Accesses in a hit segment apply
the hitProp access policy. Accesses in a miss segment apply the
missProp access policy.- base_ptr#
-
Starting address of the access policy window. CUDA driver may align
it.- Type:
-
Any
- num_bytes#
-
Size in bytes of the window policy. CUDA driver may restrict the
maximum size and alignment.- Type:
-
size_t
- hitRatio#
-
hitRatio specifies percentage of lines assigned hitProp, rest are
assigned missProp.- Type:
-
float
- hitProp#
-
CUaccessProperty set for hit.
- Type:
-
CUaccessProperty
- missProp#
-
CUaccessProperty set for miss. Must be either NORMAL or STREAMING
- Type:
-
CUaccessProperty
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_KERNEL_NODE_PARAMS_v1#
-
GPU kernel node parameters
- func#
-
Kernel to launch
- Type:
-
CUfunction
- gridDimX#
-
Width of grid in blocks
- Type:
-
unsigned int
- gridDimY#
-
Height of grid in blocks
- Type:
-
unsigned int
- gridDimZ#
-
Depth of grid in blocks
- Type:
-
unsigned int
- blockDimX#
-
X dimension of each thread block
- Type:
-
unsigned int
- blockDimY#
-
Y dimension of each thread block
- Type:
-
unsigned int
- blockDimZ#
-
Z dimension of each thread block
- Type:
-
unsigned int
- sharedMemBytes#
-
Dynamic shared-memory size per thread block in bytes
- Type:
-
unsigned int
- kernelParams#
-
Array of pointers to kernel parameters
- Type:
-
Any
-
Extra options
- Type:
-
Any
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_KERNEL_NODE_PARAMS_v2#
-
GPU kernel node parameters
- func#
-
Kernel to launch
- Type:
-
CUfunction
- gridDimX#
-
Width of grid in blocks
- Type:
-
unsigned int
- gridDimY#
-
Height of grid in blocks
- Type:
-
unsigned int
- gridDimZ#
-
Depth of grid in blocks
- Type:
-
unsigned int
- blockDimX#
-
X dimension of each thread block
- Type:
-
unsigned int
- blockDimY#
-
Y dimension of each thread block
- Type:
-
unsigned int
- blockDimZ#
-
Z dimension of each thread block
- Type:
-
unsigned int
- sharedMemBytes#
-
Dynamic shared-memory size per thread block in bytes
- Type:
-
unsigned int
- kernelParams#
-
Array of pointers to kernel parameters
- Type:
-
Any
-
Extra options
- Type:
-
Any
- kern#
-
Kernel to launch, will only be referenced if func is NULL
- Type:
-
CUkernel
- ctx#
-
Context for the kernel task to run in. The value NULL will indicate
the current context should be used by the api. This field is
ignored if func is set.- Type:
-
CUcontext
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_KERNEL_NODE_PARAMS#
-
GPU kernel node parameters
- func#
-
Kernel to launch
- Type:
-
CUfunction
- gridDimX#
-
Width of grid in blocks
- Type:
-
unsigned int
- gridDimY#
-
Height of grid in blocks
- Type:
-
unsigned int
- gridDimZ#
-
Depth of grid in blocks
- Type:
-
unsigned int
- blockDimX#
-
X dimension of each thread block
- Type:
-
unsigned int
- blockDimY#
-
Y dimension of each thread block
- Type:
-
unsigned int
- blockDimZ#
-
Z dimension of each thread block
- Type:
-
unsigned int
- sharedMemBytes#
-
Dynamic shared-memory size per thread block in bytes
- Type:
-
unsigned int
- kernelParams#
-
Array of pointers to kernel parameters
- Type:
-
Any
-
Extra options
- Type:
-
Any
- kern#
-
Kernel to launch, will only be referenced if func is NULL
- Type:
-
CUkernel
- ctx#
-
Context for the kernel task to run in. The value NULL will indicate
the current context should be used by the api. This field is
ignored if func is set.- Type:
-
CUcontext
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEMSET_NODE_PARAMS_v1#
-
Memset node parameters
- dst#
-
Destination device pointer
- Type:
-
CUdeviceptr
- pitch#
-
Pitch of destination device pointer. Unused if height is 1
- Type:
-
size_t
- value#
-
Value to be set
- Type:
-
unsigned int
- elementSize#
-
Size of each element in bytes. Must be 1, 2, or 4.
- Type:
-
unsigned int
- width#
-
Width of the row in elements
- Type:
-
size_t
- height#
-
Number of rows
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEMSET_NODE_PARAMS#
-
Memset node parameters
- dst#
-
Destination device pointer
- Type:
-
CUdeviceptr
- pitch#
-
Pitch of destination device pointer. Unused if height is 1
- Type:
-
size_t
- value#
-
Value to be set
- Type:
-
unsigned int
- elementSize#
-
Size of each element in bytes. Must be 1, 2, or 4.
- Type:
-
unsigned int
- width#
-
Width of the row in elements
- Type:
-
size_t
- height#
-
Number of rows
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_HOST_NODE_PARAMS_v1#
-
Host node parameters
- fn#
-
The function to call when the node executes
- Type:
-
CUhostFn
- userData#
-
Argument to pass to the function
- Type:
-
Any
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_HOST_NODE_PARAMS#
-
Host node parameters
- fn#
-
The function to call when the node executes
- Type:
-
CUhostFn
- userData#
-
Argument to pass to the function
- Type:
-
Any
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_GRAPH_INSTANTIATE_PARAMS#
-
Graph instantiation parameters
- flags#
-
Instantiation flags
- Type:
-
cuuint64_t
- hUploadStream#
-
Upload stream
- Type:
-
CUstream
- hErrNode_out#
-
The node which caused instantiation to fail, if any
- Type:
-
CUgraphNode
- result_out#
-
Whether instantiation was successful. If it failed, the reason why
- Type:
-
CUgraphInstantiateResult
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUlaunchMemSyncDomainMap#
-
- default_#
-
- Type:
-
bytes
- remote#
-
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUlaunchAttributeValue#
-
- pad#
-
Pad to 64 bytes
- Type:
-
bytes
- accessPolicyWindow#
-
Attribute CUaccessPolicyWindow.
- Type:
-
CUaccessPolicyWindow
- cooperative#
-
Nonzero indicates a cooperative kernel (see
cuLaunchCooperativeKernel).- Type:
-
int
- syncPolicy#
-
::CUsynchronizationPolicy for work queued up in this stream
- Type:
-
CUsynchronizationPolicy
- clusterDim#
-
Cluster dimensions for the kernel node.
- Type:
-
anon_struct0
- clusterSchedulingPolicyPreference#
-
Cluster scheduling policy preference for the kernel node.
- Type:
-
CUclusterSchedulingPolicy
- programmaticStreamSerializationAllowed#
-
- Type:
-
int
- programmaticEvent#
-
- Type:
-
anon_struct1
- priority#
-
Execution priority of the kernel.
- Type:
-
int
- memSyncDomainMap#
-
- Type:
-
CUlaunchMemSyncDomainMap
- memSyncDomain#
-
- Type:
-
CUlaunchMemSyncDomain
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUlaunchAttribute#
-
- id#
-
- Type:
-
CUlaunchAttributeID
- value#
-
- Type:
-
CUlaunchAttributeValue
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUlaunchConfig#
-
- gridDimX#
-
Width of grid in blocks
- Type:
-
unsigned int
- gridDimY#
-
Height of grid in blocks
- Type:
-
unsigned int
- gridDimZ#
-
Depth of grid in blocks
- Type:
-
unsigned int
- blockDimX#
-
X dimension of each thread block
- Type:
-
unsigned int
- blockDimY#
-
Y dimension of each thread block
- Type:
-
unsigned int
- blockDimZ#
-
Z dimension of each thread block
- Type:
-
unsigned int
- sharedMemBytes#
-
Dynamic shared-memory size per thread block in bytes
- Type:
-
unsigned int
- hStream#
-
Stream identifier
- Type:
-
CUstream
- attrs#
-
nullable if numAttrs == 0
- Type:
-
CUlaunchAttribute
- numAttrs#
-
number of attributes populated in attrs
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUkernelNodeAttrID(value)#
- class cuda.cuda.CUkernelNodeAttrValue_v1#
-
- pad#
-
Pad to 64 bytes
- Type:
-
bytes
- accessPolicyWindow#
-
Attribute CUaccessPolicyWindow.
- Type:
-
CUaccessPolicyWindow
- cooperative#
-
Nonzero indicates a cooperative kernel (see
cuLaunchCooperativeKernel).- Type:
-
int
- syncPolicy#
-
::CUsynchronizationPolicy for work queued up in this stream
- Type:
-
CUsynchronizationPolicy
- clusterDim#
-
Cluster dimensions for the kernel node.
- Type:
-
anon_struct0
- clusterSchedulingPolicyPreference#
-
Cluster scheduling policy preference for the kernel node.
- Type:
-
CUclusterSchedulingPolicy
- programmaticStreamSerializationAllowed#
-
- Type:
-
int
- programmaticEvent#
-
- Type:
-
anon_struct1
- priority#
-
Execution priority of the kernel.
- Type:
-
int
- memSyncDomainMap#
-
- Type:
-
CUlaunchMemSyncDomainMap
- memSyncDomain#
-
- Type:
-
CUlaunchMemSyncDomain
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUkernelNodeAttrValue#
-
- pad#
-
Pad to 64 bytes
- Type:
-
bytes
- accessPolicyWindow#
-
Attribute CUaccessPolicyWindow.
- Type:
-
CUaccessPolicyWindow
- cooperative#
-
Nonzero indicates a cooperative kernel (see
cuLaunchCooperativeKernel).- Type:
-
int
- syncPolicy#
-
::CUsynchronizationPolicy for work queued up in this stream
- Type:
-
CUsynchronizationPolicy
- clusterDim#
-
Cluster dimensions for the kernel node.
- Type:
-
anon_struct0
- clusterSchedulingPolicyPreference#
-
Cluster scheduling policy preference for the kernel node.
- Type:
-
CUclusterSchedulingPolicy
- programmaticStreamSerializationAllowed#
-
- Type:
-
int
- programmaticEvent#
-
- Type:
-
anon_struct1
- priority#
-
Execution priority of the kernel.
- Type:
-
int
- memSyncDomainMap#
-
- Type:
-
CUlaunchMemSyncDomainMap
- memSyncDomain#
-
- Type:
-
CUlaunchMemSyncDomain
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUstreamAttrID(value)#
- class cuda.cuda.CUstreamAttrValue_v1#
-
- pad#
-
Pad to 64 bytes
- Type:
-
bytes
- accessPolicyWindow#
-
Attribute CUaccessPolicyWindow.
- Type:
-
CUaccessPolicyWindow
- cooperative#
-
Nonzero indicates a cooperative kernel (see
cuLaunchCooperativeKernel).- Type:
-
int
- syncPolicy#
-
::CUsynchronizationPolicy for work queued up in this stream
- Type:
-
CUsynchronizationPolicy
- clusterDim#
-
Cluster dimensions for the kernel node.
- Type:
-
anon_struct0
- clusterSchedulingPolicyPreference#
-
Cluster scheduling policy preference for the kernel node.
- Type:
-
CUclusterSchedulingPolicy
- programmaticStreamSerializationAllowed#
-
- Type:
-
int
- programmaticEvent#
-
- Type:
-
anon_struct1
- priority#
-
Execution priority of the kernel.
- Type:
-
int
- memSyncDomainMap#
-
- Type:
-
CUlaunchMemSyncDomainMap
- memSyncDomain#
-
- Type:
-
CUlaunchMemSyncDomain
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUstreamAttrValue#
-
- pad#
-
Pad to 64 bytes
- Type:
-
bytes
- accessPolicyWindow#
-
Attribute CUaccessPolicyWindow.
- Type:
-
CUaccessPolicyWindow
- cooperative#
-
Nonzero indicates a cooperative kernel (see
cuLaunchCooperativeKernel).- Type:
-
int
- syncPolicy#
-
::CUsynchronizationPolicy for work queued up in this stream
- Type:
-
CUsynchronizationPolicy
- clusterDim#
-
Cluster dimensions for the kernel node.
- Type:
-
anon_struct0
- clusterSchedulingPolicyPreference#
-
Cluster scheduling policy preference for the kernel node.
- Type:
-
CUclusterSchedulingPolicy
- programmaticStreamSerializationAllowed#
-
- Type:
-
int
- programmaticEvent#
-
- Type:
-
anon_struct1
- priority#
-
Execution priority of the kernel.
- Type:
-
int
- memSyncDomainMap#
-
- Type:
-
CUlaunchMemSyncDomainMap
- memSyncDomain#
-
- Type:
-
CUlaunchMemSyncDomain
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUexecAffinitySmCount_v1#
-
Value for CU_EXEC_AFFINITY_TYPE_SM_COUNT
- val#
-
The number of SMs the context is limited to use.
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUexecAffinitySmCount#
-
Value for CU_EXEC_AFFINITY_TYPE_SM_COUNT
- val#
-
The number of SMs the context is limited to use.
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUexecAffinityParam_v1#
-
Execution Affinity Parameters
- type#
-
- Type:
-
CUexecAffinityType
- param#
-
- Type:
-
anon_union2
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUexecAffinityParam#
-
Execution Affinity Parameters
- type#
-
- Type:
-
CUexecAffinityType
- param#
-
- Type:
-
anon_union2
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUlibraryHostUniversalFunctionAndDataTable#
-
- functionTable#
-
- Type:
-
Any
- functionWindowSize#
-
- Type:
-
size_t
- dataTable#
-
- Type:
-
Any
- dataWindowSize#
-
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUstreamCallback(*args, **kwargs)#
-
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUoccupancyB2DSize(*args, **kwargs)#
-
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEMCPY2D_v2#
-
2D memory copy parameters
- srcXInBytes#
-
Source X in bytes
- Type:
-
size_t
- srcY#
-
Source Y
- Type:
-
size_t
- srcMemoryType#
-
Source memory type (host, device, array)
- Type:
-
CUmemorytype
- srcHost#
-
Source host pointer
- Type:
-
Any
- srcDevice#
-
Source device pointer
- Type:
-
CUdeviceptr
- srcArray#
-
Source array reference
- Type:
-
CUarray
- srcPitch#
-
Source pitch (ignored when src is array)
- Type:
-
size_t
- dstXInBytes#
-
Destination X in bytes
- Type:
-
size_t
- dstY#
-
Destination Y
- Type:
-
size_t
- dstMemoryType#
-
Destination memory type (host, device, array)
- Type:
-
CUmemorytype
- dstHost#
-
Destination host pointer
- Type:
-
Any
- dstDevice#
-
Destination device pointer
- Type:
-
CUdeviceptr
- dstArray#
-
Destination array reference
- Type:
-
CUarray
- dstPitch#
-
Destination pitch (ignored when dst is array)
- Type:
-
size_t
- WidthInBytes#
-
Width of 2D memory copy in bytes
- Type:
-
size_t
- Height#
-
Height of 2D memory copy
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEMCPY2D#
-
2D memory copy parameters
- srcXInBytes#
-
Source X in bytes
- Type:
-
size_t
- srcY#
-
Source Y
- Type:
-
size_t
- srcMemoryType#
-
Source memory type (host, device, array)
- Type:
-
CUmemorytype
- srcHost#
-
Source host pointer
- Type:
-
Any
- srcDevice#
-
Source device pointer
- Type:
-
CUdeviceptr
- srcArray#
-
Source array reference
- Type:
-
CUarray
- srcPitch#
-
Source pitch (ignored when src is array)
- Type:
-
size_t
- dstXInBytes#
-
Destination X in bytes
- Type:
-
size_t
- dstY#
-
Destination Y
- Type:
-
size_t
- dstMemoryType#
-
Destination memory type (host, device, array)
- Type:
-
CUmemorytype
- dstHost#
-
Destination host pointer
- Type:
-
Any
- dstDevice#
-
Destination device pointer
- Type:
-
CUdeviceptr
- dstArray#
-
Destination array reference
- Type:
-
CUarray
- dstPitch#
-
Destination pitch (ignored when dst is array)
- Type:
-
size_t
- WidthInBytes#
-
Width of 2D memory copy in bytes
- Type:
-
size_t
- Height#
-
Height of 2D memory copy
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEMCPY3D_v2#
-
3D memory copy parameters
- srcXInBytes#
-
Source X in bytes
- Type:
-
size_t
- srcY#
-
Source Y
- Type:
-
size_t
- srcZ#
-
Source Z
- Type:
-
size_t
- srcLOD#
-
Source LOD
- Type:
-
size_t
- srcMemoryType#
-
Source memory type (host, device, array)
- Type:
-
CUmemorytype
- srcHost#
-
Source host pointer
- Type:
-
Any
- srcDevice#
-
Source device pointer
- Type:
-
CUdeviceptr
- srcArray#
-
Source array reference
- Type:
-
CUarray
- reserved0#
-
Must be NULL
- Type:
-
Any
- srcPitch#
-
Source pitch (ignored when src is array)
- Type:
-
size_t
- srcHeight#
-
Source height (ignored when src is array; may be 0 if Depth==1)
- Type:
-
size_t
- dstXInBytes#
-
Destination X in bytes
- Type:
-
size_t
- dstY#
-
Destination Y
- Type:
-
size_t
- dstZ#
-
Destination Z
- Type:
-
size_t
- dstLOD#
-
Destination LOD
- Type:
-
size_t
- dstMemoryType#
-
Destination memory type (host, device, array)
- Type:
-
CUmemorytype
- dstHost#
-
Destination host pointer
- Type:
-
Any
- dstDevice#
-
Destination device pointer
- Type:
-
CUdeviceptr
- dstArray#
-
Destination array reference
- Type:
-
CUarray
- reserved1#
-
Must be NULL
- Type:
-
Any
- dstPitch#
-
Destination pitch (ignored when dst is array)
- Type:
-
size_t
- dstHeight#
-
Destination height (ignored when dst is array; may be 0 if
Depth==1)- Type:
-
size_t
- WidthInBytes#
-
Width of 3D memory copy in bytes
- Type:
-
size_t
- Height#
-
Height of 3D memory copy
- Type:
-
size_t
- Depth#
-
Depth of 3D memory copy
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEMCPY3D#
-
3D memory copy parameters
- srcXInBytes#
-
Source X in bytes
- Type:
-
size_t
- srcY#
-
Source Y
- Type:
-
size_t
- srcZ#
-
Source Z
- Type:
-
size_t
- srcLOD#
-
Source LOD
- Type:
-
size_t
- srcMemoryType#
-
Source memory type (host, device, array)
- Type:
-
CUmemorytype
- srcHost#
-
Source host pointer
- Type:
-
Any
- srcDevice#
-
Source device pointer
- Type:
-
CUdeviceptr
- srcArray#
-
Source array reference
- Type:
-
CUarray
- reserved0#
-
Must be NULL
- Type:
-
Any
- srcPitch#
-
Source pitch (ignored when src is array)
- Type:
-
size_t
- srcHeight#
-
Source height (ignored when src is array; may be 0 if Depth==1)
- Type:
-
size_t
- dstXInBytes#
-
Destination X in bytes
- Type:
-
size_t
- dstY#
-
Destination Y
- Type:
-
size_t
- dstZ#
-
Destination Z
- Type:
-
size_t
- dstLOD#
-
Destination LOD
- Type:
-
size_t
- dstMemoryType#
-
Destination memory type (host, device, array)
- Type:
-
CUmemorytype
- dstHost#
-
Destination host pointer
- Type:
-
Any
- dstDevice#
-
Destination device pointer
- Type:
-
CUdeviceptr
- dstArray#
-
Destination array reference
- Type:
-
CUarray
- reserved1#
-
Must be NULL
- Type:
-
Any
- dstPitch#
-
Destination pitch (ignored when dst is array)
- Type:
-
size_t
- dstHeight#
-
Destination height (ignored when dst is array; may be 0 if
Depth==1)- Type:
-
size_t
- WidthInBytes#
-
Width of 3D memory copy in bytes
- Type:
-
size_t
- Height#
-
Height of 3D memory copy
- Type:
-
size_t
- Depth#
-
Depth of 3D memory copy
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEMCPY3D_PEER_v1#
-
3D memory cross-context copy parameters
- srcXInBytes#
-
Source X in bytes
- Type:
-
size_t
- srcY#
-
Source Y
- Type:
-
size_t
- srcZ#
-
Source Z
- Type:
-
size_t
- srcLOD#
-
Source LOD
- Type:
-
size_t
- srcMemoryType#
-
Source memory type (host, device, array)
- Type:
-
CUmemorytype
- srcHost#
-
Source host pointer
- Type:
-
Any
- srcDevice#
-
Source device pointer
- Type:
-
CUdeviceptr
- srcArray#
-
Source array reference
- Type:
-
CUarray
- srcContext#
-
Source context (ignored with srcMemoryType is CU_MEMORYTYPE_ARRAY)
- Type:
-
CUcontext
- srcPitch#
-
Source pitch (ignored when src is array)
- Type:
-
size_t
- srcHeight#
-
Source height (ignored when src is array; may be 0 if Depth==1)
- Type:
-
size_t
- dstXInBytes#
-
Destination X in bytes
- Type:
-
size_t
- dstY#
-
Destination Y
- Type:
-
size_t
- dstZ#
-
Destination Z
- Type:
-
size_t
- dstLOD#
-
Destination LOD
- Type:
-
size_t
- dstMemoryType#
-
Destination memory type (host, device, array)
- Type:
-
CUmemorytype
- dstHost#
-
Destination host pointer
- Type:
-
Any
- dstDevice#
-
Destination device pointer
- Type:
-
CUdeviceptr
- dstArray#
-
Destination array reference
- Type:
-
CUarray
- dstContext#
-
Destination context (ignored with dstMemoryType is
CU_MEMORYTYPE_ARRAY)- Type:
-
CUcontext
- dstPitch#
-
Destination pitch (ignored when dst is array)
- Type:
-
size_t
- dstHeight#
-
Destination height (ignored when dst is array; may be 0 if
Depth==1)- Type:
-
size_t
- WidthInBytes#
-
Width of 3D memory copy in bytes
- Type:
-
size_t
- Height#
-
Height of 3D memory copy
- Type:
-
size_t
- Depth#
-
Depth of 3D memory copy
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEMCPY3D_PEER#
-
3D memory cross-context copy parameters
- srcXInBytes#
-
Source X in bytes
- Type:
-
size_t
- srcY#
-
Source Y
- Type:
-
size_t
- srcZ#
-
Source Z
- Type:
-
size_t
- srcLOD#
-
Source LOD
- Type:
-
size_t
- srcMemoryType#
-
Source memory type (host, device, array)
- Type:
-
CUmemorytype
- srcHost#
-
Source host pointer
- Type:
-
Any
- srcDevice#
-
Source device pointer
- Type:
-
CUdeviceptr
- srcArray#
-
Source array reference
- Type:
-
CUarray
- srcContext#
-
Source context (ignored with srcMemoryType is CU_MEMORYTYPE_ARRAY)
- Type:
-
CUcontext
- srcPitch#
-
Source pitch (ignored when src is array)
- Type:
-
size_t
- srcHeight#
-
Source height (ignored when src is array; may be 0 if Depth==1)
- Type:
-
size_t
- dstXInBytes#
-
Destination X in bytes
- Type:
-
size_t
- dstY#
-
Destination Y
- Type:
-
size_t
- dstZ#
-
Destination Z
- Type:
-
size_t
- dstLOD#
-
Destination LOD
- Type:
-
size_t
- dstMemoryType#
-
Destination memory type (host, device, array)
- Type:
-
CUmemorytype
- dstHost#
-
Destination host pointer
- Type:
-
Any
- dstDevice#
-
Destination device pointer
- Type:
-
CUdeviceptr
- dstArray#
-
Destination array reference
- Type:
-
CUarray
- dstContext#
-
Destination context (ignored with dstMemoryType is
CU_MEMORYTYPE_ARRAY)- Type:
-
CUcontext
- dstPitch#
-
Destination pitch (ignored when dst is array)
- Type:
-
size_t
- dstHeight#
-
Destination height (ignored when dst is array; may be 0 if
Depth==1)- Type:
-
size_t
- WidthInBytes#
-
Width of 3D memory copy in bytes
- Type:
-
size_t
- Height#
-
Height of 3D memory copy
- Type:
-
size_t
- Depth#
-
Depth of 3D memory copy
- Type:
-
size_t
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_ARRAY_DESCRIPTOR_v2#
-
Array descriptor
- Width#
-
Width of array
- Type:
-
size_t
- Height#
-
Height of array
- Type:
-
size_t
- Format#
-
Array format
- Type:
-
CUarray_format
- NumChannels#
-
Channels per array element
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_ARRAY_DESCRIPTOR#
-
Array descriptor
- Width#
-
Width of array
- Type:
-
size_t
- Height#
-
Height of array
- Type:
-
size_t
- Format#
-
Array format
- Type:
-
CUarray_format
- NumChannels#
-
Channels per array element
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_ARRAY3D_DESCRIPTOR_v2#
-
3D array descriptor
- Width#
-
Width of 3D array
- Type:
-
size_t
- Height#
-
Height of 3D array
- Type:
-
size_t
- Depth#
-
Depth of 3D array
- Type:
-
size_t
- Format#
-
Array format
- Type:
-
CUarray_format
- NumChannels#
-
Channels per array element
- Type:
-
unsigned int
- Flags#
-
Flags
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_ARRAY3D_DESCRIPTOR#
-
3D array descriptor
- Width#
-
Width of 3D array
- Type:
-
size_t
- Height#
-
Height of 3D array
- Type:
-
size_t
- Depth#
-
Depth of 3D array
- Type:
-
size_t
- Format#
-
Array format
- Type:
-
CUarray_format
- NumChannels#
-
Channels per array element
- Type:
-
unsigned int
- Flags#
-
Flags
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_ARRAY_SPARSE_PROPERTIES_v1#
-
CUDA array sparse properties
- tileExtent#
-
- Type:
-
anon_struct2
- miptailFirstLevel#
-
First mip level at which the mip tail begins.
- Type:
-
unsigned int
- miptailSize#
-
Total size of the mip tail.
- Type:
-
unsigned long long
- flags#
-
Flags will either be zero or
CU_ARRAY_SPARSE_PROPERTIES_SINGLE_MIPTAIL- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_ARRAY_SPARSE_PROPERTIES#
-
CUDA array sparse properties
- tileExtent#
-
- Type:
-
anon_struct2
- miptailFirstLevel#
-
First mip level at which the mip tail begins.
- Type:
-
unsigned int
- miptailSize#
-
Total size of the mip tail.
- Type:
-
unsigned long long
- flags#
-
Flags will either be zero or
CU_ARRAY_SPARSE_PROPERTIES_SINGLE_MIPTAIL- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_ARRAY_MEMORY_REQUIREMENTS_v1#
-
CUDA array memory requirements
- size#
-
Total required memory size
- Type:
-
size_t
- alignment#
-
alignment requirement
- Type:
-
size_t
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_ARRAY_MEMORY_REQUIREMENTS#
-
CUDA array memory requirements
- size#
-
Total required memory size
- Type:
-
size_t
- alignment#
-
alignment requirement
- Type:
-
size_t
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_RESOURCE_DESC_v1#
-
CUDA Resource descriptor
- resType#
-
Resource type
- Type:
-
CUresourcetype
- res#
-
- Type:
-
anon_union3
- flags#
-
Flags (must be zero)
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_RESOURCE_DESC#
-
CUDA Resource descriptor
- resType#
-
Resource type
- Type:
-
CUresourcetype
- res#
-
- Type:
-
anon_union3
- flags#
-
Flags (must be zero)
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_TEXTURE_DESC_v1#
-
Texture descriptor
- addressMode#
-
Address modes
- Type:
-
List[CUaddress_mode]
- filterMode#
-
Filter mode
- Type:
-
CUfilter_mode
- flags#
-
Flags
- Type:
-
unsigned int
- maxAnisotropy#
-
Maximum anisotropy ratio
- Type:
-
unsigned int
- mipmapFilterMode#
-
Mipmap filter mode
- Type:
-
CUfilter_mode
- mipmapLevelBias#
-
Mipmap level bias
- Type:
-
float
- minMipmapLevelClamp#
-
Mipmap minimum level clamp
- Type:
-
float
- maxMipmapLevelClamp#
-
Mipmap maximum level clamp
- Type:
-
float
- borderColor#
-
Border Color
- Type:
-
List[float]
- reserved#
-
- Type:
-
List[int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_TEXTURE_DESC#
-
Texture descriptor
- addressMode#
-
Address modes
- Type:
-
List[CUaddress_mode]
- filterMode#
-
Filter mode
- Type:
-
CUfilter_mode
- flags#
-
Flags
- Type:
-
unsigned int
- maxAnisotropy#
-
Maximum anisotropy ratio
- Type:
-
unsigned int
- mipmapFilterMode#
-
Mipmap filter mode
- Type:
-
CUfilter_mode
- mipmapLevelBias#
-
Mipmap level bias
- Type:
-
float
- minMipmapLevelClamp#
-
Mipmap minimum level clamp
- Type:
-
float
- maxMipmapLevelClamp#
-
Mipmap maximum level clamp
- Type:
-
float
- borderColor#
-
Border Color
- Type:
-
List[float]
- reserved#
-
- Type:
-
List[int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_RESOURCE_VIEW_DESC_v1#
-
Resource view descriptor
- format#
-
Resource view format
- Type:
-
CUresourceViewFormat
- width#
-
Width of the resource view
- Type:
-
size_t
- height#
-
Height of the resource view
- Type:
-
size_t
- depth#
-
Depth of the resource view
- Type:
-
size_t
- firstMipmapLevel#
-
First defined mipmap level
- Type:
-
unsigned int
- lastMipmapLevel#
-
Last defined mipmap level
- Type:
-
unsigned int
- firstLayer#
-
First layer index
- Type:
-
unsigned int
- lastLayer#
-
Last layer index
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_RESOURCE_VIEW_DESC#
-
Resource view descriptor
- format#
-
Resource view format
- Type:
-
CUresourceViewFormat
- width#
-
Width of the resource view
- Type:
-
size_t
- height#
-
Height of the resource view
- Type:
-
size_t
- depth#
-
Depth of the resource view
- Type:
-
size_t
- firstMipmapLevel#
-
First defined mipmap level
- Type:
-
unsigned int
- lastMipmapLevel#
-
Last defined mipmap level
- Type:
-
unsigned int
- firstLayer#
-
First layer index
- Type:
-
unsigned int
- lastLayer#
-
Last layer index
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUtensorMap#
-
Tensor map descriptor. Requires compiler support for aligning to 64
bytes.- opaque#
-
- Type:
-
List[cuuint64_t]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_POINTER_ATTRIBUTE_P2P_TOKENS_v1#
-
GPU Direct v3 tokens
- p2pToken#
-
- Type:
-
unsigned long long
- vaSpaceToken#
-
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_POINTER_ATTRIBUTE_P2P_TOKENS#
-
GPU Direct v3 tokens
- p2pToken#
-
- Type:
-
unsigned long long
- vaSpaceToken#
-
- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_LAUNCH_PARAMS_v1#
-
Kernel launch parameters
- function#
-
Kernel to launch
- Type:
-
CUfunction
- gridDimX#
-
Width of grid in blocks
- Type:
-
unsigned int
- gridDimY#
-
Height of grid in blocks
- Type:
-
unsigned int
- gridDimZ#
-
Depth of grid in blocks
- Type:
-
unsigned int
- blockDimX#
-
X dimension of each thread block
- Type:
-
unsigned int
- blockDimY#
-
Y dimension of each thread block
- Type:
-
unsigned int
- blockDimZ#
-
Z dimension of each thread block
- Type:
-
unsigned int
- sharedMemBytes#
-
Dynamic shared-memory size per thread block in bytes
- Type:
-
unsigned int
- hStream#
-
Stream identifier
- Type:
-
CUstream
- kernelParams#
-
Array of pointers to kernel parameters
- Type:
-
Any
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_LAUNCH_PARAMS#
-
Kernel launch parameters
- function#
-
Kernel to launch
- Type:
-
CUfunction
- gridDimX#
-
Width of grid in blocks
- Type:
-
unsigned int
- gridDimY#
-
Height of grid in blocks
- Type:
-
unsigned int
- gridDimZ#
-
Depth of grid in blocks
- Type:
-
unsigned int
- blockDimX#
-
X dimension of each thread block
- Type:
-
unsigned int
- blockDimY#
-
Y dimension of each thread block
- Type:
-
unsigned int
- blockDimZ#
-
Z dimension of each thread block
- Type:
-
unsigned int
- sharedMemBytes#
-
Dynamic shared-memory size per thread block in bytes
- Type:
-
unsigned int
- hStream#
-
Stream identifier
- Type:
-
CUstream
- kernelParams#
-
Array of pointers to kernel parameters
- Type:
-
Any
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_MEMORY_HANDLE_DESC_v1#
-
External memory handle descriptor
- type#
-
Type of the handle
- Type:
-
CUexternalMemoryHandleType
- handle#
-
- Type:
-
anon_union4
- size#
-
Size of the memory allocation
- Type:
-
unsigned long long
- flags#
-
Flags must either be zero or CUDA_EXTERNAL_MEMORY_DEDICATED
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_MEMORY_HANDLE_DESC#
-
External memory handle descriptor
- type#
-
Type of the handle
- Type:
-
CUexternalMemoryHandleType
- handle#
-
- Type:
-
anon_union4
- size#
-
Size of the memory allocation
- Type:
-
unsigned long long
- flags#
-
Flags must either be zero or CUDA_EXTERNAL_MEMORY_DEDICATED
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_MEMORY_BUFFER_DESC_v1#
-
External memory buffer descriptor
- offset#
-
Offset into the memory object where the buffer’s base is
- Type:
-
unsigned long long
- size#
-
Size of the buffer
- Type:
-
unsigned long long
- flags#
-
Flags reserved for future use. Must be zero.
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_MEMORY_BUFFER_DESC#
-
External memory buffer descriptor
- offset#
-
Offset into the memory object where the buffer’s base is
- Type:
-
unsigned long long
- size#
-
Size of the buffer
- Type:
-
unsigned long long
- flags#
-
Flags reserved for future use. Must be zero.
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC_v1#
-
External memory mipmap descriptor
- offset#
-
Offset into the memory object where the base level of the mipmap
chain is.- Type:
-
unsigned long long
- arrayDesc#
-
Format, dimension and type of base level of the mipmap chain
- Type:
-
CUDA_ARRAY3D_DESCRIPTOR
- numLevels#
-
Total number of levels in the mipmap chain
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC#
-
External memory mipmap descriptor
- offset#
-
Offset into the memory object where the base level of the mipmap
chain is.- Type:
-
unsigned long long
- arrayDesc#
-
Format, dimension and type of base level of the mipmap chain
- Type:
-
CUDA_ARRAY3D_DESCRIPTOR
- numLevels#
-
Total number of levels in the mipmap chain
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC_v1#
-
External semaphore handle descriptor
- type#
-
Type of the handle
- Type:
-
CUexternalSemaphoreHandleType
- handle#
-
- Type:
-
anon_union5
- flags#
-
Flags reserved for the future. Must be zero.
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC#
-
External semaphore handle descriptor
- type#
-
Type of the handle
- Type:
-
CUexternalSemaphoreHandleType
- handle#
-
- Type:
-
anon_union5
- flags#
-
Flags reserved for the future. Must be zero.
- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS_v1#
-
External semaphore signal parameters
- params#
-
- Type:
-
anon_struct12
- flags#
-
Only when ::CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS is used to signal
a CUexternalSemaphore of type
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNC, the valid flag is
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_SKIP_NVSCIBUF_MEMSYNC which
indicates that while signaling the CUexternalSemaphore, no memory
synchronization operations should be performed for any external
memory object imported as CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF.
For all other types of CUexternalSemaphore, flags must be zero.- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS#
-
External semaphore signal parameters
- params#
-
- Type:
-
anon_struct12
- flags#
-
Only when ::CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS is used to signal
a CUexternalSemaphore of type
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNC, the valid flag is
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_SKIP_NVSCIBUF_MEMSYNC which
indicates that while signaling the CUexternalSemaphore, no memory
synchronization operations should be performed for any external
memory object imported as CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF.
For all other types of CUexternalSemaphore, flags must be zero.- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS_v1#
-
External semaphore wait parameters
- params#
-
- Type:
-
anon_struct15
- flags#
-
Only when ::CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS is used to wait on
a CUexternalSemaphore of type
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNC, the valid flag is
CUDA_EXTERNAL_SEMAPHORE_WAIT_SKIP_NVSCIBUF_MEMSYNC which indicates
that while waiting for the CUexternalSemaphore, no memory
synchronization operations should be performed for any external
memory object imported as CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF.
For all other types of CUexternalSemaphore, flags must be zero.- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS#
-
External semaphore wait parameters
- params#
-
- Type:
-
anon_struct15
- flags#
-
Only when ::CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS is used to wait on
a CUexternalSemaphore of type
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNC, the valid flag is
CUDA_EXTERNAL_SEMAPHORE_WAIT_SKIP_NVSCIBUF_MEMSYNC which indicates
that while waiting for the CUexternalSemaphore, no memory
synchronization operations should be performed for any external
memory object imported as CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF.
For all other types of CUexternalSemaphore, flags must be zero.- Type:
-
unsigned int
- reserved#
-
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXT_SEM_SIGNAL_NODE_PARAMS_v1#
-
Semaphore signal node parameters
- extSemArray#
-
Array of external semaphore handles.
- Type:
-
CUexternalSemaphore
- paramsArray#
-
Array of external semaphore signal parameters.
- Type:
-
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS
- numExtSems#
-
Number of handles and parameters supplied in extSemArray and
paramsArray.- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXT_SEM_SIGNAL_NODE_PARAMS#
-
Semaphore signal node parameters
- extSemArray#
-
Array of external semaphore handles.
- Type:
-
CUexternalSemaphore
- paramsArray#
-
Array of external semaphore signal parameters.
- Type:
-
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS
- numExtSems#
-
Number of handles and parameters supplied in extSemArray and
paramsArray.- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXT_SEM_WAIT_NODE_PARAMS_v1#
-
Semaphore wait node parameters
- extSemArray#
-
Array of external semaphore handles.
- Type:
-
CUexternalSemaphore
- paramsArray#
-
Array of external semaphore wait parameters.
- Type:
-
CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS
- numExtSems#
-
Number of handles and parameters supplied in extSemArray and
paramsArray.- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_EXT_SEM_WAIT_NODE_PARAMS#
-
Semaphore wait node parameters
- extSemArray#
-
Array of external semaphore handles.
- Type:
-
CUexternalSemaphore
- paramsArray#
-
Array of external semaphore wait parameters.
- Type:
-
CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS
- numExtSems#
-
Number of handles and parameters supplied in extSemArray and
paramsArray.- Type:
-
unsigned int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemGenericAllocationHandle_v1#
-
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemGenericAllocationHandle#
-
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUarrayMapInfo_v1#
-
Specifies the CUDA array or CUDA mipmapped array memory mapping
information- resourceType#
-
Resource type
- Type:
-
CUresourcetype
- resource#
-
- Type:
-
anon_union8
- subresourceType#
-
Sparse subresource type
- Type:
-
CUarraySparseSubresourceType
- subresource#
-
- Type:
-
anon_union9
- memOperationType#
-
Memory operation type
- Type:
-
CUmemOperationType
- memHandleType#
-
Memory handle type
- Type:
-
CUmemHandleType
- memHandle#
-
- Type:
-
anon_union10
- offset#
-
Offset within mip tail Offset within the memory
- Type:
-
unsigned long long
- deviceBitMask#
-
Device ordinal bit mask
- Type:
-
unsigned int
- flags#
-
flags for future use, must be zero now.
- Type:
-
unsigned int
- reserved#
-
Reserved for future use, must be zero now.
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUarrayMapInfo#
-
Specifies the CUDA array or CUDA mipmapped array memory mapping
information- resourceType#
-
Resource type
- Type:
-
CUresourcetype
- resource#
-
- Type:
-
anon_union8
- subresourceType#
-
Sparse subresource type
- Type:
-
CUarraySparseSubresourceType
- subresource#
-
- Type:
-
anon_union9
- memOperationType#
-
Memory operation type
- Type:
-
CUmemOperationType
- memHandleType#
-
Memory handle type
- Type:
-
CUmemHandleType
- memHandle#
-
- Type:
-
anon_union10
- offset#
-
Offset within mip tail Offset within the memory
- Type:
-
unsigned long long
- deviceBitMask#
-
Device ordinal bit mask
- Type:
-
unsigned int
- flags#
-
flags for future use, must be zero now.
- Type:
-
unsigned int
- reserved#
-
Reserved for future use, must be zero now.
- Type:
-
List[unsigned int]
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemLocation_v1#
-
Specifies a memory location.
- type#
-
Specifies the location type, which modifies the meaning of id.
- Type:
-
CUmemLocationType
- id#
-
identifier for a given this location’s CUmemLocationType.
- Type:
-
int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemLocation#
-
Specifies a memory location.
- type#
-
Specifies the location type, which modifies the meaning of id.
- Type:
-
CUmemLocationType
- id#
-
identifier for a given this location’s CUmemLocationType.
- Type:
-
int
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemAllocationProp_v1#
-
Specifies the allocation properties for a allocation.
- type#
-
Allocation type
- Type:
-
CUmemAllocationType
- requestedHandleTypes#
-
requested CUmemAllocationHandleType
- Type:
-
CUmemAllocationHandleType
- location#
-
Location of allocation
- Type:
-
CUmemLocation
- win32HandleMetaData#
-
Windows-specific POBJECT_ATTRIBUTES required when
CU_MEM_HANDLE_TYPE_WIN32 is specified. This object atributes
structure includes security attributes that define the scope of
which exported allocations may be tranferred to other processes. In
all other cases, this field is required to be zero.- Type:
-
Any
- allocFlags#
-
- Type:
-
anon_struct18
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemAllocationProp#
-
Specifies the allocation properties for a allocation.
- type#
-
Allocation type
- Type:
-
CUmemAllocationType
- requestedHandleTypes#
-
requested CUmemAllocationHandleType
- Type:
-
CUmemAllocationHandleType
- location#
-
Location of allocation
- Type:
-
CUmemLocation
- win32HandleMetaData#
-
Windows-specific POBJECT_ATTRIBUTES required when
CU_MEM_HANDLE_TYPE_WIN32 is specified. This object atributes
structure includes security attributes that define the scope of
which exported allocations may be tranferred to other processes. In
all other cases, this field is required to be zero.- Type:
-
Any
- allocFlags#
-
- Type:
-
anon_struct18
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemAccessDesc_v1#
-
Memory access descriptor
- location#
-
Location on which the request is to change it’s accessibility
- Type:
-
CUmemLocation
- flags#
-
::CUmemProt accessibility flags to set on the request
- Type:
-
CUmemAccess_flags
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemAccessDesc#
-
Memory access descriptor
- location#
-
Location on which the request is to change it’s accessibility
- Type:
-
CUmemLocation
- flags#
-
::CUmemProt accessibility flags to set on the request
- Type:
-
CUmemAccess_flags
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUgraphExecUpdateResultInfo_v1#
-
Result information returned by cuGraphExecUpdate
- result#
-
Gives more specific detail when a cuda graph update fails.
- Type:
-
CUgraphExecUpdateResult
- errorNode#
-
The “to node” of the error edge when the topologies do not match.
The error node when the error is associated with a specific node.
NULL when the error is generic.- Type:
-
CUgraphNode
- errorFromNode#
-
The from node of error edge when the topologies do not match.
Otherwise NULL.- Type:
-
CUgraphNode
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUgraphExecUpdateResultInfo#
-
Result information returned by cuGraphExecUpdate
- result#
-
Gives more specific detail when a cuda graph update fails.
- Type:
-
CUgraphExecUpdateResult
- errorNode#
-
The “to node” of the error edge when the topologies do not match.
The error node when the error is associated with a specific node.
NULL when the error is generic.- Type:
-
CUgraphNode
- errorFromNode#
-
The from node of error edge when the topologies do not match.
Otherwise NULL.- Type:
-
CUgraphNode
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemPoolProps_v1#
-
Specifies the properties of allocations made from the pool.
- allocType#
-
Allocation type. Currently must be specified as
CU_MEM_ALLOCATION_TYPE_PINNED- Type:
-
CUmemAllocationType
- handleTypes#
-
Handle types that will be supported by allocations from the pool.
- Type:
-
CUmemAllocationHandleType
- location#
-
Location where allocations should reside.
- Type:
-
CUmemLocation
- win32SecurityAttributes#
-
Windows-specific LPSECURITYATTRIBUTES required when
CU_MEM_HANDLE_TYPE_WIN32 is specified. This security attribute
defines the scope of which exported allocations may be tranferred
to other processes. In all other cases, this field is required to
be zero.- Type:
-
Any
- reserved#
-
reserved for future use, must be 0
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemPoolProps#
-
Specifies the properties of allocations made from the pool.
- allocType#
-
Allocation type. Currently must be specified as
CU_MEM_ALLOCATION_TYPE_PINNED- Type:
-
CUmemAllocationType
- handleTypes#
-
Handle types that will be supported by allocations from the pool.
- Type:
-
CUmemAllocationHandleType
- location#
-
Location where allocations should reside.
- Type:
-
CUmemLocation
- win32SecurityAttributes#
-
Windows-specific LPSECURITYATTRIBUTES required when
CU_MEM_HANDLE_TYPE_WIN32 is specified. This security attribute
defines the scope of which exported allocations may be tranferred
to other processes. In all other cases, this field is required to
be zero.- Type:
-
Any
- reserved#
-
reserved for future use, must be 0
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemPoolPtrExportData_v1#
-
Opaque data for exporting a pool allocation
- reserved#
-
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUmemPoolPtrExportData#
-
Opaque data for exporting a pool allocation
- reserved#
-
- Type:
-
bytes
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUDA_MEM_ALLOC_NODE_PARAMS#
-
Memory allocation node parameters
- poolProps#
-
in: location where the allocation should reside (specified in
::location). ::handleTypes must be CU_MEM_HANDLE_TYPE_NONE. IPC is
not supported.- Type:
-
CUmemPoolProps
- accessDescs#
-
in: array of memory access descriptors. Used to describe peer GPU
access- Type:
-
CUmemAccessDesc
- accessDescCount#
-
in: number of memory access descriptors. Must not exceed the number
of GPUs.- Type:
-
size_t
- bytesize#
-
in: size in bytes of the requested allocation
- Type:
-
size_t
- dptr#
-
out: address of the allocation returned by CUDA
- Type:
-
CUdeviceptr
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUeglFrame_v1#
-
CUDA EGLFrame structure Descriptor — structure defining one frame
of EGL. Each frame may contain one or more planes depending on
whether the surface * is Multiplanar or not.- frame#
-
- Type:
-
anon_union11
- width#
-
Width of first plane
- Type:
-
unsigned int
- height#
-
Height of first plane
- Type:
-
unsigned int
- depth#
-
Depth of first plane
- Type:
-
unsigned int
- pitch#
-
Pitch of first plane
- Type:
-
unsigned int
- planeCount#
-
Number of planes
- Type:
-
unsigned int
- numChannels#
-
Number of channels for the plane
- Type:
-
unsigned int
- frameType#
-
Array or Pitch
- Type:
-
CUeglFrameType
- eglColorFormat#
-
CUDA EGL Color Format
- Type:
-
CUeglColorFormat
- cuFormat#
-
CUDA Array Format
- Type:
-
CUarray_format
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUeglFrame#
-
CUDA EGLFrame structure Descriptor — structure defining one frame
of EGL. Each frame may contain one or more planes depending on
whether the surface * is Multiplanar or not.- frame#
-
- Type:
-
anon_union11
- width#
-
Width of first plane
- Type:
-
unsigned int
- height#
-
Height of first plane
- Type:
-
unsigned int
- depth#
-
Depth of first plane
- Type:
-
unsigned int
- pitch#
-
Pitch of first plane
- Type:
-
unsigned int
- planeCount#
-
Number of planes
- Type:
-
unsigned int
- numChannels#
-
Number of channels for the plane
- Type:
-
unsigned int
- frameType#
-
Array or Pitch
- Type:
-
CUeglFrameType
- eglColorFormat#
-
CUDA EGL Color Format
- Type:
-
CUeglColorFormat
- cuFormat#
-
CUDA Array Format
- Type:
-
CUarray_format
- getPtr()#
-
Get memory address of class instance
- class cuda.cuda.CUeglStreamConnection(*args, **kwargs)#
-
CUDA EGLSream Connection
- getPtr()#
-
Get memory address of class instance
- cuda.CUDA_VERSION = 12000#
-
CUDA API version number
- cuda.CU_IPC_HANDLE_SIZE = 64#
-
CUDA IPC handle size
- cuda.CU_STREAM_LEGACY = 1#
-
Legacy stream handle
Stream handle that can be passed as a CUstream to use an implicit stream with legacy synchronization behavior.
See details of the link_sync_behavior
- cuda.CU_STREAM_PER_THREAD = 2#
-
Per-thread stream handle
Stream handle that can be passed as a CUstream to use an implicit stream with per-thread synchronization behavior.
See details of the link_sync_behavior
- cuda.CU_COMPUTE_ACCELERATED_TARGET_BASE = 65536#
- cuda.CU_KERNEL_NODE_ATTRIBUTE_ACCESS_POLICY_WINDOW = 1#
- cuda.CU_KERNEL_NODE_ATTRIBUTE_COOPERATIVE = 2#
- cuda.CU_KERNEL_NODE_ATTRIBUTE_CLUSTER_DIMENSION = 4#
- cuda.CU_KERNEL_NODE_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE = 5#
- cuda.CU_KERNEL_NODE_ATTRIBUTE_PRIORITY = 8#
- cuda.CU_KERNEL_NODE_ATTRIBUTE_MEM_SYNC_DOMAIN_MAP = 9#
- cuda.CU_KERNEL_NODE_ATTRIBUTE_MEM_SYNC_DOMAIN = 10#
- cuda.CU_STREAM_ATTRIBUTE_ACCESS_POLICY_WINDOW = 1#
- cuda.CU_STREAM_ATTRIBUTE_SYNCHRONIZATION_POLICY = 3#
- cuda.CU_STREAM_ATTRIBUTE_PRIORITY = 8#
- cuda.CU_STREAM_ATTRIBUTE_MEM_SYNC_DOMAIN_MAP = 9#
- cuda.CU_STREAM_ATTRIBUTE_MEM_SYNC_DOMAIN = 10#
- cuda.CU_MEMHOSTALLOC_PORTABLE = 1#
-
If set, host memory is portable between CUDA contexts. Flag for
cuMemHostAlloc()
- cuda.CU_MEMHOSTALLOC_DEVICEMAP = 2#
-
If set, host memory is mapped into CUDA address space and
cuMemHostGetDevicePointer()may be called on the host pointer. Flag forcuMemHostAlloc()
- cuda.CU_MEMHOSTALLOC_WRITECOMBINED = 4#
-
If set, host memory is allocated as write-combined — fast to write, faster to DMA, slow to read except via SSE4 streaming load instruction (MOVNTDQA). Flag for
cuMemHostAlloc()
- cuda.CU_MEMHOSTREGISTER_PORTABLE = 1#
-
If set, host memory is portable between CUDA contexts. Flag for
cuMemHostRegister()
- cuda.CU_MEMHOSTREGISTER_DEVICEMAP = 2#
-
If set, host memory is mapped into CUDA address space and
cuMemHostGetDevicePointer()may be called on the host pointer. Flag forcuMemHostRegister()
- cuda.CU_MEMHOSTREGISTER_IOMEMORY = 4#
-
If set, the passed memory pointer is treated as pointing to some memory-mapped I/O space, e.g. belonging to a third-party PCIe device. On Windows the flag is a no-op. On Linux that memory is marked as non cache-coherent for the GPU and is expected to be physically contiguous. It may return
CUDA_ERROR_NOT_PERMITTEDif run as an unprivileged user,CUDA_ERROR_NOT_SUPPORTEDon older Linux kernel versions. On all other platforms, it is not supported andCUDA_ERROR_NOT_SUPPORTEDis returned. Flag forcuMemHostRegister()
- cuda.CU_MEMHOSTREGISTER_READ_ONLY = 8#
-
If set, the passed memory pointer is treated as pointing to memory that is considered read-only by the device. On platforms without
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS_USES_HOST_PAGE_TABLES, this flag is required in order to register memory mapped to the CPU as read-only. Support for the use of this flag can be queried from the device attributeCU_DEVICE_ATTRIBUTE_READ_ONLY_HOST_REGISTER_SUPPORTED. Using this flag with a current context associated with a device that does not have this attribute set will causecuMemHostRegisterto error withCUDA_ERROR_NOT_SUPPORTED.
- cuda.CU_ARRAY_SPARSE_PROPERTIES_SINGLE_MIPTAIL = 1#
-
Indicates that the layered sparse CUDA array or CUDA mipmapped array has a single mip tail region for all layers
- cuda.CU_TENSOR_MAP_NUM_QWORDS = 16#
-
Size of tensor map descriptor
- cuda.CUDA_EXTERNAL_MEMORY_DEDICATED = 1#
-
Indicates that the external memory object is a dedicated resource
- cuda.CUDA_EXTERNAL_SEMAPHORE_SIGNAL_SKIP_NVSCIBUF_MEMSYNC = 1#
-
When the flags parameter of
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMScontains this flag, it indicates that signaling an external semaphore object should skip performing appropriate memory synchronization operations over all the external memory objects that are imported asCU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF, which otherwise are performed by default to ensure data coherency with other importers of the same NvSciBuf memory objects.
- cuda.CUDA_EXTERNAL_SEMAPHORE_WAIT_SKIP_NVSCIBUF_MEMSYNC = 2#
-
When the flags parameter of
CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMScontains this flag, it indicates that waiting on an external semaphore object should skip performing appropriate memory synchronization operations over all the external memory objects that are imported asCU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF, which otherwise are performed by default to ensure data coherency with other importers of the same NvSciBuf memory objects.
- cuda.CUDA_NVSCISYNC_ATTR_SIGNAL = 1#
-
When flags of
cuDeviceGetNvSciSyncAttributesis set to this, it indicates that application needs signaler specific NvSciSyncAttr to be filled bycuDeviceGetNvSciSyncAttributes.
- cuda.CUDA_NVSCISYNC_ATTR_WAIT = 2#
-
When flags of
cuDeviceGetNvSciSyncAttributesis set to this, it indicates that application needs waiter specific NvSciSyncAttr to be filled bycuDeviceGetNvSciSyncAttributes.
- cuda.CU_MEM_CREATE_USAGE_TILE_POOL = 1#
-
This flag if set indicates that the memory will be used as a tile pool.
- cuda.CUDA_COOPERATIVE_LAUNCH_MULTI_DEVICE_NO_PRE_LAUNCH_SYNC = 1#
-
If set, each kernel launched as part of
cuLaunchCooperativeKernelMultiDeviceonly waits for prior work in the stream corresponding to that GPU to complete before the kernel begins execution.
- cuda.CUDA_COOPERATIVE_LAUNCH_MULTI_DEVICE_NO_POST_LAUNCH_SYNC = 2#
-
If set, any subsequent work pushed in a stream that participated in a call to
cuLaunchCooperativeKernelMultiDevicewill only wait for the kernel launched on the GPU corresponding to that stream to complete before it begins execution.
- cuda.CUDA_ARRAY3D_LAYERED = 1#
-
If set, the CUDA array is a collection of layers, where each layer is either a 1D or a 2D array and the Depth member of CUDA_ARRAY3D_DESCRIPTOR specifies the number of layers, not the depth of a 3D array.
- cuda.CUDA_ARRAY3D_2DARRAY = 1#
-
Deprecated, use CUDA_ARRAY3D_LAYERED
- cuda.CUDA_ARRAY3D_SURFACE_LDST = 2#
-
This flag must be set in order to bind a surface reference to the CUDA array
- cuda.CUDA_ARRAY3D_CUBEMAP = 4#
-
If set, the CUDA array is a collection of six 2D arrays, representing faces of a cube. The width of such a CUDA array must be equal to its height, and Depth must be six. If
CUDA_ARRAY3D_LAYEREDflag is also set, then the CUDA array is a collection of cubemaps and Depth must be a multiple of six.
- cuda.CUDA_ARRAY3D_TEXTURE_GATHER = 8#
-
This flag must be set in order to perform texture gather operations on a CUDA array.
- cuda.CUDA_ARRAY3D_DEPTH_TEXTURE = 16#
-
This flag if set indicates that the CUDA array is a DEPTH_TEXTURE.
- cuda.CUDA_ARRAY3D_COLOR_ATTACHMENT = 32#
-
This flag indicates that the CUDA array may be bound as a color target in an external graphics API
- cuda.CUDA_ARRAY3D_SPARSE = 64#
-
This flag if set indicates that the CUDA array or CUDA mipmapped array is a sparse CUDA array or CUDA mipmapped array respectively
- cuda.CUDA_ARRAY3D_DEFERRED_MAPPING = 128#
-
This flag if set indicates that the CUDA array or CUDA mipmapped array will allow deferred memory mapping
- cuda.CU_TRSA_OVERRIDE_FORMAT = 1#
-
Override the texref format with a format inferred from the array. Flag for
cuTexRefSetArray()
- cuda.CU_TRSF_READ_AS_INTEGER = 1#
-
Read the texture as integers rather than promoting the values to floats in the range [0,1]. Flag for
cuTexRefSetFlags()andcuTexObjectCreate()
- cuda.CU_TRSF_NORMALIZED_COORDINATES = 2#
-
Use normalized texture coordinates in the range [0,1) instead of [0,dim). Flag for
cuTexRefSetFlags()andcuTexObjectCreate()
- cuda.CU_TRSF_SRGB = 16#
-
Perform sRGB->linear conversion during texture read. Flag for
cuTexRefSetFlags()andcuTexObjectCreate()
- cuda.CU_TRSF_DISABLE_TRILINEAR_OPTIMIZATION = 32#
-
Disable any trilinear filtering optimizations. Flag for
cuTexRefSetFlags()andcuTexObjectCreate()
- cuda.CU_TRSF_SEAMLESS_CUBEMAP = 64#
-
Enable seamless cube map filtering. Flag for
cuTexObjectCreate()
- cuda.CU_LAUNCH_PARAM_END_AS_INT = 0#
-
C++ compile time constant for CU_LAUNCH_PARAM_END
- cuda.CU_LAUNCH_PARAM_END = 0#
-
End of array terminator for the extra parameter to
cuLaunchKernel
- cuda.CU_LAUNCH_PARAM_BUFFER_POINTER_AS_INT = 1#
-
C++ compile time constant for CU_LAUNCH_PARAM_BUFFER_POINTER
- cuda.CU_LAUNCH_PARAM_BUFFER_POINTER = 1#
-
Indicator that the next value in the extra parameter to
cuLaunchKernelwill be a pointer to a buffer containing all kernel parameters used for launching kernel f. This buffer needs to honor all alignment/padding requirements of the individual parameters. IfCU_LAUNCH_PARAM_BUFFER_SIZEis not also specified in the extra array, thenCU_LAUNCH_PARAM_BUFFER_POINTERwill have no effect.
- cuda.CU_LAUNCH_PARAM_BUFFER_SIZE_AS_INT = 2#
-
C++ compile time constant for CU_LAUNCH_PARAM_BUFFER_SIZE
- cuda.CU_LAUNCH_PARAM_BUFFER_SIZE = 2#
-
Indicator that the next value in the extra parameter to
cuLaunchKernelwill be a pointer to a size_t which contains the size of the buffer specified withCU_LAUNCH_PARAM_BUFFER_POINTER. It is required thatCU_LAUNCH_PARAM_BUFFER_POINTERalso be specified in the extra array if the value associated withCU_LAUNCH_PARAM_BUFFER_SIZEis not zero.
- cuda.CU_PARAM_TR_DEFAULT = -1#
-
For texture references loaded into the module, use default texunit from texture reference.
- cuda.CU_DEVICE_CPU = -1#
-
Device that represents the CPU
- cuda.CU_DEVICE_INVALID = -2#
-
Device that represents an invalid device
- cuda.MAX_PLANES = 3#
-
Maximum number of planes per frame
- cuda.CUDA_EGL_INFINITE_TIMEOUT = -1#
-
Indicates that timeout for
cuEGLStreamConsumerAcquireFrameis infinite.
Error Handling#
This section describes the error handling functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuGetErrorString(error: CUresult)#
-
Gets the string description of an error code.
Sets *pStr to the address of a NULL-terminated string description of
the error code error. If the error code is not recognized,
CUDA_ERROR_INVALID_VALUEwill be returned and *pStr will
be set to the NULL address.- Parameters:
-
error (
CUresult) – Error code to convert to string - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE -
pStr (bytes) – Address of the string pointer.
-
- cuda.cuda.cuGetErrorName(error: CUresult)#
-
Gets the string representation of an error code enum name.
Sets *pStr to the address of a NULL-terminated string representation
of the name of the enum error code error. If the error code is not
recognized,CUDA_ERROR_INVALID_VALUEwill be returned and
*pStr will be set to the NULL address.- Parameters:
-
error (
CUresult) – Error code to convert to string - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE -
pStr (bytes) – Address of the string pointer.
-
Initialization#
This section describes the initialization functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuInit(unsigned int Flags)#
-
Initialize the CUDA driver API Initializes the driver API and must be called before any other function from the driver API in the current process. Currently, the Flags parameter must be 0. If
cuInit()has not been called, any function from the driver API will returnCUDA_ERROR_NOT_INITIALIZED.- Parameters:
-
Flags (unsigned int) – Initialization flag for CUDA.
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_SYSTEM_DRIVER_MISMATCH,CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE - Return type:
-
CUresult
Version Management#
This section describes the version management functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuDriverGetVersion()#
-
Returns the latest CUDA version supported by driver.
Returns in *driverVersion the version of CUDA supported by the
driver. The version is returned as (1000 * major + 10 * minor). For
example, CUDA 9.2 would be represented by 9020.This function automatically returns
CUDA_ERROR_INVALID_VALUEif driverVersion is NULL.- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE -
driverVersion (int) – Returns the CUDA driver version
-
Device Management#
This section describes the device management functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuDeviceGet(int ordinal)#
-
Returns a handle to a compute device.
Returns in *device a device handle given an ordinal in the range [0,
cuDeviceGetCount()-1].- Parameters:
-
ordinal (int) – Device number to get handle for
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
device (
CUdevice) – Returned device handle
-
- cuda.cuda.cuDeviceGetCount()#
-
Returns the number of compute-capable devices.
Returns in *count the number of devices with compute capability
greater than or equal to 2.0 that are available for execution. If there
is no such device,cuDeviceGetCount()returns 0.- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
count (int) – Returned number of compute-capable devices
-
- cuda.cuda.cuDeviceGetName(int length, dev)#
-
Returns an identifer string for the device.
Returns an ASCII string identifying the device dev in the NULL-
terminated string pointed to by name. length specifies the maximum
length of the string that may be returned.- Parameters:
-
-
length (int) – Maximum length of string to store in name
-
dev (
CUdevice) – Device to get identifier string for
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
name (bytes) – Returned identifier string for the device
-
- cuda.cuda.cuDeviceGetUuid(dev)#
-
Return an UUID for the device.
Note there is a later version of this API,
cuDeviceGetUuid_v2. It will supplant this version in 12.0,
which is retained for minor version compatibility.Returns 16-octets identifing the device dev in the structure pointed
by the uuid.- Parameters:
-
dev (
CUdevice) – Device to get identifier string for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
uuid (
CUuuid) – Returned UUID
-
- cuda.cuda.cuDeviceGetUuid_v2(dev)#
-
Return an UUID for the device (11.4+)
Returns 16-octets identifing the device dev in the structure pointed
by the uuid. If the device is in MIG mode, returns its MIG UUID which
uniquely identifies the subscribed MIG compute instance.- Parameters:
-
dev (
CUdevice) – Device to get identifier string for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
uuid (
CUuuid) – Returned UUID
-
- cuda.cuda.cuDeviceGetLuid(dev)#
-
Return an LUID and device node mask for the device.
Return identifying information (luid and deviceNodeMask) to allow
matching device with graphics APIs.- Parameters:
-
dev (
CUdevice) – Device to get identifier string for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
luid (bytes) – Returned LUID
-
deviceNodeMask (unsigned int) – Returned device node mask
-
- cuda.cuda.cuDeviceTotalMem(dev)#
-
Returns the total amount of memory on the device.
Returns in *bytes the total amount of memory available on the device
dev in bytes.- Parameters:
-
dev (
CUdevice) – Device handle - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
numbytes (int) – Returned memory available on device in bytes
-
- cuda.cuda.cuDeviceGetTexture1DLinearMaxWidth(pformat: CUarray_format, unsigned int numChannels, dev)#
-
Returns the maximum number of elements allocatable in a 1D linear texture for a given texture element size.
Returns in maxWidthInElements the maximum number of texture elements
allocatable in a 1D linear texture for given pformat and
numChannels.- Parameters:
-
-
pformat (
CUarray_format) – Texture format. -
numChannels (unsigned) – Number of channels per texture element.
-
dev (
CUdevice) – Device handle.
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
maxWidthInElements (int) – Returned maximum number of texture elements allocatable for given
pformat and numChannels.
-
- cuda.cuda.cuDeviceGetAttribute(attrib: CUdevice_attribute, dev)#
-
Returns information about the device.
Returns in *pi the integer value of the attribute attrib on device
dev. The supported attributes are:-
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK: Maximum number
of threads per block; -
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X: Maximum x-dimension
of a block -
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y: Maximum y-dimension
of a block -
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z: Maximum z-dimension
of a block -
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X: Maximum x-dimension
of a grid -
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y: Maximum y-dimension
of a grid -
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z: Maximum z-dimension
of a grid -
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK: Maximum
amount of shared memory available to a thread block in bytes -
CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY: Memory
available on device for constant variables in a CUDA C kernel in
bytes -
CU_DEVICE_ATTRIBUTE_WARP_SIZE: Warp size in threads -
CU_DEVICE_ATTRIBUTE_MAX_PITCH: Maximum pitch in bytes
allowed by the memory copy functions that involve memory regions
allocated throughcuMemAllocPitch() -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH: Maximum 1D
texture width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LINEAR_WIDTH:
Maximum width for a 1D texture bound to linear memory -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_MIPMAPPED_WIDTH:
Maximum mipmapped 1D texture width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH: Maximum 2D
texture width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT: Maximum 2D
texture height -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_WIDTH:
Maximum width for a 2D texture bound to linear memory -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_HEIGHT:
Maximum height for a 2D texture bound to linear memory -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_PITCH:
Maximum pitch in bytes for a 2D texture bound to linear memory -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_WIDTH:
Maximum mipmapped 2D texture width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_HEIGHT:
Maximum mipmapped 2D texture height -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH: Maximum 3D
texture width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT: Maximum 3D
texture height -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH: Maximum 3D
texture depth -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH_ALTERNATE:
Alternate maximum 3D texture width, 0 if no alternate maximum 3D
texture size is supported -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT_ALTERNATE:
Alternate maximum 3D texture height, 0 if no alternate maximum 3D
texture size is supported -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH_ALTERNATE:
Alternate maximum 3D texture depth, 0 if no alternate maximum 3D
texture size is supported -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_WIDTH: Maximum
cubemap texture width or height -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_WIDTH:
Maximum 1D layered texture width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_LAYERS:
Maximum layers in a 1D layered texture -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH:
Maximum 2D layered texture width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT:
Maximum 2D layered texture height -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS:
Maximum layers in a 2D layered texture -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_WIDTH:
Maximum cubemap layered texture width or height -
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_LAYERS:
Maximum layers in a cubemap layered texture -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_WIDTH: Maximum 1D
surface width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_WIDTH: Maximum 2D
surface width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_HEIGHT: Maximum 2D
surface height -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_WIDTH: Maximum 3D
surface width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_HEIGHT: Maximum 3D
surface height -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_DEPTH: Maximum 3D
surface depth -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_WIDTH:
Maximum 1D layered surface width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_LAYERS:
Maximum layers in a 1D layered surface -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_WIDTH:
Maximum 2D layered surface width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_HEIGHT:
Maximum 2D layered surface height -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_LAYERS:
Maximum layers in a 2D layered surface -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_WIDTH: Maximum
cubemap surface width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_WIDTH:
Maximum cubemap layered surface width -
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_LAYERS:
Maximum layers in a cubemap layered surface -
CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK: Maximum
number of 32-bit registers available to a thread block -
CU_DEVICE_ATTRIBUTE_CLOCK_RATE: The typical clock
frequency in kilohertz -
CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT: Alignment
requirement; texture base addresses aligned to
textureAlignbytes do not need an offset applied to
texture fetches -
CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT: Pitch
alignment requirement for 2D texture references bound to pitched
memory -
CU_DEVICE_ATTRIBUTE_GPU_OVERLAP: 1 if the device can
concurrently copy memory between host and device while executing a
kernel, or 0 if not -
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT: Number of
multiprocessors on the device -
CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT: 1 if there is a
run time limit for kernels executed on the device, or 0 if not -
CU_DEVICE_ATTRIBUTE_INTEGRATED: 1 if the device is
integrated with the memory subsystem, or 0 if not -
CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY: 1 if the device
can map host memory into the CUDA address space, or 0 if not -
CU_DEVICE_ATTRIBUTE_COMPUTE_MODE: Compute mode that
device is currently in. Available modes are as follows:-
CU_COMPUTEMODE_DEFAULT: Default mode — Device is not
restricted and can have multiple CUDA contexts present at a single
time. -
CU_COMPUTEMODE_PROHIBITED: Compute-prohibited mode —
Device is prohibited from creating new CUDA contexts. -
CU_COMPUTEMODE_EXCLUSIVE_PROCESS: Compute-exclusive-
process mode — Device can have only one context used by a single
process at a time.
-
-
CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS: 1 if the device
supports executing multiple kernels within the same context
simultaneously, or 0 if not. It is not guaranteed that multiple
kernels will be resident on the device concurrently so this feature
should not be relied upon for correctness. -
CU_DEVICE_ATTRIBUTE_ECC_ENABLED: 1 if error correction is
enabled on the device, 0 if error correction is disabled or not
supported by the device -
CU_DEVICE_ATTRIBUTE_PCI_BUS_ID: PCI bus identifier of the
device -
CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID: PCI device (also known
as slot) identifier of the device -
CU_DEVICE_ATTRIBUTE_PCI_DOMAIN_ID: PCI domain identifier
of the device -
CU_DEVICE_ATTRIBUTE_TCC_DRIVER: 1 if the device is using
a TCC driver. TCC is only available on Tesla hardware running Windows
Vista or later -
CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE: Peak memory clock
frequency in kilohertz -
CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH: Global
memory bus width in bits -
CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE: Size of L2 cache in
bytes. 0 if the device doesn’t have L2 cache -
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR:
Maximum resident threads per multiprocessor -
CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING: 1 if the device
shares a unified address space with the host, or 0 if not -
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR: Major
compute capability version number -
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR: Minor
compute capability version number -
CU_DEVICE_ATTRIBUTE_GLOBAL_L1_CACHE_SUPPORTED: 1 if
device supports caching globals in L1 cache, 0 if caching globals in
L1 cache is not supported by the device -
CU_DEVICE_ATTRIBUTE_LOCAL_L1_CACHE_SUPPORTED: 1 if device
supports caching locals in L1 cache, 0 if caching locals in L1 cache
is not supported by the device -
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR:
Maximum amount of shared memory available to a multiprocessor in
bytes; this amount is shared by all thread blocks simultaneously
resident on a multiprocessor -
CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_MULTIPROCESSOR:
Maximum number of 32-bit registers available to a multiprocessor;
this number is shared by all thread blocks simultaneously resident on
a multiprocessor -
CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY: 1 if device supports
allocating managed memory on this system, 0 if allocating managed
memory is not supported by the device on this system. -
CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD: 1 if device is on a
multi-GPU board, 0 if not. -
CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD_GROUP_ID: Unique
identifier for a group of devices associated with the same board.
Devices on the same multi-GPU board will share the same identifier. -
CU_DEVICE_ATTRIBUTE_HOST_NATIVE_ATOMIC_SUPPORTED: 1 if
Link between the device and the host supports native atomic
operations. -
CU_DEVICE_ATTRIBUTE_SINGLE_TO_DOUBLE_PRECISION_PERF_RATIO:
Ratio of single precision performance (in floating-point operations
per second) to double precision performance. -
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS: Device
suppports coherently accessing pageable memory without calling
cudaHostRegister on it. -
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS: Device can
coherently access managed memory concurrently with the CPU. -
CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED: Device
supports Compute Preemption. -
CU_DEVICE_ATTRIBUTE_CAN_USE_HOST_POINTER_FOR_REGISTERED_MEM:
Device can access host registered memory at the same virtual address
as the CPU. -
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN:
The maximum per block shared memory size suported on this device.
This is the maximum value that can be opted into when using the
cuFuncSetAttribute()or
cuKernelSetAttribute()call. For more details see
CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES -
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS_USES_HOST_PAGE_TABLES:
Device accesses pageable memory via the host’s page tables. -
CU_DEVICE_ATTRIBUTE_DIRECT_MANAGED_MEM_ACCESS_FROM_HOST:
The host can directly access managed memory on the device without
migration. -
CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED:
Device supports virtual memory management APIs like
cuMemAddressReserve,cuMemCreate,
cuMemMapand related APIs -
CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR_SUPPORTED:
Device supports exporting memory to a posix file descriptor with
cuMemExportToShareableHandle, if requested via
cuMemCreate -
CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_WIN32_HANDLE_SUPPORTED:
Device supports exporting memory to a Win32 NT handle with
cuMemExportToShareableHandle, if requested via
cuMemCreate -
CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_WIN32_KMT_HANDLE_SUPPORTED:
Device supports exporting memory to a Win32 KMT handle with
cuMemExportToShareableHandle, if requested via
cuMemCreate -
CU_DEVICE_ATTRIBUTE_MAX_BLOCKS_PER_MULTIPROCESSOR:
Maximum number of thread blocks that can reside on a multiprocessor -
CU_DEVICE_ATTRIBUTE_GENERIC_COMPRESSION_SUPPORTED: Device
supports compressible memory allocation viacuMemCreate -
CU_DEVICE_ATTRIBUTE_MAX_PERSISTING_L2_CACHE_SIZE: Maximum
L2 persisting lines capacity setting in bytes -
CU_DEVICE_ATTRIBUTE_MAX_ACCESS_POLICY_WINDOW_SIZE:
Maximum value ofnum_bytes -
CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_WITH_CUDA_VMM_SUPPORTED:
Device supports specifying the GPUDirect RDMA flag with
cuMemCreate. -
CU_DEVICE_ATTRIBUTE_RESERVED_SHARED_MEMORY_PER_BLOCK:
Amount of shared memory per block reserved by CUDA driver in bytes -
CU_DEVICE_ATTRIBUTE_SPARSE_CUDA_ARRAY_SUPPORTED: Device
supports sparse CUDA arrays and sparse CUDA mipmapped arrays. -
CU_DEVICE_ATTRIBUTE_READ_ONLY_HOST_REGISTER_SUPPORTED:
Device supports using thecuMemHostRegisterflag
CU_MEMHOSTERGISTER_READ_ONLYto register memory that must
be mapped as read-only to the GPU -
CU_DEVICE_ATTRIBUTE_MEMORY_POOLS_SUPPORTED: Device
supports using thecuMemAllocAsyncand
cuMemPoolfamily of APIs -
CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_SUPPORTED: Device
supports GPUDirect RDMA APIs, like nvidia_p2p_get_pages (see
https://docs.nvidia.com/cuda/gpudirect-rdma for more information) -
CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_FLUSH_WRITES_OPTIONS:
The returned attribute shall be interpreted as a bitmask, where the
individual bits are described by the
CUflushGPUDirectRDMAWritesOptionsenum -
CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_WRITES_ORDERING:
GPUDirect RDMA writes to the device do not need to be flushed for
consumers within the scope indicated by the returned attribute. See
CUGPUDirectRDMAWritesOrderingfor the numerical values
returned here. -
CU_DEVICE_ATTRIBUTE_MEMPOOL_SUPPORTED_HANDLE_TYPES:
Bitmask of handle types supported with mempool based IPC -
CU_DEVICE_ATTRIBUTE_DEFERRED_MAPPING_CUDA_ARRAY_SUPPORTED:
Device supports deferred mapping CUDA arrays and CUDA mipmapped
arrays.
- Parameters:
-
-
attrib (
CUdevice_attribute) – Device attribute to query -
dev (
CUdevice) – Device handle
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
pi (int) – Returned device attribute value
-
-
- cuda.cuda.cuDeviceGetNvSciSyncAttributes(nvSciSyncAttrList, dev, int flags)#
-
Return NvSciSync attributes that this device can support.
Returns in nvSciSyncAttrList, the properties of NvSciSync that this
CUDA device, dev can support. The returned nvSciSyncAttrList can be
used to create an NvSciSync object that matches this device’s
capabilities.If NvSciSyncAttrKey_RequiredPerm field in nvSciSyncAttrList is
already set this API will returnCUDA_ERROR_INVALID_VALUE.The applications should set nvSciSyncAttrList to a valid
NvSciSyncAttrList failing which this API will return
CUDA_ERROR_INVALID_HANDLE.The flags controls how applications intends to use the NvSciSync
created from the nvSciSyncAttrList. The valid flags are:-
CUDA_NVSCISYNC_ATTR_SIGNAL, specifies that the
applications intends to signal an NvSciSync on this CUDA device. -
CUDA_NVSCISYNC_ATTR_WAIT, specifies that the applications
intends to wait on an NvSciSync on this CUDA device.
At least one of these flags must be set, failing which the API returns
CUDA_ERROR_INVALID_VALUE. Both the flags are orthogonal to
one another: a developer may set both these flags that allows to set
both wait and signal specific attributes in the same
nvSciSyncAttrList.CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,
CUDA_ERROR_NOT_INITIALIZED,
CUDA_ERROR_INVALID_VALUE,
CUDA_ERROR_INVALID_HANDLE,
CUDA_ERROR_INVALID_DEVICE,
CUDA_ERROR_NOT_SUPPORTED,
CUDA_ERROR_OUT_OF_MEMORY- Parameters:
-
-
nvSciSyncAttrList (Any) – Return NvSciSync attributes supported.
-
dev (
CUdevice) – Valid Cuda Device to get NvSciSync attributes for. -
flags (int) – flags describing NvSciSync usage.
-
- Return type:
-
CUresult
-
- cuda.cuda.cuDeviceSetMemPool(dev, pool)#
-
Sets the current memory pool of a device.
The memory pool must be local to the specified device.
cuMemAllocAsyncallocates from the current mempool of the
provided stream’s device. By default, a device’s current memory pool is
its default memory pool.- Parameters:
-
-
dev (
CUdevice) – None -
pool (
CUmemoryPoolorcudaMemPool_t) – None
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
Notes
Use
cuMemAllocFromPoolAsyncto specify asynchronous allocations from a device different than the one the stream runs on.
- cuda.cuda.cuDeviceGetMemPool(dev)#
-
Gets the current mempool for a device.
Returns the last pool provided to
cuDeviceSetMemPoolfor
this device or the device’s default memory pool if
cuDeviceSetMemPoolhas never been called. By default the
current mempool is the default mempool for a device. Otherwise the
returned pool must have been set withcuDeviceSetMemPool.- Parameters:
-
dev (
CUdevice) – None - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE -
pool (
CUmemoryPool) – None
-
- cuda.cuda.cuDeviceGetDefaultMemPool(dev)#
-
Returns the default mempool of a device.
The default mempool of a device contains device memory from that
device.- Parameters:
-
dev (
CUdevice) – None - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZEDCUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_NOT_SUPPORTED -
pool_out (
CUmemoryPool) – None
-
- cuda.cuda.cuDeviceGetExecAffinitySupport(typename: CUexecAffinityType, dev)#
-
Returns information about the execution affinity support of the device.
Returns in *pi whether execution affinity type typename is
supported by device dev. The supported types are:-
CU_EXEC_AFFINITY_TYPE_SM_COUNT: 1 if context with limited
SMs is supported by the device, or 0 if not;
- Parameters:
-
-
typename (
CUexecAffinityType) – Execution affinity type to query -
dev (
CUdevice) – Device handle
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
pi (int) – 1 if the execution affinity type typename is supported by the
device, or 0 if not
-
-
- cuda.cuda.cuFlushGPUDirectRDMAWrites(target: CUflushGPUDirectRDMAWritesTarget, scope: CUflushGPUDirectRDMAWritesScope)#
-
Blocks until remote writes are visible to the specified scope.
Blocks until GPUDirect RDMA writes to the target context via mappings
created through APIs like nvidia_p2p_get_pages (see
https://docs.nvidia.com/cuda/gpudirect-rdma for more information), are
visible to the specified scope.If the scope equals or lies within the scope indicated by
CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_WRITES_ORDERING, the
call will be a no-op and can be safely omitted for performance. This
can be determined by comparing the numerical values between the two
enums, with smaller scopes having smaller values.Users may query support for this API via
CU_DEVICE_ATTRIBUTE_FLUSH_FLUSH_GPU_DIRECT_RDMA_OPTIONS.- Parameters:
-
-
target (
CUflushGPUDirectRDMAWritesTarget) – The target of the operation, see
CUflushGPUDirectRDMAWritesTarget -
scope (
CUflushGPUDirectRDMAWritesScope) – The scope of the operation, see
CUflushGPUDirectRDMAWritesScope
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
Primary Context Management#
This section describes the primary context management functions of the low-level CUDA driver application programming interface.
The primary context is unique per device and shared with the CUDA runtime API. These functions allow integration with other libraries using CUDA.
- cuda.cuda.cuDevicePrimaryCtxRetain(dev)#
-
Retain the primary context on the GPU.
Retains the primary context on the device. Once the user successfully
retains the primary context, the primary context will be active and
available to the user until the user releases it with
cuDevicePrimaryCtxRelease()or resets it with
cuDevicePrimaryCtxReset(). UnlikecuCtxCreate()
the newly retained context is not pushed onto the stack.Retaining the primary context for the first time will fail with
CUDA_ERROR_UNKNOWNif the compute mode of the device is
CU_COMPUTEMODE_PROHIBITED. The function
cuDeviceGetAttribute()can be used with
CU_DEVICE_ATTRIBUTE_COMPUTE_MODEto determine the compute
mode of the device. The nvidia-smi tool can be used to set the
compute mode for devices. Documentation for nvidia-smi can be
obtained by passing a -h option to it.Please note that the primary context always supports pinned
allocations. Other flags can be specified by
cuDevicePrimaryCtxSetFlags().- Parameters:
-
dev (
CUdevice) – Device for which primary context is requested - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_UNKNOWN -
pctx (
CUcontext) – Returned context handle of the new context
-
See also
cuDevicePrimaryCtxRelease,cuDevicePrimaryCtxSetFlags,cuCtxCreate,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetCacheConfig,cuCtxSetLimit,cuCtxSynchronize
- cuda.cuda.cuDevicePrimaryCtxRelease(dev)#
-
Release the primary context on the GPU.
Releases the primary context interop on the device. A retained context
should always be released once the user is done using it. The context
is automatically reset once the last reference to it is released. This
behavior is different when the primary context was retained by the CUDA
runtime from CUDA 4.0 and earlier. In this case, the primary context
remains always active.Releasing a primary context that has not been previously retained will
fail withCUDA_ERROR_INVALID_CONTEXT.Please note that unlike
cuCtxDestroy()this method does not
pop the context from stack in any circumstances.- Parameters:
-
dev (
CUdevice) – Device which primary context is released - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_INVALID_CONTEXT - Return type:
-
CUresult
See also
cuDevicePrimaryCtxRetain,cuCtxDestroy,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetCacheConfig,cuCtxSetLimit,cuCtxSynchronize
- cuda.cuda.cuDevicePrimaryCtxSetFlags(dev, unsigned int flags)#
-
Set flags for the primary context.
Sets the flags for the primary context on the device overwriting
perviously set ones.The three LSBs of the flags parameter can be used to control how the
OS thread, which owns the CUDA context at the time of an API call,
interacts with the OS scheduler when waiting for results from the GPU.
Only one of the scheduling flags can be set when creating a context.-
CU_CTX_SCHED_SPIN: Instruct CUDA to actively spin when
waiting for results from the GPU. This can decrease latency when
waiting for the GPU, but may lower the performance of CPU threads if
they are performing work in parallel with the CUDA thread. -
CU_CTX_SCHED_YIELD: Instruct CUDA to yield its thread
when waiting for results from the GPU. This can increase latency when
waiting for the GPU, but can increase the performance of CPU threads
performing work in parallel with the GPU. -
CU_CTX_SCHED_BLOCKING_SYNC: Instruct CUDA to block the
CPU thread on a synchronization primitive when waiting for the GPU to
finish work. -
CU_CTX_BLOCKING_SYNC: Instruct CUDA to block the CPU
thread on a synchronization primitive when waiting for the GPU to
finish work. Deprecated: This flag was deprecated as of CUDA 4.0
and was replaced withCU_CTX_SCHED_BLOCKING_SYNC. -
CU_CTX_SCHED_AUTO: The default value if the flags
parameter is zero, uses a heuristic based on the number of active
CUDA contexts in the process C and the number of logical processors
in the system P. If C > P, then CUDA will yield to other OS
threads when waiting for the GPU (CU_CTX_SCHED_YIELD),
otherwise CUDA will not yield while waiting for results and actively
spin on the processor (CU_CTX_SCHED_SPIN). Additionally,
on Tegra devices,CU_CTX_SCHED_AUTOuses a heuristic
based on the power profile of the platform and may choose
CU_CTX_SCHED_BLOCKING_SYNCfor low-powered devices. -
CU_CTX_LMEM_RESIZE_TO_MAX: Instruct CUDA to not reduce
local memory after resizing local memory for a kernel. This can
prevent thrashing by local memory allocations when launching many
kernels with high local memory usage at the cost of potentially
increased memory usage. Deprecated: This flag is deprecated and the
behavior enabled by this flag is now the default and cannot be
disabled.
- Parameters:
-
-
dev (
CUdevice) – Device for which the primary context flags are set -
flags (unsigned int) – New flags for the device
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
-
- cuda.cuda.cuDevicePrimaryCtxGetState(dev)#
-
Get the state of the primary context.
Returns in *flags the flags for the primary context of dev, and in
*active whether it is active. See
cuDevicePrimaryCtxSetFlagsfor flag values.- Parameters:
-
dev (
CUdevice) – Device to get primary context flags for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_INVALID_VALUE, -
flags (unsigned int) – Pointer to store flags
-
active (int) – Pointer to store context state; 0 = inactive, 1 = active
-
- cuda.cuda.cuDevicePrimaryCtxReset(dev)#
-
Destroy all allocations and reset all state on the primary context.
Explicitly destroys and cleans up all resources associated with the
current device in the current process.Note that it is responsibility of the calling function to ensure that
no other module in the process is using the device any more. For that
reason it is recommended to usecuDevicePrimaryCtxRelease()
in most cases. However it is safe for other modules to call
cuDevicePrimaryCtxRelease()even after resetting the
device. Resetting the primary context does not release it, an
application that has retained the primary context should explicitly
release its usage.- Parameters:
-
dev (
CUdevice) – Device for which primary context is destroyed - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE - Return type:
-
CUresult
See also
cuDevicePrimaryCtxRetain,cuDevicePrimaryCtxRelease,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetCacheConfig,cuCtxSetLimit,cuCtxSynchronize,cudaDeviceReset
Context Management#
This section describes the context management functions of the low-level CUDA driver application programming interface.
Please note that some functions are described in Primary Context Management section.
- cuda.cuda.cuCtxCreate(unsigned int flags, dev)#
-
Create a CUDA context.
Creates a new CUDA context and associates it with the calling thread.
The flags parameter is described below. The context is created with a
usage count of 1 and the caller ofcuCtxCreate()must call
cuCtxDestroy()when done using the context. If a context is
already current to the thread, it is supplanted by the newly created
context and may be restored by a subsequent call to
cuCtxPopCurrent().The three LSBs of the flags parameter can be used to control how the
OS thread, which owns the CUDA context at the time of an API call,
interacts with the OS scheduler when waiting for results from the GPU.
Only one of the scheduling flags can be set when creating a context.-
CU_CTX_SCHED_SPIN: Instruct CUDA to actively spin when
waiting for results from the GPU. This can decrease latency when
waiting for the GPU, but may lower the performance of CPU threads if
they are performing work in parallel with the CUDA thread. -
CU_CTX_SCHED_YIELD: Instruct CUDA to yield its thread
when waiting for results from the GPU. This can increase latency when
waiting for the GPU, but can increase the performance of CPU threads
performing work in parallel with the GPU. -
CU_CTX_SCHED_BLOCKING_SYNC: Instruct CUDA to block the
CPU thread on a synchronization primitive when waiting for the GPU to
finish work. -
CU_CTX_BLOCKING_SYNC: Instruct CUDA to block the CPU
thread on a synchronization primitive when waiting for the GPU to
finish work. Deprecated: This flag was deprecated as of CUDA 4.0
and was replaced withCU_CTX_SCHED_BLOCKING_SYNC. -
CU_CTX_SCHED_AUTO: The default value if the flags
parameter is zero, uses a heuristic based on the number of active
CUDA contexts in the process C and the number of logical processors
in the system P. If C > P, then CUDA will yield to other OS
threads when waiting for the GPU (CU_CTX_SCHED_YIELD),
otherwise CUDA will not yield while waiting for results and actively
spin on the processor (CU_CTX_SCHED_SPIN). Additionally,
on Tegra devices,CU_CTX_SCHED_AUTOuses a heuristic
based on the power profile of the platform and may choose
CU_CTX_SCHED_BLOCKING_SYNCfor low-powered devices. -
CU_CTX_MAP_HOST: Instruct CUDA to support mapped pinned
allocations. This flag must be set in order to allocate pinned host
memory that is accessible to the GPU. -
CU_CTX_LMEM_RESIZE_TO_MAX: Instruct CUDA to not reduce
local memory after resizing local memory for a kernel. This can
prevent thrashing by local memory allocations when launching many
kernels with high local memory usage at the cost of potentially
increased memory usage. Deprecated: This flag is deprecated and the
behavior enabled by this flag is now the default and cannot be
disabled. Instead, the per-thread stack size can be controlled with
cuCtxSetLimit().
Context creation will fail with
CUDA_ERROR_UNKNOWNif the
compute mode of the device isCU_COMPUTEMODE_PROHIBITED.
The functioncuDeviceGetAttribute()can be used with
CU_DEVICE_ATTRIBUTE_COMPUTE_MODEto determine the compute
mode of the device. The nvidia-smi tool can be used to set the
compute mode for * devices. Documentation for nvidia-smi can be
obtained by passing a -h option to it.- Parameters:
-
-
flags (unsigned int) – Context creation flags
-
dev (
CUdevice) – Device to create context on
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_UNKNOWN -
pctx (
CUcontext) – Returned context handle of the new context
-
See also
cuCtxDestroy,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetCacheConfig,cuCtxSetLimit,cuCtxSynchronizeNotes
In most cases it is recommended to use
cuDevicePrimaryCtxRetain. -
- cuda.cuda.cuCtxCreate_v3(paramsArray: List[CUexecAffinityParam], int numParams, unsigned int flags, dev)#
-
Create a CUDA context with execution affinity.
Creates a new CUDA context with execution affinity and associates it
with the calling thread. The paramsArray and flags parameter are
described below. The context is created with a usage count of 1 and the
caller ofcuCtxCreate()must call
cuCtxDestroy()when done using the context. If a context is
already current to the thread, it is supplanted by the newly created
context and may be restored by a subsequent call to
cuCtxPopCurrent().The type and the amount of execution resource the context can use is
limited by paramsArray and numParams. The paramsArray is an array
of CUexecAffinityParam and the numParams describes the size of the
array. If two CUexecAffinityParam in the array have the same type,
the latter execution affinity parameter overrides the former execution
affinity parameter. The supported execution affinity types are:-
CU_EXEC_AFFINITY_TYPE_SM_COUNTlimits the portion of SMs
that the context can use. The portion of SMs is specified as the
number of SMs via CUexecAffinitySmCount. This limit will be
internally rounded up to the next hardware-supported amount. Hence,
it is imperative to query the actual execution affinity of the
context via cuCtxGetExecAffinity after context creation. Currently,
this attribute is only supported under Volta+ MPS.
The three LSBs of the flags parameter can be used to control how the
OS thread, which owns the CUDA context at the time of an API call,
interacts with the OS scheduler when waiting for results from the GPU.
Only one of the scheduling flags can be set when creating a context.-
CU_CTX_SCHED_SPIN: Instruct CUDA to actively spin when
waiting for results from the GPU. This can decrease latency when
waiting for the GPU, but may lower the performance of CPU threads if
they are performing work in parallel with the CUDA thread. -
CU_CTX_SCHED_YIELD: Instruct CUDA to yield its thread
when waiting for results from the GPU. This can increase latency when
waiting for the GPU, but can increase the performance of CPU threads
performing work in parallel with the GPU. -
CU_CTX_SCHED_BLOCKING_SYNC: Instruct CUDA to block the
CPU thread on a synchronization primitive when waiting for the GPU to
finish work. -
CU_CTX_BLOCKING_SYNC: Instruct CUDA to block the CPU
thread on a synchronization primitive when waiting for the GPU to
finish work. Deprecated: This flag was deprecated as of CUDA 4.0
and was replaced withCU_CTX_SCHED_BLOCKING_SYNC. -
CU_CTX_SCHED_AUTO: The default value if the flags
parameter is zero, uses a heuristic based on the number of active
CUDA contexts in the process C and the number of logical processors
in the system P. If C > P, then CUDA will yield to other OS
threads when waiting for the GPU (CU_CTX_SCHED_YIELD),
otherwise CUDA will not yield while waiting for results and actively
spin on the processor (CU_CTX_SCHED_SPIN). Additionally,
on Tegra devices,CU_CTX_SCHED_AUTOuses a heuristic
based on the power profile of the platform and may choose
CU_CTX_SCHED_BLOCKING_SYNCfor low-powered devices. -
CU_CTX_MAP_HOST: Instruct CUDA to support mapped pinned
allocations. This flag must be set in order to allocate pinned host
memory that is accessible to the GPU. -
CU_CTX_LMEM_RESIZE_TO_MAX: Instruct CUDA to not reduce
local memory after resizing local memory for a kernel. This can
prevent thrashing by local memory allocations when launching many
kernels with high local memory usage at the cost of potentially
increased memory usage. Deprecated: This flag is deprecated and the
behavior enabled by this flag is now the default and cannot be
disabled. Instead, the per-thread stack size can be controlled with
cuCtxSetLimit().
Context creation will fail with
CUDA_ERROR_UNKNOWNif the
compute mode of the device isCU_COMPUTEMODE_PROHIBITED.
The functioncuDeviceGetAttribute()can be used with
CU_DEVICE_ATTRIBUTE_COMPUTE_MODEto determine the compute
mode of the device. The nvidia-smi tool can be used to set the
compute mode for * devices. Documentation for nvidia-smi can be
obtained by passing a -h option to it.- Parameters:
-
-
paramsArray (List[
CUexecAffinityParam]) – Execution affinity parameters -
numParams (int) – Number of execution affinity parameters
-
flags (unsigned int) – Context creation flags
-
dev (
CUdevice) – Device to create context on
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_UNSUPPORTED_EXEC_AFFINITY,CUDA_ERROR_UNKNOWN -
pctx (
CUcontext) – Returned context handle of the new context
-
See also
cuCtxDestroy,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetCacheConfig,cuCtxSetLimit,cuCtxSynchronize,CUexecAffinityParam -
- cuda.cuda.cuCtxDestroy(ctx)#
-
Destroy a CUDA context.
Destroys the CUDA context specified by ctx. The context ctx will be
destroyed regardless of how many threads it is current to. It is the
responsibility of the calling function to ensure that no API call
issues using ctx whilecuCtxDestroy()is executing.Destroys and cleans up all resources associated with the context. It is
the caller’s responsibility to ensure that the context or its resources
are not accessed or passed in subsequent API calls and doing so will
result in undefined behavior. These resources include CUDA types such
asCUmodule,CUfunction,CUstream,
CUevent,CUarray,CUmipmappedArray,
CUtexObject,CUsurfObject,
CUtexref,CUsurfref,
CUgraphicsResource,CUlinkState,
CUexternalMemoryandCUexternalSemaphore.If ctx is current to the calling thread then ctx will also be
popped from the current thread’s context stack (as though
cuCtxPopCurrent()were called). If ctx is current to
other threads, then ctx will remain current to those threads, and
attempting to access ctx from those threads will result in the error
CUDA_ERROR_CONTEXT_IS_DESTROYED.- Parameters:
-
ctx (
CUcontext) – Context to destroy - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuCtxCreate,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetCacheConfig,cuCtxSetLimit,cuCtxSynchronize
- cuda.cuda.cuCtxPushCurrent(ctx)#
-
Pushes a context on the current CPU thread.
Pushes the given context ctx onto the CPU thread’s stack of current
contexts. The specified context becomes the CPU thread’s current
context, so all CUDA functions that operate on the current context are
affected.The previous current context may be made current again by calling
cuCtxDestroy()orcuCtxPopCurrent().- Parameters:
-
ctx (
CUcontext) – Context to push - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuCtxCreate,cuCtxDestroy,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxSetCacheConfig,cuCtxSetLimit,cuCtxSynchronize
- cuda.cuda.cuCtxPopCurrent()#
-
Pops the current CUDA context from the current CPU thread.
Pops the current CUDA context from the CPU thread and passes back the
old context handle in *pctx. That context may then be made current to
a different CPU thread by callingcuCtxPushCurrent().If a context was current to the CPU thread before
cuCtxCreate()orcuCtxPushCurrent()was called,
this function makes that context current to the CPU thread again.- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT -
pctx (
CUcontext) – Returned popped context handle
-
See also
cuCtxCreate,cuCtxDestroy,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPushCurrent,cuCtxSetCacheConfig,cuCtxSetLimit,cuCtxSynchronize
- cuda.cuda.cuCtxSetCurrent(ctx)#
-
Binds the specified CUDA context to the calling CPU thread.
Binds the specified CUDA context to the calling CPU thread. If ctx is
NULL then the CUDA context previously bound to the calling CPU thread
is unbound andCUDA_SUCCESSis returned.If there exists a CUDA context stack on the calling CPU thread, this
will replace the top of that stack with ctx. If ctx is NULL then
this will be equivalent to popping the top of the calling CPU thread’s
CUDA context stack (or a no-op if the calling CPU thread’s CUDA context
stack is empty).- Parameters:
-
ctx (
CUcontext) – Context to bind to the calling CPU thread - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT - Return type:
-
CUresult
- cuda.cuda.cuCtxGetCurrent()#
-
Returns the CUDA context bound to the calling CPU thread.
Returns in *pctx the CUDA context bound to the calling CPU thread. If
no context is bound to the calling CPU thread then *pctx is set to
NULL andCUDA_SUCCESSis returned.- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED, -
pctx (
CUcontext) – Returned context handle
-
- cuda.cuda.cuCtxGetDevice()#
-
Returns the device ID for the current context.
Returns in *device the ordinal of the current context’s device.
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE, -
device (
CUdevice) – Returned device ID for the current context
-
See also
cuCtxCreate,cuCtxDestroy,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetCacheConfig,cuCtxSetLimit,cuCtxSynchronize,cudaGetDevice
- cuda.cuda.cuCtxGetFlags()#
-
Returns the flags for the current context.
Returns in *flags the flags of the current context. See
cuCtxCreatefor flag values.- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE, -
flags (unsigned int) – Pointer to store flags of current context
-
- cuda.cuda.cuCtxGetId(ctx)#
-
Returns the unique Id associated with the context supplied.
Returns in ctxId the unique Id which is associated with a given
context. The Id is unique for the life of the program for this instance
of CUDA. If context is supplied as NULL and there is one current, the
Id of the current context is returned.- Parameters:
-
ctx (
CUcontext) – Context for which to obtain the Id - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_CONTEXT_IS_DESTROYED,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
ctxId (unsigned long long) – Pointer to store the Id of the context
-
- cuda.cuda.cuCtxSynchronize()#
-
Block for a context’s tasks to complete.
Blocks until the device has completed all preceding requested tasks.
cuCtxSynchronize()returns an error if one of the preceding
tasks failed. If the context was created with the
CU_CTX_SCHED_BLOCKING_SYNCflag, the CPU thread will block
until the GPU context has finished its work.- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT - Return type:
-
CUresult
See also
cuCtxCreate,cuCtxDestroy,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetCacheConfig,cuCtxSetLimit,cudaDeviceSynchronize
- cuda.cuda.cuCtxSetLimit(limit: CUlimit, size_t value)#
-
Set resource limits.
Setting limit to value is a request by the application to update
the current limit maintained by the context. The driver is free to
modify the requested value to meet h/w requirements (this could be
clamping to minimum or maximum values, rounding up to nearest element
size, etc). The application can usecuCtxGetLimit()to find
out exactly what the limit has been set to.Setting each
CUlimithas its own specific restrictions, so
each is discussed here.-
CU_LIMIT_STACK_SIZEcontrols the stack size in bytes of
each GPU thread. The driver automatically increases the per-thread
stack size for each kernel launch as needed. This size isn’t reset
back to the original value after each launch. Setting this value will
take effect immediately, and if necessary, the device will block
until all preceding requested tasks are complete. -
CU_LIMIT_PRINTF_FIFO_SIZEcontrols the size in bytes of
the FIFO used by theprintf()device system call. Setting
CU_LIMIT_PRINTF_FIFO_SIZEmust be performed before
launching any kernel that uses theprintf()device system
call, otherwiseCUDA_ERROR_INVALID_VALUEwill be
returned. -
CU_LIMIT_MALLOC_HEAP_SIZEcontrols the size in bytes of
the heap used by themalloc()andfree()
device system calls. SettingCU_LIMIT_MALLOC_HEAP_SIZE
must be performed before launching any kernel that uses the
malloc()orfree()device system calls,
otherwiseCUDA_ERROR_INVALID_VALUEwill be returned. -
CU_LIMIT_DEV_RUNTIME_SYNC_DEPTHcontrols the maximum
nesting depth of a grid at which a thread can safely call
cudaDeviceSynchronize(). Setting this limit must be
performed before any launch of a kernel that uses the device runtime
and callscudaDeviceSynchronize()above the default sync
depth, two levels of grids. Calls to
cudaDeviceSynchronize()will fail with error code
cudaErrorSyncDepthExceededif the limitation is violated.
This limit can be set smaller than the default or up the maximum
launch depth of 24. When setting this limit, keep in mind that
additional levels of sync depth require the driver to reserve large
amounts of device memory which can no longer be used for user
allocations. If these reservations of device memory fail,
cuCtxSetLimit()will return
CUDA_ERROR_OUT_OF_MEMORY, and the limit can be reset to a
lower value. This limit is only applicable to devices of compute
capability < 9.0. Attempting to set this limit on devices of other
compute capability versions will result in the error
CUDA_ERROR_UNSUPPORTED_LIMITbeing returned. -
CU_LIMIT_DEV_RUNTIME_PENDING_LAUNCH_COUNTcontrols the
maximum number of outstanding device runtime launches that can be
made from the current context. A grid is outstanding from the point
of launch up until the grid is known to have been completed. Device
runtime launches which violate this limitation fail and return
cudaErrorLaunchPendingCountExceededwhen
cudaGetLastError()is called after launch. If more
pending launches than the default (2048 launches) are needed for a
module using the device runtime, this limit can be increased. Keep in
mind that being able to sustain additional pending launches will
require the driver to reserve larger amounts of device memory upfront
which can no longer be used for allocations. If these reservations
fail,cuCtxSetLimit()will return
CUDA_ERROR_OUT_OF_MEMORY, and the limit can be reset to a
lower value. This limit is only applicable to devices of compute
capability 3.5 and higher. Attempting to set this limit on devices of
compute capability less than 3.5 will result in the error
CUDA_ERROR_UNSUPPORTED_LIMITbeing returned. -
CU_LIMIT_MAX_L2_FETCH_GRANULARITYcontrols the L2 cache
fetch granularity. Values can range from 0B to 128B. This is purely a
performence hint and it can be ignored or clamped depending on the
platform. -
CU_LIMIT_PERSISTING_L2_CACHE_SIZEcontrols size in bytes
availabe for persisting L2 cache. This is purely a performance hint
and it can be ignored or clamped depending on the platform.
- Parameters:
-
-
limit (
CUlimit) – Limit to set -
value (size_t) – Size of limit
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_UNSUPPORTED_LIMIT,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_INVALID_CONTEXT - Return type:
-
CUresult
See also
cuCtxCreate,cuCtxDestroy,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetCacheConfig,cuCtxSynchronize,cudaDeviceSetLimit -
- cuda.cuda.cuCtxGetLimit(limit: CUlimit)#
-
Returns resource limits.
Returns in *pvalue the current size of limit. The supported
CUlimitvalues are:-
CU_LIMIT_STACK_SIZE: stack size in bytes of each GPU
thread. -
CU_LIMIT_PRINTF_FIFO_SIZE: size in bytes of the FIFO used
by theprintf()device system call. -
CU_LIMIT_MALLOC_HEAP_SIZE: size in bytes of the heap used
by themalloc()andfree()device system
calls. -
CU_LIMIT_DEV_RUNTIME_SYNC_DEPTH: maximum grid depth at
which a thread can issue the device runtime call
cudaDeviceSynchronize()to wait on child grid launches to
complete. -
CU_LIMIT_DEV_RUNTIME_PENDING_LAUNCH_COUNT: maximum number
of outstanding device runtime launches that can be made from this
context. -
CU_LIMIT_MAX_L2_FETCH_GRANULARITY: L2 cache fetch
granularity. -
CU_LIMIT_PERSISTING_L2_CACHE_SIZE: Persisting L2 cache
size in bytes
- Parameters:
-
limit (
CUlimit) – Limit to query - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_UNSUPPORTED_LIMIT -
pvalue (int) – Returned size of limit
-
See also
cuCtxCreate,cuCtxDestroy,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetCacheConfig,cuCtxSetLimit,cuCtxSynchronize,cudaDeviceGetLimit -
- cuda.cuda.cuCtxGetCacheConfig()#
-
Returns the preferred cache configuration for the current context.
On devices where the L1 cache and shared memory use the same hardware
resources, this function returns through pconfig the preferred cache
configuration for the current context. This is only a preference. The
driver will use the requested configuration if possible, but it is free
to choose a different configuration if required to execute functions.This will return a pconfig of
CU_FUNC_CACHE_PREFER_NONE
on devices where the size of the L1 cache and shared memory are fixed.The supported cache configurations are:
-
CU_FUNC_CACHE_PREFER_NONE: no preference for shared
memory or L1 (default) -
CU_FUNC_CACHE_PREFER_SHARED: prefer larger shared memory
and smaller L1 cache -
CU_FUNC_CACHE_PREFER_L1: prefer larger L1 cache and
smaller shared memory -
CU_FUNC_CACHE_PREFER_EQUAL: prefer equal sized L1 cache
and shared memory
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
pconfig (
CUfunc_cache) – Returned cache configuration
-
See also
cuCtxCreate,cuCtxDestroy,cuCtxGetApiVersion,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetCacheConfig,cuCtxSetLimit,cuCtxSynchronize,cuFuncSetCacheConfig,cudaDeviceGetCacheConfig -
- cuda.cuda.cuCtxSetCacheConfig(config: CUfunc_cache)#
-
Sets the preferred cache configuration for the current context.
On devices where the L1 cache and shared memory use the same hardware
resources, this sets through config the preferred cache configuration
for the current context. This is only a preference. The driver will use
the requested configuration if possible, but it is free to choose a
different configuration if required to execute the function. Any
function preference set viacuFuncSetCacheConfig()or
cuKernelSetCacheConfig()will be preferred over this
context-wide setting. Setting the context-wide cache configuration to
CU_FUNC_CACHE_PREFER_NONEwill cause subsequent kernel
launches to prefer to not change the cache configuration unless
required to launch the kernel.This setting does nothing on devices where the size of the L1 cache and
shared memory are fixed.Launching a kernel with a different preference than the most recent
preference setting may insert a device-side synchronization point.The supported cache configurations are:
-
CU_FUNC_CACHE_PREFER_NONE: no preference for shared
memory or L1 (default) -
CU_FUNC_CACHE_PREFER_SHARED: prefer larger shared memory
and smaller L1 cache -
CU_FUNC_CACHE_PREFER_L1: prefer larger L1 cache and
smaller shared memory -
CU_FUNC_CACHE_PREFER_EQUAL: prefer equal sized L1 cache
and shared memory
- Parameters:
-
config (
CUfunc_cache) – Requested cache configuration - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuCtxCreate,cuCtxDestroy,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetLimit,cuCtxSynchronize,cuFuncSetCacheConfig,cudaDeviceSetCacheConfig,cuKernelSetCacheConfig -
- cuda.cuda.cuCtxGetSharedMemConfig()#
-
Returns the current shared memory configuration for the current context.
This function will return in pConfig the current size of shared
memory banks in the current context. On devices with configurable
shared memory banks,cuCtxSetSharedMemConfigcan be used to
change this setting, so that all subsequent kernel launches will by
default use the new bank size. WhencuCtxGetSharedMemConfig
is called on devices without configurable shared memory, it will return
the fixed bank size of the hardware.The returned bank configurations can be either:
-
CU_SHARED_MEM_CONFIG_FOUR_BYTE_BANK_SIZE: shared memory
bank width is four bytes. -
CU_SHARED_MEM_CONFIG_EIGHT_BYTE_BANK_SIZE: shared memory
bank width will eight bytes.
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
pConfig (
CUsharedconfig) – returned shared memory configuration
-
See also
cuCtxCreate,cuCtxDestroy,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetLimit,cuCtxSynchronize,cuCtxGetSharedMemConfig,cuFuncSetCacheConfig,cudaDeviceGetSharedMemConfig -
- cuda.cuda.cuCtxSetSharedMemConfig(config: CUsharedconfig)#
-
Sets the shared memory configuration for the current context.
On devices with configurable shared memory banks, this function will
set the context’s shared memory bank size which is used for subsequent
kernel launches.Changed the shared memory configuration between launches may insert a
device side synchronization point between those launches.Changing the shared memory bank size will not increase shared memory
usage or affect occupancy of kernels, but may have major effects on
performance. Larger bank sizes will allow for greater potential
bandwidth to shared memory, but will change what kinds of accesses to
shared memory will result in bank conflicts.This function will do nothing on devices with fixed shared memory bank
size.The supported bank configurations are:
-
CU_SHARED_MEM_CONFIG_DEFAULT_BANK_SIZE: set bank width to
the default initial setting (currently, four bytes). -
CU_SHARED_MEM_CONFIG_FOUR_BYTE_BANK_SIZE: set shared
memory bank width to be natively four bytes. -
CU_SHARED_MEM_CONFIG_EIGHT_BYTE_BANK_SIZE: set shared
memory bank width to be natively eight bytes.
- Parameters:
-
config (
CUsharedconfig) – requested shared memory configuration - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuCtxCreate,cuCtxDestroy,cuCtxGetApiVersion,cuCtxGetCacheConfig,cuCtxGetDevice,cuCtxGetFlags,cuCtxGetLimit,cuCtxPopCurrent,cuCtxPushCurrent,cuCtxSetLimit,cuCtxSynchronize,cuCtxGetSharedMemConfig,cuFuncSetCacheConfig,cudaDeviceSetSharedMemConfig -
- cuda.cuda.cuCtxGetApiVersion(ctx)#
-
Gets the context’s API version.
Returns a version number in version corresponding to the capabilities
of the context (e.g. 3010 or 3020), which library developers can use to
direct callers to a specific API version. If ctx is NULL, returns the
API version used to create the currently bound context.Note that new API versions are only introduced when context
capabilities are changed that break binary compatibility, so the API
version and driver version may be different. For example, it is valid
for the API version to be 3020 while the driver version is 4020.- Parameters:
-
ctx (
CUcontext) – Context to check - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_UNKNOWN -
version (unsigned int) – Pointer to version
-
- cuda.cuda.cuCtxGetStreamPriorityRange()#
-
Returns numerical values that correspond to the least and greatest stream priorities.
Returns in *leastPriority and *greatestPriority the numerical
values that correspond to the least and greatest stream priorities
respectively. Stream priorities follow a convention where lower numbers
imply greater priorities. The range of meaningful stream priorities is
given by [*greatestPriority, *leastPriority]. If the user attempts
to create a stream with a priority value that is outside the meaningful
range as specified by this API, the priority is automatically clamped
down or up to either *leastPriority or *greatestPriority
respectively. SeecuStreamCreateWithPriorityfor details on
creating a priority stream. A NULL may be passed in for
*leastPriority or *greatestPriority if the value is not desired.This function will return ‘0’ in both *leastPriority and
*greatestPriority if the current context’s device does not support
stream priorities (seecuDeviceGetAttribute).- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, -
leastPriority (int) – Pointer to an int in which the numerical value for least stream
priority is returned -
greatestPriority (int) – Pointer to an int in which the numerical value for greatest stream
priority is returned
-
- cuda.cuda.cuCtxResetPersistingL2Cache()#
-
Resets all persisting lines in cache to normal status.
cuCtxResetPersistingL2CacheResets all persisting lines in
cache to normal status. Takes effect on function return.- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
- cuda.cuda.cuCtxGetExecAffinity(typename: CUexecAffinityType)#
-
Returns the execution affinity setting for the current context.
Returns in *pExecAffinity the current value of typename. The
supportedCUexecAffinityTypevalues are:-
CU_EXEC_AFFINITY_TYPE_SM_COUNT: number of SMs the context
is limited to use.
- Parameters:
-
typename (
CUexecAffinityType) – Execution affinity type to query - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_UNSUPPORTED_EXEC_AFFINITY -
pExecAffinity (
CUexecAffinityParam) – Returned execution affinity
-
-
Module Management#
This section describes the module management functions of the low-level CUDA driver application programming interface.
- class cuda.cuda.CUmoduleLoadingMode(value)#
-
CUDA Lazy Loading status
- CU_MODULE_EAGER_LOADING = 1#
-
Lazy Kernel Loading is not enabled
- CU_MODULE_LAZY_LOADING = 2#
-
Lazy Kernel Loading is enabled
- cuda.cuda.cuModuleLoad(char *fname)#
-
Loads a compute module.
Takes a filename fname and loads the corresponding module module
into the current context. The CUDA driver API does not attempt to
lazily allocate the resources needed by a module; if the memory for
functions and data (constant and global) needed by the module cannot be
allocated,cuModuleLoad()fails. The file should be a
cubin file as output by nvcc, or a PTX file either as output by
nvcc or handwritten, or a fatbin file as output by nvcc from
toolchain 4.0 or later.- Parameters:
-
fname (bytes) – Filename of module to load
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_PTX,CUDA_ERROR_UNSUPPORTED_PTX_VERSION,CUDA_ERROR_NOT_FOUND,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_FILE_NOT_FOUND,CUDA_ERROR_NO_BINARY_FOR_GPU,CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND,CUDA_ERROR_SHARED_OBJECT_INIT_FAILED,CUDA_ERROR_JIT_COMPILER_NOT_FOUND -
module (
CUmodule) – Returned module
-
- cuda.cuda.cuModuleLoadData(image)#
-
Load a module’s data.
Takes a pointer image and loads the corresponding module module
into the current context. The pointer may be obtained by mapping a
cubin or PTX or fatbin file, passing a cubin or PTX or
fatbin file as a NULL-terminated text string, or incorporating a
cubin or fatbin object into the executable resources and using
operating system calls such as Windows FindResource() to obtain the
pointer.- Parameters:
-
image (Any) – Module data to load
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_PTX,CUDA_ERROR_UNSUPPORTED_PTX_VERSION,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_NO_BINARY_FOR_GPU,CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND,CUDA_ERROR_SHARED_OBJECT_INIT_FAILED,CUDA_ERROR_JIT_COMPILER_NOT_FOUND -
module (
CUmodule) – Returned module
-
- cuda.cuda.cuModuleLoadDataEx(image, unsigned int numOptions, options: List[CUjit_option], optionValues: List[Any])#
-
Load a module’s data with options.
Takes a pointer image and loads the corresponding module module
into the current context. The pointer may be obtained by mapping a
cubin or PTX or fatbin file, passing a cubin or PTX or
fatbin file as a NULL-terminated text string, or incorporating a
cubin or fatbin object into the executable resources and using
operating system calls such as Windows FindResource() to obtain the
pointer. Options are passed as an array via options and any
corresponding parameters are passed in optionValues. The number of
total options is supplied via numOptions. Any outputs will be
returned via optionValues.- Parameters:
-
-
image (Any) – Module data to load
-
numOptions (unsigned int) – Number of options
-
options (List[
CUjit_option]) – Options for JIT -
optionValues (List[Any]) – Option values for JIT
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_PTX,CUDA_ERROR_UNSUPPORTED_PTX_VERSION,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_NO_BINARY_FOR_GPU,CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND,CUDA_ERROR_SHARED_OBJECT_INIT_FAILED,CUDA_ERROR_JIT_COMPILER_NOT_FOUND -
module (
CUmodule) – Returned module
-
- cuda.cuda.cuModuleLoadFatBinary(fatCubin)#
-
Load a module’s data.
Takes a pointer fatCubin and loads the corresponding module module
into the current context. The pointer represents a fat binary object,
which is a collection of different cubin and/or PTX files, all
representing the same device code, but compiled and optimized for
different architectures.Prior to CUDA 4.0, there was no documented API for constructing and
using fat binary objects by programmers. Starting with CUDA 4.0, fat
binary objects can be constructed by providing the -fatbin option to
nvcc. More information can be found in the nvcc document.- Parameters:
-
fatCubin (Any) – Fat binary to load
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_PTX,CUDA_ERROR_UNSUPPORTED_PTX_VERSION,CUDA_ERROR_NOT_FOUND,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_NO_BINARY_FOR_GPU,CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND,CUDA_ERROR_SHARED_OBJECT_INIT_FAILED,CUDA_ERROR_JIT_COMPILER_NOT_FOUND -
module (
CUmodule) – Returned module
-
- cuda.cuda.cuModuleUnload(hmod)#
-
Unloads a module.
Unloads a module hmod from the current context.
- Parameters:
-
hmod (
CUmodule) – Module to unload - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuModuleGetLoadingMode()#
-
Query lazy loading mode.
Returns lazy loading mode Module loading mode is controlled by
CUDA_MODULE_LOADING env variable- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, -
mode (
CUmoduleLoadingMode) – Returns the lazy loading mode
-
- cuda.cuda.cuModuleGetFunction(hmod, char *name)#
-
Returns a function handle.
Returns in *hfunc the handle of the function of name name located
in module hmod. If no function of that name exists,
cuModuleGetFunction()returns
CUDA_ERROR_NOT_FOUND.- Parameters:
-
-
hmod (
CUmodule) – Module to retrieve function from -
name (bytes) – Name of function to retrieve
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_FOUND -
hfunc (
CUfunction) – Returned function handle
-
- cuda.cuda.cuModuleGetGlobal(hmod, char *name)#
-
Returns a global pointer from a module.
Returns in *dptr and *bytes the base pointer and size of the global
of name name located in module hmod. If no variable of that name
exists,cuModuleGetGlobal()returns
CUDA_ERROR_NOT_FOUND. Both parameters dptr and numbytes
are optional. If one of them is NULL, it is ignored.- Parameters:
-
-
hmod (
CUmodule) – Module to retrieve global from -
name (bytes) – Name of global to retrieve
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_FOUND -
dptr (
CUdeviceptr) – Returned global device pointer -
numbytes (int) – Returned global size in bytes
-
See also
cuModuleGetFunction,cuModuleGetTexRef,cuModuleLoad,cuModuleLoadData,cuModuleLoadDataEx,cuModuleLoadFatBinary,cuModuleUnload,cudaGetSymbolAddress,cudaGetSymbolSize
- cuda.cuda.cuLinkCreate(unsigned int numOptions, options: List[CUjit_option], optionValues: List[Any])#
-
Creates a pending JIT linker invocation.
If the call is successful, the caller owns the returned CUlinkState,
which should eventually be destroyed withcuLinkDestroy.
The device code machine size (32 or 64 bit) will match the calling
application.Both linker and compiler options may be specified. Compiler options
will be applied to inputs to this linker action which must be compiled
from PTX. The optionsCU_JIT_WALL_TIME,
CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES, and
CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTESwill accumulate data
until the CUlinkState is destroyed.optionValues must remain valid for the life of the CUlinkState if
output options are used. No other references to inputs are maintained
after this call returns.- Parameters:
-
-
numOptions (unsigned int) – Size of options arrays
-
options (List[
CUjit_option]) – Array of linker and compiler options -
optionValues (List[Any]) – Array of option values, each cast to void *
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_JIT_COMPILER_NOT_FOUND -
stateOut (
CUlinkState) – On success, this will contain a CUlinkState to specify and complete
this action
-
Notes
For LTO-IR input, only LTO-IR compiled with toolkits prior to CUDA 12.0 will be accepted
- cuda.cuda.cuLinkAddData(state, typename: CUjitInputType, data, size_t size, char *name, unsigned int numOptions, options: List[CUjit_option], optionValues: List[Any])#
-
Add an input to a pending linker invocation.
Ownership of data is retained by the caller. No reference is retained
to any inputs after this call returns.This method accepts only compiler options, which are used if the data
must be compiled from PTX, and does not accept any of
CU_JIT_WALL_TIME,CU_JIT_INFO_LOG_BUFFER,
CU_JIT_ERROR_LOG_BUFFER,
CU_JIT_TARGET_FROM_CUCONTEXT, orCU_JIT_TARGET.- Parameters:
-
-
state (
CUlinkState) – A pending linker action. -
typename (
CUjitInputType) – The type of the input data. -
data (Any) – The input data. PTX must be NULL-terminated.
-
size (size_t) – The length of the input data.
-
name (bytes) – An optional name for this input in log messages.
-
numOptions (unsigned int) – Size of options.
-
options (List[
CUjit_option]) – Options to be applied only for this input (overrides options from
cuLinkCreate). -
optionValues (List[Any]) – Array of option values, each cast to void *.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_IMAGE,CUDA_ERROR_INVALID_PTX,CUDA_ERROR_UNSUPPORTED_PTX_VERSION,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_NO_BINARY_FOR_GPU - Return type:
-
CUresult
Notes
For LTO-IR input, only LTO-IR compiled with toolkits prior to CUDA 12.0 will be accepted
- cuda.cuda.cuLinkAddFile(state, typename: CUjitInputType, char *path, unsigned int numOptions, options: List[CUjit_option], optionValues: List[Any])#
-
Add a file input to a pending linker invocation.
No reference is retained to any inputs after this call returns.
This method accepts only compiler options, which are used if the input
must be compiled from PTX, and does not accept any of
CU_JIT_WALL_TIME,CU_JIT_INFO_LOG_BUFFER,
CU_JIT_ERROR_LOG_BUFFER,
CU_JIT_TARGET_FROM_CUCONTEXT, orCU_JIT_TARGET.This method is equivalent to invoking
cuLinkAddDataon the
contents of the file.- Parameters:
-
-
state (
CUlinkState) – A pending linker action -
typename (
CUjitInputType) – The type of the input data -
path (bytes) – Path to the input file
-
numOptions (unsigned int) – Size of options
-
options (List[
CUjit_option]) – Options to be applied only for this input (overrides options from
cuLinkCreate) -
optionValues (List[Any]) – Array of option values, each cast to void *
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_FILE_NOT_FOUNDCUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_IMAGE,CUDA_ERROR_INVALID_PTX,CUDA_ERROR_UNSUPPORTED_PTX_VERSION,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_NO_BINARY_FOR_GPU - Return type:
-
CUresult
Notes
For LTO-IR input, only LTO-IR compiled with toolkits prior to CUDA 12.0 will be accepted
- cuda.cuda.cuLinkComplete(state)#
-
Complete a pending linker invocation.
Completes the pending linker action and returns the cubin image for the
linked device code, which can be used with
cuModuleLoadData. The cubin is owned by state, so it
should be loaded before state is destroyed via
cuLinkDestroy. This call does not destroy state.- Parameters:
-
state (
CUlinkState) – A pending linker invocation - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_OUT_OF_MEMORY -
cubinOut (Any) – On success, this will point to the output image
-
sizeOut (int) – Optional parameter to receive the size of the generated image
-
- cuda.cuda.cuLinkDestroy(state)#
-
Destroys state for a JIT linker invocation.
- Parameters:
-
state (
CUlinkState) – State object for the linker invocation - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
Library Management#
This section describes the library management functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuLibraryLoadData(code, jitOptions: List[CUjit_option], jitOptionsValues: List[Any], unsigned int numJitOptions, libraryOptions: List[CUlibraryOption], libraryOptionValues: List[Any], unsigned int numLibraryOptions)#
-
Load a library with specified code and options.
Takes a pointer code and loads the corresponding library library
into all contexts existent at the time of the call and future contexts
at the time of creation until the library is unloaded with
cuLibraryUnload().The pointer may be obtained by mapping a cubin or PTX or fatbin
file, passing a cubin or PTX or fatbin file as a NULL-terminated
text string, or incorporating a cubin or fatbin object into the
executable resources and using operating system calls such as Windows
FindResource() to obtain the pointer. Options are passed as an array
via jitOptions and any corresponding parameters are passed in
jitOptionsValues. The number of total JTT options is supplied via
numJitOptions. Any outputs will be returned via jitOptionsValues.- Parameters:
-
-
code (Any) – Code to load
-
jitOptions (List[
CUjit_option]) – Options for JIT -
jitOptionsValues (List[Any]) – Option values for JIT
-
numJitOptions (unsigned int) – Number of options
-
libraryOptions (List[
CUlibraryOption]) – Options for loading -
libraryOptionValues (List[Any]) – Option values for loading
-
numLibraryOptions (unsigned int) – Number of options for loading
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_PTX,CUDA_ERROR_UNSUPPORTED_PTX_VERSION,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_NO_BINARY_FOR_GPU,CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND,CUDA_ERROR_SHARED_OBJECT_INIT_FAILED,CUDA_ERROR_JIT_COMPILER_NOT_FOUND -
library (
CUlibrary) – Returned library
-
- cuda.cuda.cuLibraryLoadFromFile(char *fileName, jitOptions: List[CUjit_option], jitOptionsValues: List[Any], unsigned int numJitOptions, libraryOptions: List[CUlibraryOption], libraryOptionValues: List[Any], unsigned int numLibraryOptions)#
-
Load a library with specified file and options.
Takes a filename fileName and loads the corresponding library
library into all contexts existent at the time of the call and future
contexts at the time of creation until the library is unloaded with
cuLibraryUnload().The file should be a cubin file as output by nvcc, or a PTX file
either as output by nvcc or handwritten, or a fatbin file as output
by nvcc from toolchain 4.0 or later.Options are passed as an array via jitOptions and any corresponding
parameters are passed in jitOptionsValues. The number of total
options is supplied via numJitOptions. Any outputs will be returned
via jitOptionsValues.- Parameters:
-
-
code (bytes) – Code to load
-
jitOptions (List[
CUjit_option]) – Options for JIT -
jitOptionsValues (List[Any]) – Option values for JIT
-
numJitOptions (unsigned int) – Number of options
-
libraryOptions (List[
CUlibraryOption]) – Options for loading -
libraryOptionValues (List[Any]) – Option values for loading
-
numLibraryOptions (unsigned int) – Number of options for loading
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_PTX,CUDA_ERROR_UNSUPPORTED_PTX_VERSION,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_NO_BINARY_FOR_GPU,CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND,CUDA_ERROR_SHARED_OBJECT_INIT_FAILED,CUDA_ERROR_JIT_COMPILER_NOT_FOUND -
library (
CUlibrary) – Returned library
-
- cuda.cuda.cuLibraryUnload(library)#
-
Unloads a library.
Unloads the library specified with library
- Parameters:
-
library (
CUlibrary) – Library to unload - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuLibraryLoadData-
py:obj:~.cuLibraryLoadFromFile,
cuModuleUnload
- cuda.cuda.cuLibraryGetKernel(library, char *name)#
-
Returns a kernel handle.
Returns in pKernel the handle of the kernel with name name located
in library library. If kernel handle is not found, the call returns
CUDA_ERROR_NOT_FOUND.- Parameters:
-
-
library (
CUlibrary) – Library to retrieve kernel from -
name (bytes) – Name of kernel to retrieve
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_FOUND, -
pKernel (
CUkernel) – Returned kernel handle
-
- cuda.cuda.cuLibraryGetModule(library)#
-
Returns a module handle.
Returns in pMod the module handle associated with the current context
located in library library. If module handle is not found, the call
returnsCUDA_ERROR_NOT_FOUND.- Parameters:
-
library (
CUlibrary) – Library to retrieve module from - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_FOUND,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_CONTEXT_IS_DESTROYED -
pMod (
CUmodule) – Returned module handle
-
- cuda.cuda.cuKernelGetFunction(kernel)#
-
Returns a function handle.
Returns in pFunc the handle of the function for the requested kernel
kernel and the current context. If function handle is not found, the
call returnsCUDA_ERROR_NOT_FOUND.- Parameters:
-
kernel (
CUkernel) – Kernel to retrieve function for the requested context - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_FOUND,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_CONTEXT_IS_DESTROYED -
pFunc (
CUfunction) – Returned function handle
-
- cuda.cuda.cuLibraryGetGlobal(library, char *name)#
-
Returns a global device pointer.
Returns in *dptr and *bytes the base pointer and size of the global
with name name for the requested library library and the current
context. If no global for the requested name name exists, the call
returnsCUDA_ERROR_NOT_FOUND. One of the parameters dptr
or numbytes (not both) can be NULL in which case it is ignored.- Parameters:
-
-
library (
CUlibrary) – Library to retrieve global from -
name (bytes) – Name of global to retrieve
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_FOUND,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_CONTEXT_IS_DESTROYED -
dptr (
CUdeviceptr) – Returned global device pointer for the requested context -
numbytes (int) – Returned global size in bytes
-
- cuda.cuda.cuLibraryGetManaged(library, char *name)#
-
Returns a pointer to managed memory.
Returns in *dptr and *bytes the base pointer and size of the
managed memory with name name for the requested library library. If
no managed memory with the requested name name exists, the call
returnsCUDA_ERROR_NOT_FOUND. One of the parameters dptr
or numbytes (not both) can be NULL in which case it is ignored. Note
that managed memory for library library is shared across devices and
is registered when the library is loaded into atleast one context.- Parameters:
-
-
library (
CUlibrary) – Library to retrieve managed memory from -
name (bytes) – Name of managed memory to retrieve
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_FOUND, -
dptr (
CUdeviceptr) – Returned pointer to the managed memory -
numbytes (int) – Returned memory size in bytes
-
Notes
The API requires a CUDA context to be present and initialized on at least one device. If no context is present, the call returns
CUDA_ERROR_NOT_FOUND.
- cuda.cuda.cuLibraryGetUnifiedFunction(library, char *symbol)#
-
Returns a pointer to a universal function.
Returns in *fptr the function pointer to a global function denoted by
symbol. If no universal function with name symbol exists, the call
returnsCUDA_ERROR_NOT_FOUND. If there is no device with
attrubuteCU_DEVICE_ATTRIBUTE_UNIFIED_FUNCTION_POINTERS
present in the system, the call may return
CUDA_ERROR_NOT_FOUND.- Parameters:
-
-
library (
CUlibrary) – Library to retrieve function pointer memory from -
symbol (bytes) – Name of function pointer to retrieve
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_FOUND, -
fptr (Any) – Returned pointer to a universal function
-
- cuda.cuda.cuKernelGetAttribute(attrib: CUfunction_attribute, kernel, dev)#
-
Returns information about a kernel.
Returns in *pi the integer value of the attribute attrib for the
kernel kernel for the requested device dev. The supported
attributes are:-
CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK: The maximum
number of threads per block, beyond which a launch of the kernel
would fail. This number depends on both the kernel and the requested
device. -
CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES: The size in bytes of
statically-allocated shared memory per block required by this kernel.
This does not include dynamically-allocated shared memory requested
by the user at runtime. -
CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES: The size in bytes of
user-allocated constant memory required by this kernel. -
CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES: The size in bytes of
local memory used by each thread of this kernel. -
CU_FUNC_ATTRIBUTE_NUM_REGS: The number of registers used
by each thread of this kernel. -
CU_FUNC_ATTRIBUTE_PTX_VERSION: The PTX virtual
architecture version for which the kernel was compiled. This value is
the major PTX version * 10-
the minor PTX version, so a PTX version 1.3 function would return
the value 13. Note that this may return the undefined value of 0
for cubins compiled prior to CUDA 3.0.
-
-
CU_FUNC_ATTRIBUTE_BINARY_VERSION: The binary architecture
version for which the kernel was compiled. This value is the major
binary version * 10 + the minor binary version, so a binary version
1.3 function would return the value 13. Note that this will return a
value of 10 for legacy cubins that do not have a properly-encoded
binary architecture version. -
CU_FUNC_CACHE_MODE_CA: The attribute to indicate whether
the kernel has been compiled with user specified option “-Xptxas
–dlcm=ca” set. -
CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES: The
maximum size in bytes of dynamically-allocated shared memory. -
CU_FUNC_ATTRIBUTE_PREFERRED_SHARED_MEMORY_CARVEOUT:
Preferred shared memory-L1 cache split ratio in percent of total
shared memory. -
CU_FUNC_ATTRIBUTE_CLUSTER_SIZE_MUST_BE_SET: If this
attribute is set, the kernel must launch with a valid cluster size
specified. -
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_WIDTH: The required
cluster width in blocks. -
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_HEIGHT: The required
cluster height in blocks. -
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_DEPTH: The required
cluster depth in blocks. -
CU_FUNC_ATTRIBUTE_NON_PORTABLE_CLUSTER_SIZE_ALLOWED:
Indicates whether the function can be launched with non-portable
cluster size. 1 is allowed, 0 is disallowed. A non-portable cluster
size may only function on the specific SKUs the program is tested on.
The launch might fail if the program is run on a different hardware
platform. CUDA API provides cudaOccupancyMaxActiveClusters to assist
with checking whether the desired size can be launched on the current
device. A portable cluster size is guaranteed to be functional on all
compute capabilities higher than the target compute capability. The
portable cluster size for sm_90 is 8 blocks per cluster. This value
may increase for future compute capabilities. The specific hardware
unit may support higher cluster sizes that’s not guaranteed to be
portable. -
CU_FUNC_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE:
The block scheduling policy of a function. The value type is
CUclusterSchedulingPolicy.
- Parameters:
-
-
attrib (
CUfunction_attribute) – Attribute requested -
kernel (
CUkernel) – Kernel to query attribute of -
dev (
CUdevice) – Device to query attribute of
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
pi (int) – Returned attribute value
-
Notes
If another thread is trying to set the same attribute on the same device using
cuKernelSetAttribute()simultaneously, the attribute query will give the old or new value depending on the interleavings chosen by the OS scheduler and memory consistency. -
- cuda.cuda.cuKernelSetAttribute(attrib: CUfunction_attribute, int val, kernel, dev)#
-
Sets information about a kernel.
This call sets the value of a specified attribute attrib on the
kernel kernel for the requested device dev to an integer value
specified by val. This function returns CUDA_SUCCESS if the new value
of the attribute could be successfully set. If the set fails, this call
will return an error. Not all attributes can have values set.
Attempting to set a value on a read-only attribute will result in an
error (CUDA_ERROR_INVALID_VALUE)Note that attributes set using
cuFuncSetAttribute()will
override the attribute set by this API irrespective of whether the call
tocuFuncSetAttribute()is made before or after this API
call. However,cuKernelGetAttribute()will always return
the attribute value set by this API.Supported attributes are:
-
CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES: This is
the maximum size in bytes of dynamically-allocated shared memory. The
value should contain the requested maximum size of dynamically-
allocated shared memory. The sum of this value and the function
attributeCU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTEScannot
exceed the device attribute
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN.
The maximal size of requestable dynamic shared memory may differ by
GPU architecture. -
CU_FUNC_ATTRIBUTE_PREFERRED_SHARED_MEMORY_CARVEOUT: On
devices where the L1 cache and shared memory use the same hardware
resources, this sets the shared memory carveout preference, in
percent of the total shared memory. See
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR
This is only a hint, and the driver can choose a different ratio if
required to execute the function. -
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_WIDTH: The required
cluster width in blocks. The width, height, and depth values must
either all be 0 or all be positive. The validity of the cluster
dimensions is checked at launch time. If the value is set during
compile time, it cannot be set at runtime. Setting it at runtime will
return CUDA_ERROR_NOT_PERMITTED. -
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_HEIGHT: The required
cluster height in blocks. The width, height, and depth values must
either all be 0 or all be positive. The validity of the cluster
dimensions is checked at launch time. If the value is set during
compile time, it cannot be set at runtime. Setting it at runtime will
return CUDA_ERROR_NOT_PERMITTED. -
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_DEPTH: The required
cluster depth in blocks. The width, height, and depth values must
either all be 0 or all be positive. The validity of the cluster
dimensions is checked at launch time. If the value is set during
compile time, it cannot be set at runtime. Setting it at runtime will
return CUDA_ERROR_NOT_PERMITTED. -
CU_FUNC_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE:
The block scheduling policy of a function. The value type is
CUclusterSchedulingPolicy.
- Parameters:
-
-
attrib (
CUfunction_attribute) – Attribute requested -
val (int) – Value to set
-
kernel (
CUkernel) – Kernel to set attribute of -
dev (
CUdevice) – Device to set attribute of
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_OUT_OF_MEMORY - Return type:
-
CUresult
Notes
The API has stricter locking requirements in comparison to its legacy counterpart
cuFuncSetAttribute()due to device-wide semantics. If multiple threads are trying to set the same attribute on the same device simultaneously, the attribute setting will depend on the interleavings chosen by the OS scheduler and memory consistency. -
- cuda.cuda.cuKernelSetCacheConfig(kernel, config: CUfunc_cache, dev)#
-
Sets the preferred cache configuration for a device kernel.
On devices where the L1 cache and shared memory use the same hardware
resources, this sets through config the preferred cache configuration
for the device kernel kernel on the requested device dev. This is
only a preference. The driver will use the requested configuration if
possible, but it is free to choose a different configuration if
required to execute kernel. Any context-wide preference set via
cuCtxSetCacheConfig()will be overridden by this per-kernel
setting.Note that attributes set using
cuFuncSetCacheConfig()will
override the attribute set by this API irrespective of whether the call
tocuFuncSetCacheConfig()is made before or after this API
call.This setting does nothing on devices where the size of the L1 cache and
shared memory are fixed.Launching a kernel with a different preference than the most recent
preference setting may insert a device-side synchronization point.The supported cache configurations are:
-
CU_FUNC_CACHE_PREFER_NONE: no preference for shared
memory or L1 (default) -
CU_FUNC_CACHE_PREFER_SHARED: prefer larger shared memory
and smaller L1 cache -
CU_FUNC_CACHE_PREFER_L1: prefer larger L1 cache and
smaller shared memory -
CU_FUNC_CACHE_PREFER_EQUAL: prefer equal sized L1 cache
and shared memory
- Parameters:
-
-
kernel (
CUkernel) – Kernel to configure cache for -
config (
CUfunc_cache) – Requested cache configuration -
dev (
CUdevice) – Device to set attribute of
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_OUT_OF_MEMORY - Return type:
-
CUresult
Notes
The API has stricter locking requirements in comparison to its legacy counterpart
cuFuncSetCacheConfig()due to device-wide semantics. If multiple threads are trying to set a config on the same device simultaneously, the cache config setting will depend on the interleavings chosen by the OS scheduler and memory consistency. -
Memory Management#
This section describes the memory management functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuMemGetInfo()#
-
Gets free and total memory.
Returns in *total the total amount of memory available to the the
current context. Returns in *free the amount of memory on the device
that is free according to the OS. CUDA is not guaranteed to be able to
allocate all of the memory that the OS reports as free. In a multi-
tenet situation, free estimate returned is prone to race condition
where a new allocation/free done by a different process or a different
thread in the same process between the time when free memory was
estimated and reported, will result in deviation in free value reported
and actual free memory.The integrated GPU on Tegra shares memory with CPU and other component
of the SoC. The free and total values returned by the API excludes the
SWAP memory space maintained by the OS on some platforms. The OS may
move some of the memory pages into swap area as the GPU or CPU allocate
or access memory. See Tegra app note on how to calculate total and free
memory on Tegra.- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
free (int) – Returned free memory in bytes
-
total (int) – Returned total memory in bytes
-
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMemGetInfo
- cuda.cuda.cuMemAlloc(size_t bytesize)#
-
Allocates device memory.
Allocates bytesize bytes of linear memory on the device and returns
in *dptr a pointer to the allocated memory. The allocated memory is
suitably aligned for any kind of variable. The memory is not cleared.
If bytesize is 0,cuMemAlloc()returns
CUDA_ERROR_INVALID_VALUE.- Parameters:
-
bytesize (size_t) – Requested allocation size in bytes
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY -
dptr (
CUdeviceptr) – Returned device pointer
-
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMalloc
- cuda.cuda.cuMemAllocPitch(size_t WidthInBytes, size_t Height, unsigned int ElementSizeBytes)#
-
Allocates pitched device memory.
Allocates at least WidthInBytes * Height bytes of linear memory on
the device and returns in *dptr a pointer to the allocated memory.
The function may pad the allocation to ensure that corresponding
pointers in any given row will continue to meet the alignment
requirements for coalescing as the address is updated from row to row.
ElementSizeBytes specifies the size of the largest reads and writes
that will be performed on the memory range. ElementSizeBytes may be
4, 8 or 16 (since coalesced memory transactions are not possible on
other data sizes). If ElementSizeBytes is smaller than the actual
read/write size of a kernel, the kernel will run correctly, but
possibly at reduced speed. The pitch returned in *pPitch by
cuMemAllocPitch()is the width in bytes of the allocation.
The intended usage of pitch is as a separate parameter of the
allocation, used to compute addresses within the 2D array. Given the
row and column of an array element of type T, the address is computed
as:View CUDA Toolkit Documentation for a C++ code example
The pitch returned by
cuMemAllocPitch()is guaranteed to
work withcuMemcpy2D()under all circumstances. For
allocations of 2D arrays, it is recommended that programmers consider
performing pitch allocations usingcuMemAllocPitch(). Due
to alignment restrictions in the hardware, this is especially true if
the application will be performing 2D memory copies between different
regions of device memory (whether linear memory or CUDA arrays).The byte alignment of the pitch returned by
cuMemAllocPitch()is guaranteed to match or exceed the
alignment requirement for texture binding with
cuTexRefSetAddress2D().- Parameters:
-
-
WidthInBytes (size_t) – Requested allocation width in bytes
-
Height (size_t) – Requested allocation height in rows
-
ElementSizeBytes (unsigned int) – Size of largest reads/writes for range
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY -
dptr (
CUdeviceptr) – Returned device pointer -
pPitch (int) – Returned pitch of allocation in bytes
-
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMallocPitch
- cuda.cuda.cuMemFree(dptr)#
-
Frees device memory.
Frees the memory space pointed to by dptr, which must have been
returned by a previous call to one of the following memory allocation
APIs —cuMemAlloc(),cuMemAllocPitch(),
cuMemAllocManaged(),cuMemAllocAsync(),
cuMemAllocFromPoolAsync()Note — This API will not perform any implict synchronization when the
pointer was allocated withcuMemAllocAsyncor
cuMemAllocFromPoolAsync. Callers must ensure that all
accesses to the pointer have completed before invoking
cuMemFree. For best performance and memory reuse, users
should usecuMemFreeAsyncto free memory allocated via the
stream ordered memory allocator.- Parameters:
-
dptr (
CUdeviceptr) – Pointer to memory to free - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemAllocManaged,cuMemAllocAsync,cuMemAllocFromPoolAsync,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemFreeAsync,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaFree
- cuda.cuda.cuMemGetAddressRange(dptr)#
-
Get information on memory allocations.
Returns the base address in *pbase and size in *psize of the
allocation bycuMemAlloc()orcuMemAllocPitch()
that contains the input pointer dptr. Both parameters pbase and
psize are optional. If one of them is NULL, it is ignored.- Parameters:
-
dptr (
CUdeviceptr) – Device pointer to query - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_NOT_FOUND,CUDA_ERROR_INVALID_VALUE -
pbase (
CUdeviceptr) – Returned base address -
psize (int) – Returned size of device memory allocation
-
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32
- cuda.cuda.cuMemAllocHost(size_t bytesize)#
-
Allocates page-locked host memory.
Allocates bytesize bytes of host memory that is page-locked and
accessible to the device. The driver tracks the virtual memory ranges
allocated with this function and automatically accelerates calls to
functions such ascuMemcpy(). Since the memory can be
accessed directly by the device, it can be read or written with much
higher bandwidth than pageable memory obtained with functions such as
malloc(). Allocating excessive amounts of memory with
cuMemAllocHost()may degrade system performance, since it
reduces the amount of memory available to the system for paging. As a
result, this function is best used sparingly to allocate staging areas
for data exchange between host and device.Note all host memory allocated using
cuMemHostAlloc()will
automatically be immediately accessible to all contexts on all devices
which support unified addressing (as may be queried using
CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING). The device pointer
that may be used to access this host memory from those contexts is
always equal to the returned host pointer *pp. SeeUnifiedfor additional details.
Addressing- Parameters:
-
bytesize (size_t) – Requested allocation size in bytes
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY -
pp (Any) – Returned host pointer to page-locked memory
-
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMallocHost
- cuda.cuda.cuMemFreeHost(p)#
-
Frees page-locked host memory.
Frees the memory space pointed to by p, which must have been returned
by a previous call tocuMemAllocHost().- Parameters:
-
p (Any) – Pointer to memory to free
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaFreeHost
- cuda.cuda.cuMemHostAlloc(size_t bytesize, unsigned int Flags)#
-
Allocates page-locked host memory.
Allocates bytesize bytes of host memory that is page-locked and
accessible to the device. The driver tracks the virtual memory ranges
allocated with this function and automatically accelerates calls to
functions such ascuMemcpyHtoD(). Since the memory can be
accessed directly by the device, it can be read or written with much
higher bandwidth than pageable memory obtained with functions such as
malloc(). Allocating excessive amounts of pinned memory may
degrade system performance, since it reduces the amount of memory
available to the system for paging. As a result, this function is best
used sparingly to allocate staging areas for data exchange between host
and device.The Flags parameter enables different options to be specified that
affect the allocation, as follows.-
CU_MEMHOSTALLOC_PORTABLE: The memory returned by this
call will be considered as pinned memory by all CUDA contexts, not
just the one that performed the allocation. -
CU_MEMHOSTALLOC_DEVICEMAP: Maps the allocation into the
CUDA address space. The device pointer to the memory may be obtained
by callingcuMemHostGetDevicePointer(). -
CU_MEMHOSTALLOC_WRITECOMBINED: Allocates the memory as
write-combined (WC). WC memory can be transferred across the PCI
Express bus more quickly on some system configurations, but cannot be
read efficiently by most CPUs. WC memory is a good option for buffers
that will be written by the CPU and read by the GPU via mapped pinned
memory or host->device transfers.
All of these flags are orthogonal to one another: a developer may
allocate memory that is portable, mapped and/or write-combined with no
restrictions.The
CU_MEMHOSTALLOC_DEVICEMAPflag may be specified on CUDA
contexts for devices that do not support mapped pinned memory. The
failure is deferred tocuMemHostGetDevicePointer()because
the memory may be mapped into other CUDA contexts via the
CU_MEMHOSTALLOC_PORTABLEflag.The memory allocated by this function must be freed with
cuMemFreeHost().Note all host memory allocated using
cuMemHostAlloc()will
automatically be immediately accessible to all contexts on all devices
which support unified addressing (as may be queried using
CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING). Unless the flag
CU_MEMHOSTALLOC_WRITECOMBINEDis specified, the device
pointer that may be used to access this host memory from those contexts
is always equal to the returned host pointer *pp. If the flag
CU_MEMHOSTALLOC_WRITECOMBINEDis specified, then the
functioncuMemHostGetDevicePointer()must be used to query
the device pointer, even if the context supports unified addressing.
SeeUnified Addressingfor additional details.- Parameters:
-
-
bytesize (size_t) – Requested allocation size in bytes
-
Flags (unsigned int) – Flags for allocation request
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY -
pp (Any) – Returned host pointer to page-locked memory
-
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaHostAlloc -
- cuda.cuda.cuMemHostGetDevicePointer(p, unsigned int Flags)#
-
Passes back device pointer of mapped pinned memory.
Passes back the device pointer pdptr corresponding to the mapped,
pinned host buffer p allocated bycuMemHostAlloc.cuMemHostGetDevicePointer()will fail if the
CU_MEMHOSTALLOC_DEVICEMAPflag was not specified at the
time the memory was allocated, or if the function is called on a GPU
that does not support mapped pinned memory.For devices that have a non-zero value for the device attribute
CU_DEVICE_ATTRIBUTE_CAN_USE_HOST_POINTER_FOR_REGISTERED_MEM,
the memory can also be accessed from the device using the host pointer
p. The device pointer returned by
cuMemHostGetDevicePointer()may or may not match the
original host pointer p and depends on the devices visible to the
application. If all devices visible to the application have a non-zero
value for the device attribute, the device pointer returned by
cuMemHostGetDevicePointer()will match the original pointer
p. If any device visible to the application has a zero value for the
device attribute, the device pointer returned by
cuMemHostGetDevicePointer()will not match the original
host pointer p, but it will be suitable for use on all devices
provided Unified Virtual Addressing is enabled. In such systems, it is
valid to access the memory using either pointer on devices that have a
non-zero value for the device attribute. Note however that such devices
should access the memory using only one of the two pointers and not
both.Flags provides for future releases. For now, it must be set to 0.
- Parameters:
-
-
p (Any) – Host pointer
-
Flags (unsigned int) – Options (must be 0)
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
pdptr (
CUdeviceptr) – Returned device pointer
-
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaHostGetDevicePointer
- cuda.cuda.cuMemHostGetFlags(p)#
-
Passes back flags that were used for a pinned allocation.
Passes back the flags pFlags that were specified when allocating the
pinned host buffer p allocated bycuMemHostAlloc.cuMemHostGetFlags()will fail if the pointer does not
reside in an allocation performed bycuMemAllocHost()or
cuMemHostAlloc().- Parameters:
-
p (Any) – Host pointer
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
pFlags (unsigned int) – Returned flags word
-
- cuda.cuda.cuMemAllocManaged(size_t bytesize, unsigned int flags)#
-
Allocates memory that will be automatically managed by the Unified Memory system.
Allocates bytesize bytes of managed memory on the device and returns
in *dptr a pointer to the allocated memory. If the device doesn’t
support allocating managed memory,CUDA_ERROR_NOT_SUPPORTED
is returned. Support for managed memory can be queried using the device
attributeCU_DEVICE_ATTRIBUTE_MANAGED_MEMORY. The allocated
memory is suitably aligned for any kind of variable. The memory is not
cleared. If bytesize is 0,cuMemAllocManagedreturns
CUDA_ERROR_INVALID_VALUE. The pointer is valid on the CPU
and on all GPUs in the system that support managed memory. All accesses
to this pointer must obey the Unified Memory programming model.flags specifies the default stream association for this allocation.
flags must be one ofCU_MEM_ATTACH_GLOBALor
CU_MEM_ATTACH_HOST. IfCU_MEM_ATTACH_GLOBALis
specified, then this memory is accessible from any stream on any
device. IfCU_MEM_ATTACH_HOSTis specified, then the
allocation should not be accessed from devices that have a zero value
for the device attribute
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS; an explicit
call tocuStreamAttachMemAsyncwill be required to enable
access on such devices.If the association is later changed via
cuStreamAttachMemAsyncto a single stream, the default
association as specifed duringcuMemAllocManagedis
restored when that stream is destroyed. For managed variables, the
default association is alwaysCU_MEM_ATTACH_GLOBAL. Note
that destroying a stream is an asynchronous operation, and as a result,
the change to default association won’t happen until all work in the
stream has completed.Memory allocated with
cuMemAllocManagedshould be released
withcuMemFree.Device memory oversubscription is possible for GPUs that have a non-
zero value for the device attribute
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS. Managed
memory on such GPUs may be evicted from device memory to host memory at
any time by the Unified Memory driver in order to make room for other
allocations.In a multi-GPU system where all GPUs have a non-zero value for the
device attribute
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS, managed
memory may not be populated when this API returns and instead may be
populated on access. In such systems, managed memory can migrate to any
processor’s memory at any time. The Unified Memory driver will employ
heuristics to maintain data locality and prevent excessive page faults
to the extent possible. The application can also guide the driver about
memory usage patterns viacuMemAdvise. The application can
also explicitly migrate memory to a desired processor’s memory via
cuMemPrefetchAsync.In a multi-GPU system where all of the GPUs have a zero value for the
device attribute
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESSand all the
GPUs have peer-to-peer support with each other, the physical storage
for managed memory is created on the GPU which is active at the time
cuMemAllocManagedis called. All other GPUs will reference
the data at reduced bandwidth via peer mappings over the PCIe bus. The
Unified Memory driver does not migrate memory among such GPUs.In a multi-GPU system where not all GPUs have peer-to-peer support with
each other and where the value of the device attribute
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESSis zero for
at least one of those GPUs, the location chosen for physical storage of
managed memory is system-dependent.-
On Linux, the location chosen will be device memory as long as the
current set of active contexts are on devices that either have peer-
to-peer support with each other or have a non-zero value for the
device attribute
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS. If there
is an active context on a GPU that does not have a non-zero value for
that device attribute and it does not have peer-to-peer support with
the other devices that have active contexts on them, then the
location for physical storage will be ‘zero-copy’ or host memory.
Note that this means that managed memory that is located in device
memory is migrated to host memory if a new context is created on a
GPU that doesn’t have a non-zero value for the device attribute and
does not support peer-to-peer with at least one of the other devices
that has an active context. This in turn implies that context
creation may fail if there is insufficient host memory to migrate all
managed allocations. -
On Windows, the physical storage is always created in ‘zero-copy’ or
host memory. All GPUs will reference the data at reduced bandwidth
over the PCIe bus. In these circumstances, use of the environment
variable CUDA_VISIBLE_DEVICES is recommended to restrict CUDA to only
use those GPUs that have peer-to-peer support. Alternatively, users
can also set CUDA_MANAGED_FORCE_DEVICE_ALLOC to a non-zero value to
force the driver to always use device memory for physical storage.
When this environment variable is set to a non-zero value, all
contexts created in that process on devices that support managed
memory have to be peer-to-peer compatible with each other. Context
creation will fail if a context is created on a device that supports
managed memory and is not peer-to-peer compatible with any of the
other managed memory supporting devices on which contexts were
previously created, even if those contexts have been destroyed. These
environment variables are described in the CUDA programming guide
under the “CUDA environment variables” section. -
On ARM, managed memory is not available on discrete gpu with Drive
PX-2.
- Parameters:
-
-
bytesize (size_t) – Requested allocation size in bytes
-
flags (unsigned int) – Must be one of
CU_MEM_ATTACH_GLOBALor
CU_MEM_ATTACH_HOST
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_NOT_SUPPORTED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY -
dptr (
CUdeviceptr) – Returned device pointer
-
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cuDeviceGetAttribute,cuStreamAttachMemAsync,cudaMallocManaged -
- cuda.cuda.cuDeviceGetByPCIBusId(char *pciBusId)#
-
Returns a handle to a compute device.
Returns in *device a device handle given a PCI bus ID string.
where domain, bus, device, and function are all hexadecimal
values- Parameters:
-
pciBusId (bytes) – String in one of the following forms:
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
dev (
CUdevice) – Returned device handle
-
- cuda.cuda.cuDeviceGetPCIBusId(int length, dev)#
-
Returns a PCI Bus Id string for the device.
Returns an ASCII string identifying the device dev in the NULL-
terminated string pointed to by pciBusId. length specifies the
maximum length of the string that may be returned.where domain, bus, device, and function are all hexadecimal
values. pciBusId should be large enough to store 13 characters
including the NULL-terminator.- Parameters:
-
-
length (int) – Maximum length of string to store in name
-
dev (
CUdevice) – Device to get identifier string for
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
pciBusId (bytes) – Returned identifier string for the device in the following format
-
- cuda.cuda.cuIpcGetEventHandle(event)#
-
Gets an interprocess handle for a previously allocated event.
Takes as input a previously allocated event. This event must have been
created with theCU_EVENT_INTERPROCESSand
CU_EVENT_DISABLE_TIMINGflags set. This opaque handle may
be copied into other processes and opened with
cuIpcOpenEventHandleto allow efficient hardware
synchronization between GPU work in different processes.After the event has been opened in the importing process,
cuEventRecord,cuEventSynchronize,
cuStreamWaitEventandcuEventQuerymay be used
in either process. Performing operations on the imported event after
the exported event has been freed withcuEventDestroywill
result in undefined behavior.IPC functionality is restricted to devices with support for unified
addressing on Linux and Windows operating systems. IPC functionality on
Windows is restricted to GPUs in TCC mode Users can test their device
for IPC functionality by callingcuapiDeviceGetAttribute
withCU_DEVICE_ATTRIBUTE_IPC_EVENT_SUPPORTED- Parameters:
-
event (
CUeventorcudaEvent_t) – Event allocated withCU_EVENT_INTERPROCESSand
CU_EVENT_DISABLE_TIMINGflags. - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_MAP_FAILED,CUDA_ERROR_INVALID_VALUE -
pHandle (
CUipcEventHandle) – Pointer to a user allocated CUipcEventHandle in which to return the
opaque event handle
-
- cuda.cuda.cuIpcOpenEventHandle(CUipcEventHandle handle: CUipcEventHandle)#
-
Opens an interprocess event handle for use in the current process.
Opens an interprocess event handle exported from another process with
cuIpcGetEventHandle. This function returns a
CUeventthat behaves like a locally created event with the
CU_EVENT_DISABLE_TIMINGflag specified. This event must be
freed withcuEventDestroy.Performing operations on the imported event after the exported event
has been freed withcuEventDestroywill result in undefined
behavior.IPC functionality is restricted to devices with support for unified
addressing on Linux and Windows operating systems. IPC functionality on
Windows is restricted to GPUs in TCC mode Users can test their device
for IPC functionality by callingcuapiDeviceGetAttribute
withCU_DEVICE_ATTRIBUTE_IPC_EVENT_SUPPORTED- Parameters:
-
handle (
CUipcEventHandle) – Interprocess handle to open - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_MAP_FAILED,CUDA_ERROR_PEER_ACCESS_UNSUPPORTED,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_VALUE -
phEvent (
CUevent) – Returns the imported event
-
- cuda.cuda.cuIpcGetMemHandle(dptr)#
-
Gets an interprocess memory handle for an existing device memory allocation.
Takes a pointer to the base of an existing device memory allocation
created withcuMemAllocand exports it for use in another
process. This is a lightweight operation and may be called multiple
times on an allocation without adverse effects.If a region of memory is freed with
cuMemFreeand a
subsequent call tocuMemAllocreturns memory with the same
device address,cuIpcGetMemHandlewill return a unique
handle for the new memory.IPC functionality is restricted to devices with support for unified
addressing on Linux and Windows operating systems. IPC functionality on
Windows is restricted to GPUs in TCC mode Users can test their device
for IPC functionality by callingcuapiDeviceGetAttribute
withCU_DEVICE_ATTRIBUTE_IPC_EVENT_SUPPORTED- Parameters:
-
dptr (
CUdeviceptr) – Base pointer to previously allocated device memory - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_MAP_FAILED,CUDA_ERROR_INVALID_VALUE -
pHandle (
CUipcMemHandle) – Pointer to user allocatedCUipcMemHandleto return the
handle in.
-
- cuda.cuda.cuIpcOpenMemHandle(CUipcMemHandle handle: CUipcMemHandle, unsigned int Flags)#
-
Opens an interprocess memory handle exported from another process and returns a device pointer usable in the local process.
Maps memory exported from another process with
cuIpcGetMemHandleinto the current device address space.
For contexts on different devicescuIpcOpenMemHandlecan
attempt to enable peer access between the devices as if the user called
cuCtxEnablePeerAccess. This behavior is controlled by the
CU_IPC_MEM_LAZY_ENABLE_PEER_ACCESSflag.
cuDeviceCanAccessPeercan determine if a mapping is
possible.Contexts that may open
CUipcMemHandlesare restricted in
the following way.CUipcMemHandlesfrom each
CUdevicein a given process may only be opened by one
CUcontextperCUdeviceper other process.If the memory handle has already been opened by the current context,
the reference count on the handle is incremented by 1 and the existing
device pointer is returned.Memory returned from
cuIpcOpenMemHandlemust be freed with
cuIpcCloseMemHandle.Calling
cuMemFreeon an exported memory region before
callingcuIpcCloseMemHandlein the importing context will
result in undefined behavior.IPC functionality is restricted to devices with support for unified
addressing on Linux and Windows operating systems. IPC functionality on
Windows is restricted to GPUs in TCC mode Users can test their device
for IPC functionality by callingcuapiDeviceGetAttribute
withCU_DEVICE_ATTRIBUTE_IPC_EVENT_SUPPORTED- Parameters:
-
-
handle (
CUipcMemHandle) –CUipcMemHandleto open -
Flags (unsigned int) – Flags for this operation. Must be specified as
CU_IPC_MEM_LAZY_ENABLE_PEER_ACCESS
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_MAP_FAILED,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_TOO_MANY_PEERS,CUDA_ERROR_INVALID_VALUE -
pdptr (
CUdeviceptr) – Returned device pointer
-
Notes
No guarantees are made about the address returned in *pdptr. In particular, multiple processes may not receive the same address for the same handle.
- cuda.cuda.cuIpcCloseMemHandle(dptr)#
-
Attempts to close memory mapped with
cuIpcOpenMemHandle.Decrements the reference count of the memory returned by
cuIpcOpenMemHandleby 1. When the reference count reaches
0, this API unmaps the memory. The original allocation in the exporting
process as well as imported mappings in other processes will be
unaffected.Any resources used to enable peer access will be freed if this is the
last mapping using them.IPC functionality is restricted to devices with support for unified
addressing on Linux and Windows operating systems. IPC functionality on
Windows is restricted to GPUs in TCC mode Users can test their device
for IPC functionality by callingcuapiDeviceGetAttribute
withCU_DEVICE_ATTRIBUTE_IPC_EVENT_SUPPORTED- Parameters:
-
dptr (
CUdeviceptr) – Device pointer returned bycuIpcOpenMemHandle - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_MAP_FAILED,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuMemHostRegister(p, size_t bytesize, unsigned int Flags)#
-
Registers an existing host memory range for use by CUDA.
Page-locks the memory range specified by p and bytesize and maps it
for the device(s) as specified by Flags. This memory range also is
added to the same tracking mechanism ascuMemHostAllocto
automatically accelerate calls to functions such as
cuMemcpyHtoD(). Since the memory can be accessed directly
by the device, it can be read or written with much higher bandwidth
than pageable memory that has not been registered. Page-locking
excessive amounts of memory may degrade system performance, since it
reduces the amount of memory available to the system for paging. As a
result, this function is best used sparingly to register staging areas
for data exchange between host and device.The Flags parameter enables different options to be specified that
affect the allocation, as follows.-
CU_MEMHOSTREGISTER_PORTABLE: The memory returned by this
call will be considered as pinned memory by all CUDA contexts, not
just the one that performed the allocation. -
CU_MEMHOSTREGISTER_DEVICEMAP: Maps the allocation into
the CUDA address space. The device pointer to the memory may be
obtained by callingcuMemHostGetDevicePointer(). -
CU_MEMHOSTREGISTER_IOMEMORY: The pointer is treated as
pointing to some I/O memory space, e.g. the PCI Express resource of a
3rd party device. -
CU_MEMHOSTREGISTER_READ_ONLY: The pointer is treated as
pointing to memory that is considered read-only by the device. On
platforms without
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS_USES_HOST_PAGE_TABLES,
this flag is required in order to register memory mapped to the CPU
as read-only. Support for the use of this flag can be queried from
the device attribute
CU_DEVICE_ATTRIBUTE_READ_ONLY_HOST_REGISTER_SUPPORTED.
Using this flag with a current context associated with a device that
does not have this attribute set will cause
cuMemHostRegisterto error with CUDA_ERROR_NOT_SUPPORTED.
All of these flags are orthogonal to one another: a developer may page-
lock memory that is portable or mapped with no restrictions.The
CU_MEMHOSTREGISTER_DEVICEMAPflag may be specified on
CUDA contexts for devices that do not support mapped pinned memory. The
failure is deferred tocuMemHostGetDevicePointer()because
the memory may be mapped into other CUDA contexts via the
CU_MEMHOSTREGISTER_PORTABLEflag.For devices that have a non-zero value for the device attribute
CU_DEVICE_ATTRIBUTE_CAN_USE_HOST_POINTER_FOR_REGISTERED_MEM,
the memory can also be accessed from the device using the host pointer
p. The device pointer returned by
cuMemHostGetDevicePointer()may or may not match the
original host pointer ptr and depends on the devices visible to the
application. If all devices visible to the application have a non-zero
value for the device attribute, the device pointer returned by
cuMemHostGetDevicePointer()will match the original pointer
ptr. If any device visible to the application has a zero value for
the device attribute, the device pointer returned by
cuMemHostGetDevicePointer()will not match the original
host pointer ptr, but it will be suitable for use on all devices
provided Unified Virtual Addressing is enabled. In such systems, it is
valid to access the memory using either pointer on devices that have a
non-zero value for the device attribute. Note however that such devices
should access the memory using only of the two pointers and not both.The memory page-locked by this function must be unregistered with
cuMemHostUnregister().- Parameters:
-
-
p (Any) – Host pointer to memory to page-lock
-
bytesize (size_t) – Size in bytes of the address range to page-lock
-
Flags (unsigned int) – Flags for allocation request
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED,CUDA_ERROR_NOT_PERMITTED,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
-
- cuda.cuda.cuMemHostUnregister(p)#
-
Unregisters a memory range that was registered with cuMemHostRegister.
Unmaps the memory range whose base address is specified by p, and
makes it pageable again.The base address must be the same one specified to
cuMemHostRegister().- Parameters:
-
p (Any) – Host pointer to memory to unregister
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED, - Return type:
-
CUresult
- cuda.cuda.cuMemcpy(dst, src, size_t ByteCount)#
-
Copies memory.
Copies data between two pointers. dst and src are base pointers of
the destination and source, respectively. ByteCount specifies the
number of bytes to copy. Note that this function infers the type of the
transfer (host to host, host to device, device to device, or device to
host) from the pointer values. This function is only allowed in
contexts which support unified addressing.- Parameters:
-
-
dst (
CUdeviceptr) – Destination unified virtual address space pointer -
src (
CUdeviceptr) – Source unified virtual address space pointer -
ByteCount (size_t) – Size of memory copy in bytes
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMemcpy,cudaMemcpyToSymbol,cudaMemcpyFromSymbol
- cuda.cuda.cuMemcpyPeer(dstDevice, dstContext, srcDevice, srcContext, size_t ByteCount)#
-
Copies device memory between two contexts.
Copies from device memory in one context to device memory in another
context. dstDevice is the base device pointer of the destination
memory and dstContext is the destination context. srcDevice is the
base device pointer of the source memory and srcContext is the source
pointer. ByteCount specifies the number of bytes to copy.- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
dstContext (
CUcontext) – Destination context -
srcDevice (
CUdeviceptr) – Source device pointer -
srcContext (
CUcontext) – Source context -
ByteCount (size_t) – Size of memory copy in bytes
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuMemcpyHtoD(dstDevice, srcHost, size_t ByteCount)#
-
Copies memory from Host to Device.
Copies from host memory to device memory. dstDevice and srcHost are
the base addresses of the destination and source, respectively.
ByteCount specifies the number of bytes to copy.- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
srcHost (Any) – Source host pointer
-
ByteCount (size_t) – Size of memory copy in bytes
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMemcpy,cudaMemcpyToSymbol
- cuda.cuda.cuMemcpyDtoH(dstHost, srcDevice, size_t ByteCount)#
-
Copies memory from Device to Host.
Copies from device to host memory. dstHost and srcDevice specify
the base pointers of the destination and source, respectively.
ByteCount specifies the number of bytes to copy.- Parameters:
-
-
dstHost (Any) – Destination host pointer
-
srcDevice (
CUdeviceptr) – Source device pointer -
ByteCount (size_t) – Size of memory copy in bytes
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMemcpy,cudaMemcpyFromSymbol
- cuda.cuda.cuMemcpyDtoD(dstDevice, srcDevice, size_t ByteCount)#
-
Copies memory from Device to Device.
Copies from device memory to device memory. dstDevice and srcDevice
are the base pointers of the destination and source, respectively.
ByteCount specifies the number of bytes to copy.- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
srcDevice (
CUdeviceptr) – Source device pointer -
ByteCount (size_t) – Size of memory copy in bytes
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMemcpy,cudaMemcpyToSymbol,cudaMemcpyFromSymbol
- cuda.cuda.cuMemcpyDtoA(dstArray, size_t dstOffset, srcDevice, size_t ByteCount)#
-
Copies memory from Device to Array.
Copies from device memory to a 1D CUDA array. dstArray and
dstOffset specify the CUDA array handle and starting index of the
destination data. srcDevice specifies the base pointer of the source.
ByteCount specifies the number of bytes to copy.- Parameters:
-
-
dstArray (
CUarray) – Destination array -
dstOffset (size_t) – Offset in bytes of destination array
-
srcDevice (
CUdeviceptr) – Source device pointer -
ByteCount (size_t) – Size of memory copy in bytes
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMemcpyToArray
- cuda.cuda.cuMemcpyAtoD(dstDevice, srcArray, size_t srcOffset, size_t ByteCount)#
-
Copies memory from Array to Device.
Copies from one 1D CUDA array to device memory. dstDevice specifies
the base pointer of the destination and must be naturally aligned with
the CUDA array elements. srcArray and srcOffset specify the CUDA
array handle and the offset in bytes into the array where the copy is
to begin. ByteCount specifies the number of bytes to copy and must be
evenly divisible by the array element size.- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
srcArray (
CUarray) – Source array -
srcOffset (size_t) – Offset in bytes of source array
-
ByteCount (size_t) – Size of memory copy in bytes
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMemcpyFromArray
- cuda.cuda.cuMemcpyHtoA(dstArray, size_t dstOffset, srcHost, size_t ByteCount)#
-
Copies memory from Host to Array.
Copies from host memory to a 1D CUDA array. dstArray and dstOffset
specify the CUDA array handle and starting offset in bytes of the
destination data. pSrc specifies the base address of the source.
ByteCount specifies the number of bytes to copy.- Parameters:
-
-
dstArray (
CUarray) – Destination array -
dstOffset (size_t) – Offset in bytes of destination array
-
srcHost (Any) – Source host pointer
-
ByteCount (size_t) – Size of memory copy in bytes
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMemcpyToArray
- cuda.cuda.cuMemcpyAtoH(dstHost, srcArray, size_t srcOffset, size_t ByteCount)#
-
Copies memory from Array to Host.
Copies from one 1D CUDA array to host memory. dstHost specifies the
base pointer of the destination. srcArray and srcOffset specify the
CUDA array handle and starting offset in bytes of the source data.
ByteCount specifies the number of bytes to copy.- Parameters:
-
-
dstHost (Any) – Destination device pointer
-
srcArray (
CUarray) – Source array -
srcOffset (size_t) – Offset in bytes of source array
-
ByteCount (size_t) – Size of memory copy in bytes
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMemcpyFromArray
- cuda.cuda.cuMemcpyAtoA(dstArray, size_t dstOffset, srcArray, size_t srcOffset, size_t ByteCount)#
-
Copies memory from Array to Array.
Copies from one 1D CUDA array to another. dstArray and srcArray
specify the handles of the destination and source CUDA arrays for the
copy, respectively. dstOffset and srcOffset specify the destination
and source offsets in bytes into the CUDA arrays. ByteCount is the
number of bytes to be copied. The size of the elements in the CUDA
arrays need not be the same format, but the elements must be the same
size; and count must be evenly divisible by that size.- Parameters:
-
-
dstArray (
CUarray) – Destination array -
dstOffset (size_t) – Offset in bytes of destination array
-
srcArray (
CUarray) – Source array -
srcOffset (size_t) – Offset in bytes of source array
-
ByteCount (size_t) – Size of memory copy in bytes
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMemcpyArrayToArray
- cuda.cuda.cuMemcpy2D(CUDA_MEMCPY2D pCopy: CUDA_MEMCPY2D)#
-
Copies memory for 2D arrays.
Perform a 2D memory copy according to the parameters specified in
pCopy. TheCUDA_MEMCPY2Dstructure is defined as:View CUDA Toolkit Documentation for a C++ code example
where:
-
srcMemoryTypeanddstMemoryTypespecify the
type of memory of the source and destination, respectively;
CUmemorytype_enumis defined as:
View CUDA Toolkit Documentation for a C++ code example
If
srcMemoryTypeisCU_MEMORYTYPE_UNIFIED,
srcDeviceandsrcPitchspecify the (unified
virtual address space) base address of the source data and the bytes
per row to apply.srcArrayis ignored. This value may be
used only if unified addressing is supported in the calling context.If
srcMemoryTypeisCU_MEMORYTYPE_HOST,
srcHostandsrcPitchspecify the (host) base
address of the source data and the bytes per row to apply.
srcArrayis ignored.If
srcMemoryTypeisCU_MEMORYTYPE_DEVICE,
srcDeviceandsrcPitchspecify the (device)
base address of the source data and the bytes per row to apply.
srcArrayis ignored.If
srcMemoryTypeisCU_MEMORYTYPE_ARRAY,
srcArrayspecifies the handle of the source data.
srcHost,srcDeviceandsrcPitchare
ignored.If
dstMemoryTypeisCU_MEMORYTYPE_HOST,
dstHostanddstPitchspecify the (host) base
address of the destination data and the bytes per row to apply.
dstArrayis ignored.If
dstMemoryTypeisCU_MEMORYTYPE_UNIFIED,
dstDeviceanddstPitchspecify the (unified
virtual address space) base address of the source data and the bytes
per row to apply.dstArrayis ignored. This value may be
used only if unified addressing is supported in the calling context.If
dstMemoryTypeisCU_MEMORYTYPE_DEVICE,
dstDeviceanddstPitchspecify the (device)
base address of the destination data and the bytes per row to apply.
dstArrayis ignored.If
dstMemoryTypeisCU_MEMORYTYPE_ARRAY,
dstArrayspecifies the handle of the destination data.
dstHost,dstDeviceanddstPitchare
ignored.-
srcXInBytesandsrcYspecify the base address
of the source data for the copy.
For host pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For device pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For CUDA arrays,
srcXInBytesmust be evenly divisible by
the array element size.-
dstXInBytesanddstYspecify the base address
of the destination data for the copy.
For host pointers, the base address is
View CUDA Toolkit Documentation for a C++ code example
For device pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For CUDA arrays,
dstXInBytesmust be evenly divisible by
the array element size.-
WidthInBytesandHeightspecify the width (in
bytes) and height of the 2D copy being performed. -
If specified,
srcPitchmust be greater than or equal to
WidthInBytes+srcXInBytes, and
dstPitchmust be greater than or equal to
WidthInBytes+ dstXInBytes.
cuMemcpy2D()returns an error if any pitch is greater than
the maximum allowed (CU_DEVICE_ATTRIBUTE_MAX_PITCH).
cuMemAllocPitch()passes back pitches that always work with
cuMemcpy2D(). On intra-device memory copies (device to
device, CUDA array to device, CUDA array to CUDA array),
cuMemcpy2D()may fail for pitches not computed by
cuMemAllocPitch().cuMemcpy2DUnaligned()does
not have this restriction, but may run significantly slower in the
cases wherecuMemcpy2D()would have returned an error code.- Parameters:
-
pCopy (
CUDA_MEMCPY2D) – Parameters for the memory copy - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMemcpy2D,cudaMemcpy2DToArray,cudaMemcpy2DFromArray -
- cuda.cuda.cuMemcpy2DUnaligned(CUDA_MEMCPY2D pCopy: CUDA_MEMCPY2D)#
-
Copies memory for 2D arrays.
Perform a 2D memory copy according to the parameters specified in
pCopy. TheCUDA_MEMCPY2Dstructure is defined as:View CUDA Toolkit Documentation for a C++ code example
where:
-
srcMemoryTypeanddstMemoryTypespecify the
type of memory of the source and destination, respectively;
CUmemorytype_enumis defined as:
View CUDA Toolkit Documentation for a C++ code example
If
srcMemoryTypeisCU_MEMORYTYPE_UNIFIED,
srcDeviceandsrcPitchspecify the (unified
virtual address space) base address of the source data and the bytes
per row to apply.srcArrayis ignored. This value may be
used only if unified addressing is supported in the calling context.If
srcMemoryTypeisCU_MEMORYTYPE_HOST,
srcHostandsrcPitchspecify the (host) base
address of the source data and the bytes per row to apply.
srcArrayis ignored.If
srcMemoryTypeisCU_MEMORYTYPE_DEVICE,
srcDeviceandsrcPitchspecify the (device)
base address of the source data and the bytes per row to apply.
srcArrayis ignored.If
srcMemoryTypeisCU_MEMORYTYPE_ARRAY,
srcArrayspecifies the handle of the source data.
srcHost,srcDeviceandsrcPitchare
ignored.If
dstMemoryTypeisCU_MEMORYTYPE_UNIFIED,
dstDeviceanddstPitchspecify the (unified
virtual address space) base address of the source data and the bytes
per row to apply.dstArrayis ignored. This value may be
used only if unified addressing is supported in the calling context.If
dstMemoryTypeisCU_MEMORYTYPE_HOST,
dstHostanddstPitchspecify the (host) base
address of the destination data and the bytes per row to apply.
dstArrayis ignored.If
dstMemoryTypeisCU_MEMORYTYPE_DEVICE,
dstDeviceanddstPitchspecify the (device)
base address of the destination data and the bytes per row to apply.
dstArrayis ignored.If
dstMemoryTypeisCU_MEMORYTYPE_ARRAY,
dstArrayspecifies the handle of the destination data.
dstHost,dstDeviceanddstPitchare
ignored.-
srcXInBytesandsrcYspecify the base address
of the source data for the copy.
For host pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For device pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For CUDA arrays,
srcXInBytesmust be evenly divisible by
the array element size.-
dstXInBytesanddstYspecify the base address
of the destination data for the copy.
For host pointers, the base address is
View CUDA Toolkit Documentation for a C++ code example
For device pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For CUDA arrays,
dstXInBytesmust be evenly divisible by
the array element size.-
WidthInBytesandHeightspecify the width (in
bytes) and height of the 2D copy being performed. -
If specified,
srcPitchmust be greater than or equal to
WidthInBytes+srcXInBytes, and
dstPitchmust be greater than or equal to
WidthInBytes+ dstXInBytes.
cuMemcpy2D()returns an error if any pitch is greater than
the maximum allowed (CU_DEVICE_ATTRIBUTE_MAX_PITCH).
cuMemAllocPitch()passes back pitches that always work with
cuMemcpy2D(). On intra-device memory copies (device to
device, CUDA array to device, CUDA array to CUDA array),
cuMemcpy2D()may fail for pitches not computed by
cuMemAllocPitch().cuMemcpy2DUnaligned()does
not have this restriction, but may run significantly slower in the
cases wherecuMemcpy2D()would have returned an error code.- Parameters:
-
pCopy (
CUDA_MEMCPY2D) – Parameters for the memory copy - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMemcpy2D,cudaMemcpy2DToArray,cudaMemcpy2DFromArray -
- cuda.cuda.cuMemcpy3D(CUDA_MEMCPY3D pCopy: CUDA_MEMCPY3D)#
-
Copies memory for 3D arrays.
Perform a 3D memory copy according to the parameters specified in
pCopy. TheCUDA_MEMCPY3Dstructure is defined as:View CUDA Toolkit Documentation for a C++ code example
where:
-
srcMemoryTypeanddstMemoryTypespecify the
type of memory of the source and destination, respectively;
CUmemorytype_enumis defined as:
View CUDA Toolkit Documentation for a C++ code example
If
srcMemoryTypeisCU_MEMORYTYPE_UNIFIED,
srcDeviceandsrcPitchspecify the (unified
virtual address space) base address of the source data and the bytes
per row to apply.srcArrayis ignored. This value may be
used only if unified addressing is supported in the calling context.If
srcMemoryTypeisCU_MEMORYTYPE_HOST,
srcHost,srcPitchandsrcHeight
specify the (host) base address of the source data, the bytes per row,
and the height of each 2D slice of the 3D array.srcArray
is ignored.If
srcMemoryTypeisCU_MEMORYTYPE_DEVICE,
srcDevice,srcPitchandsrcHeight
specify the (device) base address of the source data, the bytes per
row, and the height of each 2D slice of the 3D array.
srcArrayis ignored.If
srcMemoryTypeisCU_MEMORYTYPE_ARRAY,
srcArrayspecifies the handle of the source data.
srcHost,srcDevice,srcPitchand
srcHeightare ignored.If
dstMemoryTypeisCU_MEMORYTYPE_UNIFIED,
dstDeviceanddstPitchspecify the (unified
virtual address space) base address of the source data and the bytes
per row to apply.dstArrayis ignored. This value may be
used only if unified addressing is supported in the calling context.If
dstMemoryTypeisCU_MEMORYTYPE_HOST,
dstHostanddstPitchspecify the (host) base
address of the destination data, the bytes per row, and the height of
each 2D slice of the 3D array.dstArrayis ignored.If
dstMemoryTypeisCU_MEMORYTYPE_DEVICE,
dstDeviceanddstPitchspecify the (device)
base address of the destination data, the bytes per row, and the height
of each 2D slice of the 3D array.dstArrayis ignored.If
dstMemoryTypeisCU_MEMORYTYPE_ARRAY,
dstArrayspecifies the handle of the destination data.
dstHost,dstDevice,dstPitchand
dstHeightare ignored.-
srcXInBytes,srcYandsrcZ
specify the base address of the source data for the copy.
For host pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For device pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For CUDA arrays,
srcXInBytesmust be evenly divisible by
the array element size.-
dstXInBytes,
dstYanddstZspecify the base
address of the destination data for the copy.
For host pointers, the base address is
View CUDA Toolkit Documentation for a C++ code example
For device pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For CUDA arrays,
dstXInBytesmust be evenly divisible by
the array element size.-
WidthInBytes,HeightandDepth
specify the width (in bytes), height and depth of the 3D copy being
performed. -
If specified,
srcPitchmust be greater than or equal to
WidthInBytes+srcXInBytes, and
dstPitchmust be greater than or equal to
WidthInBytes+ dstXInBytes. -
If specified,
srcHeightmust be greater than or equal to
Height+srcY, anddstHeightmust
be greater than or equal toHeight+dstY.
cuMemcpy3D()returns an error if any pitch is greater than
the maximum allowed (CU_DEVICE_ATTRIBUTE_MAX_PITCH).The
srcLODanddstLODmembers of the
CUDA_MEMCPY3Dstructure must be set to 0.- Parameters:
-
pCopy (
CUDA_MEMCPY3D) – Parameters for the memory copy - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMemcpy3D -
- cuda.cuda.cuMemcpy3DPeer(CUDA_MEMCPY3D_PEER pCopy: CUDA_MEMCPY3D_PEER)#
-
Copies memory between contexts.
Perform a 3D memory copy according to the parameters specified in
pCopy. See the definition of theCUDA_MEMCPY3D_PEER
structure for documentation of its parameters.- Parameters:
-
pCopy (
CUDA_MEMCPY3D_PEER) – Parameters for the memory copy - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuMemcpyAsync(dst, src, size_t ByteCount, hStream)#
-
Copies memory asynchronously.
Copies data between two pointers. dst and src are base pointers of
the destination and source, respectively. ByteCount specifies the
number of bytes to copy. Note that this function infers the type of the
transfer (host to host, host to device, device to device, or device to
host) from the pointer values. This function is only allowed in
contexts which support unified addressing.- Parameters:
-
-
dst (
CUdeviceptr) – Destination unified virtual address space pointer -
src (
CUdeviceptr) – Source unified virtual address space pointer -
ByteCount (size_t) – Size of memory copy in bytes
-
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemcpyAsync,cudaMemcpyToSymbolAsync,cudaMemcpyFromSymbolAsync
- cuda.cuda.cuMemcpyPeerAsync(dstDevice, dstContext, srcDevice, srcContext, size_t ByteCount, hStream)#
-
Copies device memory between two contexts asynchronously.
Copies from device memory in one context to device memory in another
context. dstDevice is the base device pointer of the destination
memory and dstContext is the destination context. srcDevice is the
base device pointer of the source memory and srcContext is the source
pointer. ByteCount specifies the number of bytes to copy.- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
dstContext (
CUcontext) – Destination context -
srcDevice (
CUdeviceptr) – Source device pointer -
srcContext (
CUcontext) – Source context -
ByteCount (size_t) – Size of memory copy in bytes
-
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
- cuda.cuda.cuMemcpyHtoDAsync(dstDevice, srcHost, size_t ByteCount, hStream)#
-
Copies memory from Host to Device.
Copies from host memory to device memory. dstDevice and srcHost are
the base addresses of the destination and source, respectively.
ByteCount specifies the number of bytes to copy.- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
srcHost (Any) – Source host pointer
-
ByteCount (size_t) – Size of memory copy in bytes
-
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemcpyAsync,cudaMemcpyToSymbolAsync
- cuda.cuda.cuMemcpyDtoHAsync(dstHost, srcDevice, size_t ByteCount, hStream)#
-
Copies memory from Device to Host.
Copies from device to host memory. dstHost and srcDevice specify
the base pointers of the destination and source, respectively.
ByteCount specifies the number of bytes to copy.- Parameters:
-
-
dstHost (Any) – Destination host pointer
-
srcDevice (
CUdeviceptr) – Source device pointer -
ByteCount (size_t) – Size of memory copy in bytes
-
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemcpyAsync,cudaMemcpyFromSymbolAsync
- cuda.cuda.cuMemcpyDtoDAsync(dstDevice, srcDevice, size_t ByteCount, hStream)#
-
Copies memory from Device to Device.
Copies from device memory to device memory. dstDevice and srcDevice
are the base pointers of the destination and source, respectively.
ByteCount specifies the number of bytes to copy.- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
srcDevice (
CUdeviceptr) – Source device pointer -
ByteCount (size_t) – Size of memory copy in bytes
-
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemcpyAsync,cudaMemcpyToSymbolAsync,cudaMemcpyFromSymbolAsync
- cuda.cuda.cuMemcpyHtoAAsync(dstArray, size_t dstOffset, srcHost, size_t ByteCount, hStream)#
-
Copies memory from Host to Array.
Copies from host memory to a 1D CUDA array. dstArray and dstOffset
specify the CUDA array handle and starting offset in bytes of the
destination data. srcHost specifies the base address of the source.
ByteCount specifies the number of bytes to copy.- Parameters:
-
-
dstArray (
CUarray) – Destination array -
dstOffset (size_t) – Offset in bytes of destination array
-
srcHost (Any) – Source host pointer
-
ByteCount (size_t) – Size of memory copy in bytes
-
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemcpyToArrayAsync
- cuda.cuda.cuMemcpyAtoHAsync(dstHost, srcArray, size_t srcOffset, size_t ByteCount, hStream)#
-
Copies memory from Array to Host.
Copies from one 1D CUDA array to host memory. dstHost specifies the
base pointer of the destination. srcArray and srcOffset specify the
CUDA array handle and starting offset in bytes of the source data.
ByteCount specifies the number of bytes to copy.- Parameters:
-
-
dstHost (Any) – Destination pointer
-
srcArray (
CUarray) – Source array -
srcOffset (size_t) – Offset in bytes of source array
-
ByteCount (size_t) – Size of memory copy in bytes
-
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemcpyFromArrayAsync
- cuda.cuda.cuMemcpy2DAsync(CUDA_MEMCPY2D pCopy: CUDA_MEMCPY2D, hStream)#
-
Copies memory for 2D arrays.
Perform a 2D memory copy according to the parameters specified in
pCopy. TheCUDA_MEMCPY2Dstructure is defined as:View CUDA Toolkit Documentation for a C++ code example
where:
-
srcMemoryTypeanddstMemoryTypespecify the
type of memory of the source and destination, respectively;
CUmemorytype_enumis defined as:
View CUDA Toolkit Documentation for a C++ code example
If
srcMemoryTypeisCU_MEMORYTYPE_HOST,
srcHostandsrcPitchspecify the (host) base
address of the source data and the bytes per row to apply.
srcArrayis ignored.If
srcMemoryTypeisCU_MEMORYTYPE_UNIFIED,
srcDeviceandsrcPitchspecify the (unified
virtual address space) base address of the source data and the bytes
per row to apply.srcArrayis ignored. This value may be
used only if unified addressing is supported in the calling context.If
srcMemoryTypeisCU_MEMORYTYPE_DEVICE,
srcDeviceandsrcPitchspecify the (device)
base address of the source data and the bytes per row to apply.
srcArrayis ignored.If
srcMemoryTypeisCU_MEMORYTYPE_ARRAY,
srcArrayspecifies the handle of the source data.
srcHost,srcDeviceandsrcPitchare
ignored.If
dstMemoryTypeisCU_MEMORYTYPE_UNIFIED,
dstDeviceanddstPitchspecify the (unified
virtual address space) base address of the source data and the bytes
per row to apply.dstArrayis ignored. This value may be
used only if unified addressing is supported in the calling context.If
dstMemoryTypeisCU_MEMORYTYPE_HOST,
dstHostanddstPitchspecify the (host) base
address of the destination data and the bytes per row to apply.
dstArrayis ignored.If
dstMemoryTypeisCU_MEMORYTYPE_DEVICE,
dstDeviceanddstPitchspecify the (device)
base address of the destination data and the bytes per row to apply.
dstArrayis ignored.If
dstMemoryTypeisCU_MEMORYTYPE_ARRAY,
dstArrayspecifies the handle of the destination data.
dstHost,dstDeviceanddstPitchare
ignored.-
srcXInBytesandsrcYspecify the base address
of the source data for the copy.
For host pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For device pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For CUDA arrays,
srcXInBytesmust be evenly divisible by
the array element size.-
dstXInBytesanddstYspecify the base address
of the destination data for the copy.
For host pointers, the base address is
View CUDA Toolkit Documentation for a C++ code example
For device pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For CUDA arrays,
dstXInBytesmust be evenly divisible by
the array element size.-
WidthInBytesandHeightspecify the width (in
bytes) and height of the 2D copy being performed. -
If specified,
srcPitchmust be greater than or equal to
WidthInBytes+srcXInBytes, and
dstPitchmust be greater than or equal to
WidthInBytes+ dstXInBytes. -
If specified,
srcPitchmust be greater than or equal to
WidthInBytes+srcXInBytes, and
dstPitchmust be greater than or equal to
WidthInBytes+ dstXInBytes. -
If specified,
srcHeightmust be greater than or equal to
Height+srcY, anddstHeightmust
be greater than or equal toHeight+dstY.
cuMemcpy2DAsync()returns an error if any pitch is greater
than the maximum allowed (CU_DEVICE_ATTRIBUTE_MAX_PITCH).
cuMemAllocPitch()passes back pitches that always work with
cuMemcpy2D(). On intra-device memory copies (device to
device, CUDA array to device, CUDA array to CUDA array),
cuMemcpy2DAsync()may fail for pitches not computed by
cuMemAllocPitch().- Parameters:
-
-
pCopy (
CUDA_MEMCPY2D) – Parameters for the memory copy -
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemcpy2DAsync,cudaMemcpy2DToArrayAsync,cudaMemcpy2DFromArrayAsync -
- cuda.cuda.cuMemcpy3DAsync(CUDA_MEMCPY3D pCopy: CUDA_MEMCPY3D, hStream)#
-
Copies memory for 3D arrays.
Perform a 3D memory copy according to the parameters specified in
pCopy. TheCUDA_MEMCPY3Dstructure is defined as:View CUDA Toolkit Documentation for a C++ code example
where:
-
srcMemoryTypeanddstMemoryTypespecify the
type of memory of the source and destination, respectively;
CUmemorytype_enumis defined as:
View CUDA Toolkit Documentation for a C++ code example
If
srcMemoryTypeisCU_MEMORYTYPE_UNIFIED,
srcDeviceandsrcPitchspecify the (unified
virtual address space) base address of the source data and the bytes
per row to apply.srcArrayis ignored. This value may be
used only if unified addressing is supported in the calling context.If
srcMemoryTypeisCU_MEMORYTYPE_HOST,
srcHost,srcPitchandsrcHeight
specify the (host) base address of the source data, the bytes per row,
and the height of each 2D slice of the 3D array.srcArray
is ignored.If
srcMemoryTypeisCU_MEMORYTYPE_DEVICE,
srcDevice,srcPitchandsrcHeight
specify the (device) base address of the source data, the bytes per
row, and the height of each 2D slice of the 3D array.
srcArrayis ignored.If
srcMemoryTypeisCU_MEMORYTYPE_ARRAY,
srcArrayspecifies the handle of the source data.
srcHost,srcDevice,srcPitchand
srcHeightare ignored.If
dstMemoryTypeisCU_MEMORYTYPE_UNIFIED,
dstDeviceanddstPitchspecify the (unified
virtual address space) base address of the source data and the bytes
per row to apply.dstArrayis ignored. This value may be
used only if unified addressing is supported in the calling context.If
dstMemoryTypeisCU_MEMORYTYPE_HOST,
dstHostanddstPitchspecify the (host) base
address of the destination data, the bytes per row, and the height of
each 2D slice of the 3D array.dstArrayis ignored.If
dstMemoryTypeisCU_MEMORYTYPE_DEVICE,
dstDeviceanddstPitchspecify the (device)
base address of the destination data, the bytes per row, and the height
of each 2D slice of the 3D array.dstArrayis ignored.If
dstMemoryTypeisCU_MEMORYTYPE_ARRAY,
dstArrayspecifies the handle of the destination data.
dstHost,dstDevice,dstPitchand
dstHeightare ignored.-
srcXInBytes,srcYandsrcZ
specify the base address of the source data for the copy.
For host pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For device pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For CUDA arrays,
srcXInBytesmust be evenly divisible by
the array element size.-
dstXInBytes,
dstYanddstZspecify the base
address of the destination data for the copy.
For host pointers, the base address is
View CUDA Toolkit Documentation for a C++ code example
For device pointers, the starting address is
View CUDA Toolkit Documentation for a C++ code example
For CUDA arrays,
dstXInBytesmust be evenly divisible by
the array element size.-
WidthInBytes,HeightandDepth
specify the width (in bytes), height and depth of the 3D copy being
performed. -
If specified,
srcPitchmust be greater than or equal to
WidthInBytes+srcXInBytes, and
dstPitchmust be greater than or equal to
WidthInBytes+ dstXInBytes. -
If specified,
srcHeightmust be greater than or equal to
Height+srcY, anddstHeightmust
be greater than or equal toHeight+dstY.
cuMemcpy3DAsync()returns an error if any pitch is greater
than the maximum allowed (CU_DEVICE_ATTRIBUTE_MAX_PITCH).The
srcLODanddstLODmembers of the
CUDA_MEMCPY3Dstructure must be set to 0.- Parameters:
-
-
pCopy (
CUDA_MEMCPY3D) – Parameters for the memory copy -
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemcpy3DAsync -
- cuda.cuda.cuMemcpy3DPeerAsync(CUDA_MEMCPY3D_PEER pCopy: CUDA_MEMCPY3D_PEER, hStream)#
-
Copies memory between contexts asynchronously.
Perform a 3D memory copy according to the parameters specified in
pCopy. See the definition of theCUDA_MEMCPY3D_PEER
structure for documentation of its parameters.- Parameters:
-
-
pCopy (
CUDA_MEMCPY3D_PEER) – Parameters for the memory copy -
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuMemsetD8(dstDevice, unsigned char uc, size_t N)#
-
Initializes device memory.
Sets the memory range of N 8-bit values to the specified value uc.
- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
uc (unsigned char) – Value to set
-
N (size_t) – Number of elements
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemset
- cuda.cuda.cuMemsetD16(dstDevice, unsigned short us, size_t N)#
-
Initializes device memory.
Sets the memory range of N 16-bit values to the specified value us.
The dstDevice pointer must be two byte aligned.- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
us (unsigned short) – Value to set
-
N (size_t) – Number of elements
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemset
- cuda.cuda.cuMemsetD32(dstDevice, unsigned int ui, size_t N)#
-
Initializes device memory.
Sets the memory range of N 32-bit values to the specified value ui.
The dstDevice pointer must be four byte aligned.- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
ui (unsigned int) – Value to set
-
N (size_t) – Number of elements
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32Async,cudaMemset
- cuda.cuda.cuMemsetD2D8(dstDevice, size_t dstPitch, unsigned char uc, size_t Width, size_t Height)#
-
Initializes device memory.
Sets the 2D memory range of Width 8-bit values to the specified value
uc. Height specifies the number of rows to set, and dstPitch
specifies the number of bytes between each row. This function performs
fastest when the pitch is one that has been passed back by
cuMemAllocPitch().- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
dstPitch (size_t) – Pitch of destination device pointer(Unused if Height is 1)
-
uc (unsigned char) – Value to set
-
Width (size_t) – Width of row
-
Height (size_t) – Number of rows
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemset2D
- cuda.cuda.cuMemsetD2D16(dstDevice, size_t dstPitch, unsigned short us, size_t Width, size_t Height)#
-
Initializes device memory.
Sets the 2D memory range of Width 16-bit values to the specified
value us. Height specifies the number of rows to set, and
dstPitch specifies the number of bytes between each row. The
dstDevice pointer and dstPitch offset must be two byte aligned.
This function performs fastest when the pitch is one that has been
passed back bycuMemAllocPitch().- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
dstPitch (size_t) – Pitch of destination device pointer(Unused if Height is 1)
-
us (unsigned short) – Value to set
-
Width (size_t) – Width of row
-
Height (size_t) – Number of rows
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemset2D
- cuda.cuda.cuMemsetD2D32(dstDevice, size_t dstPitch, unsigned int ui, size_t Width, size_t Height)#
-
Initializes device memory.
Sets the 2D memory range of Width 32-bit values to the specified
value ui. Height specifies the number of rows to set, and
dstPitch specifies the number of bytes between each row. The
dstDevice pointer and dstPitch offset must be four byte aligned.
This function performs fastest when the pitch is one that has been
passed back bycuMemAllocPitch().- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
dstPitch (size_t) – Pitch of destination device pointer(Unused if Height is 1)
-
ui (unsigned int) – Value to set
-
Width (size_t) – Width of row
-
Height (size_t) – Number of rows
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemset2D
- cuda.cuda.cuMemsetD8Async(dstDevice, unsigned char uc, size_t N, hStream)#
-
Sets device memory.
Sets the memory range of N 8-bit values to the specified value uc.
- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
uc (unsigned char) – Value to set
-
N (size_t) – Number of elements
-
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemsetAsync
- cuda.cuda.cuMemsetD16Async(dstDevice, unsigned short us, size_t N, hStream)#
-
Sets device memory.
Sets the memory range of N 16-bit values to the specified value us.
The dstDevice pointer must be two byte aligned.- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
us (unsigned short) – Value to set
-
N (size_t) – Number of elements
-
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD32,cuMemsetD32Async,cudaMemsetAsync
- cuda.cuda.cuMemsetD32Async(dstDevice, unsigned int ui, size_t N, hStream)#
-
Sets device memory.
Sets the memory range of N 32-bit values to the specified value ui.
The dstDevice pointer must be four byte aligned.- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
ui (unsigned int) – Value to set
-
N (size_t) – Number of elements
-
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cudaMemsetAsync
- cuda.cuda.cuMemsetD2D8Async(dstDevice, size_t dstPitch, unsigned char uc, size_t Width, size_t Height, hStream)#
-
Sets device memory.
Sets the 2D memory range of Width 8-bit values to the specified value
uc. Height specifies the number of rows to set, and dstPitch
specifies the number of bytes between each row. This function performs
fastest when the pitch is one that has been passed back by
cuMemAllocPitch().- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
dstPitch (size_t) – Pitch of destination device pointer(Unused if Height is 1)
-
uc (unsigned char) – Value to set
-
Width (size_t) – Width of row
-
Height (size_t) – Number of rows
-
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemset2DAsync
- cuda.cuda.cuMemsetD2D16Async(dstDevice, size_t dstPitch, unsigned short us, size_t Width, size_t Height, hStream)#
-
Sets device memory.
Sets the 2D memory range of Width 16-bit values to the specified
value us. Height specifies the number of rows to set, and
dstPitch specifies the number of bytes between each row. The
dstDevice pointer and dstPitch offset must be two byte aligned.
This function performs fastest when the pitch is one that has been
passed back bycuMemAllocPitch().- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
dstPitch (size_t) – Pitch of destination device pointer(Unused if Height is 1)
-
us (unsigned short) – Value to set
-
Width (size_t) – Width of row
-
Height (size_t) – Number of rows
-
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD2D32Async,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemset2DAsync
- cuda.cuda.cuMemsetD2D32Async(dstDevice, size_t dstPitch, unsigned int ui, size_t Width, size_t Height, hStream)#
-
Sets device memory.
Sets the 2D memory range of Width 32-bit values to the specified
value ui. Height specifies the number of rows to set, and
dstPitch specifies the number of bytes between each row. The
dstDevice pointer and dstPitch offset must be four byte aligned.
This function performs fastest when the pitch is one that has been
passed back bycuMemAllocPitch().- Parameters:
-
-
dstDevice (
CUdeviceptr) – Destination device pointer -
dstPitch (size_t) – Pitch of destination device pointer(Unused if Height is 1)
-
ui (unsigned int) – Value to set
-
Width (size_t) – Width of row
-
Height (size_t) – Number of rows
-
hStream (
CUstreamorcudaStream_t) – Stream identifier
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D8Async,cuMemsetD2D16,cuMemsetD2D16Async,cuMemsetD2D32,cuMemsetD8,cuMemsetD8Async,cuMemsetD16,cuMemsetD16Async,cuMemsetD32,cuMemsetD32Async,cudaMemset2DAsync
- cuda.cuda.cuArrayCreate(CUDA_ARRAY_DESCRIPTOR pAllocateArray: CUDA_ARRAY_DESCRIPTOR)#
-
Creates a 1D or 2D CUDA array.
Creates a CUDA array according to the
CUDA_ARRAY_DESCRIPTOR
structure pAllocateArray and returns a handle to the new CUDA array
in *pHandle. TheCUDA_ARRAY_DESCRIPTORis defined as:View CUDA Toolkit Documentation for a C++ code example
where:
-
Width, and Height are the width, and height of the CUDA array (in
elements); the CUDA array is one-dimensional if height is 0, two-
dimensional otherwise; -
Formatspecifies the format of the elements;
CUarray_formatis defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
NumChannels specifies the number of packed components per CUDA
array element; it may be 1, 2, or 4;
Here are examples of CUDA array descriptions:
Description for a CUDA array of 2048 floats:
View CUDA Toolkit Documentation for a C++ code example
Description for a 64 x 64 CUDA array of floats:
View CUDA Toolkit Documentation for a C++ code example
Description for a width x height CUDA array of 64-bit, 4×16-bit
float16’s:View CUDA Toolkit Documentation for a C++ code example
Description for a width x height CUDA array of 16-bit elements,
each of which is two 8-bit unsigned chars:View CUDA Toolkit Documentation for a C++ code example
- Parameters:
-
pAllocateArray (
CUDA_ARRAY_DESCRIPTOR) – Array descriptor - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_UNKNOWN -
pHandle (
CUarray) – Returned array
-
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMallocArray -
- cuda.cuda.cuArrayGetDescriptor(hArray)#
-
Get a 1D or 2D CUDA array descriptor.
Returns in *pArrayDescriptor a descriptor containing information on
the format and dimensions of the CUDA array hArray. It is useful for
subroutines that have been passed a CUDA array, but need to know the
CUDA array parameters for validation or other purposes.- Parameters:
-
hArray (
CUarray) – Array to get descriptor of - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE -
pArrayDescriptor (
CUDA_ARRAY_DESCRIPTOR) – Returned array descriptor
-
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaArrayGetInfo
- cuda.cuda.cuArrayGetSparseProperties(array)#
-
Returns the layout properties of a sparse CUDA array.
Returns the layout properties of a sparse CUDA array in
sparseProperties If the CUDA array is not allocated with flag
CUDA_ARRAY3D_SPARSECUDA_ERROR_INVALID_VALUE
will be returned.If the returned value in
flags
containsCU_ARRAY_SPARSE_PROPERTIES_SINGLE_MIPTAIL, then
miptailSizerepresents the
total size of the array. Otherwise, it will be zero. Also, the returned
value inmiptailFirstLevelis
always zero. Note that the array must have been allocated using
cuArrayCreateorcuArray3DCreate. For CUDA
arrays obtained usingcuMipmappedArrayGetLevel,
CUDA_ERROR_INVALID_VALUEwill be returned. Instead,
cuMipmappedArrayGetSparsePropertiesmust be used to obtain
the sparse properties of the entire CUDA mipmapped array to which
array belongs to.- Parameters:
-
array (
CUarray) – CUDA array to get the sparse properties of - Returns:
-
-
CUresult –
CUDA_SUCCESSCUDA_ERROR_INVALID_VALUE -
sparseProperties (
CUDA_ARRAY_SPARSE_PROPERTIES) – Pointer toCUDA_ARRAY_SPARSE_PROPERTIES
-
- cuda.cuda.cuMipmappedArrayGetSparseProperties(mipmap)#
-
Returns the layout properties of a sparse CUDA mipmapped array.
Returns the sparse array layout properties in sparseProperties If the
CUDA mipmapped array is not allocated with flag
CUDA_ARRAY3D_SPARSECUDA_ERROR_INVALID_VALUE
will be returned.For non-layered CUDA mipmapped arrays,
miptailSizereturns the size
of the mip tail region. The mip tail region includes all mip levels
whose width, height or depth is less than that of the tile. For layered
CUDA mipmapped arrays, if
flagscontains
CU_ARRAY_SPARSE_PROPERTIES_SINGLE_MIPTAIL, then
miptailSizespecifies the size
of the mip tail of all layers combined. Otherwise,
miptailSizespecifies mip tail
size per layer. The returned value of
miptailFirstLevelis valid
only ifmiptailSizeis non-
zero.- Parameters:
-
mipmap (
CUmipmappedArray) – CUDA mipmapped array to get the sparse properties of - Returns:
-
-
CUresult –
CUDA_SUCCESSCUDA_ERROR_INVALID_VALUE -
sparseProperties (
CUDA_ARRAY_SPARSE_PROPERTIES) – Pointer toCUDA_ARRAY_SPARSE_PROPERTIES
-
- cuda.cuda.cuArrayGetMemoryRequirements(array, device)#
-
Returns the memory requirements of a CUDA array.
Returns the memory requirements of a CUDA array in memoryRequirements
If the CUDA array is not allocated with flag
CUDA_ARRAY3D_DEFERRED_MAPPING
CUDA_ERROR_INVALID_VALUEwill be returned.The returned value in
size
represents the total size of the CUDA array. The returned value in
alignmentrepresents the
alignment necessary for mapping the CUDA array.- Parameters:
-
-
array (
CUarray) – CUDA array to get the memory requirements of -
device (
CUdevice) – Device to get the memory requirements for
-
- Returns:
-
-
CUresult –
CUDA_SUCCESSCUDA_ERROR_INVALID_VALUE -
memoryRequirements (
CUDA_ARRAY_MEMORY_REQUIREMENTS) – Pointer toCUDA_ARRAY_MEMORY_REQUIREMENTS
-
- cuda.cuda.cuMipmappedArrayGetMemoryRequirements(mipmap, device)#
-
Returns the memory requirements of a CUDA mipmapped array.
Returns the memory requirements of a CUDA mipmapped array in
memoryRequirements If the CUDA mipmapped array is not allocated with
flagCUDA_ARRAY3D_DEFERRED_MAPPING
CUDA_ERROR_INVALID_VALUEwill be returned.The returned value in
size
represents the total size of the CUDA mipmapped array. The returned
value inalignment
represents the alignment necessary for mapping the CUDA mipmapped
array.- Parameters:
-
-
mipmap (
CUmipmappedArray) – CUDA mipmapped array to get the memory requirements of -
device (
CUdevice) – Device to get the memory requirements for
-
- Returns:
-
-
CUresult –
CUDA_SUCCESSCUDA_ERROR_INVALID_VALUE -
memoryRequirements (
CUDA_ARRAY_MEMORY_REQUIREMENTS) – Pointer toCUDA_ARRAY_MEMORY_REQUIREMENTS
-
- cuda.cuda.cuArrayGetPlane(hArray, unsigned int planeIdx)#
-
Gets a CUDA array plane from a CUDA array.
Returns in pPlaneArray a CUDA array that represents a single format
plane of the CUDA array hArray.If planeIdx is greater than the maximum number of planes in this
array or if the array does not have a multi-planar format e.g:
CU_AD_FORMAT_NV12, then
CUDA_ERROR_INVALID_VALUEis returned.Note that if the hArray has format
CU_AD_FORMAT_NV12,
then passing in 0 for planeIdx returns a CUDA array of the same size
as hArray but with one channel and
CU_AD_FORMAT_UNSIGNED_INT8as its format. If 1 is passed
for planeIdx, then the returned CUDA array has half the height and
width of hArray with two channels and
CU_AD_FORMAT_UNSIGNED_INT8as its format.- Parameters:
-
-
hArray (
CUarray) – Multiplanar CUDA array -
planeIdx (unsigned int) – Plane index
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE -
pPlaneArray (
CUarray) – Returned CUDA array referenced by the planeIdx
-
- cuda.cuda.cuArrayDestroy(hArray)#
-
Destroys a CUDA array.
Destroys the CUDA array hArray.
- Parameters:
-
hArray (
CUarray) – Array to destroy - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_ARRAY_IS_MAPPED,CUDA_ERROR_CONTEXT_IS_DESTROYED - Return type:
-
CUresult
See also
cuArray3DCreate,cuArray3DGetDescriptor,cuArrayCreate,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaFreeArray
- cuda.cuda.cuArray3DCreate(CUDA_ARRAY3D_DESCRIPTOR pAllocateArray: CUDA_ARRAY3D_DESCRIPTOR)#
-
Creates a 3D CUDA array.
Creates a CUDA array according to the
CUDA_ARRAY3D_DESCRIPTORstructure pAllocateArray and
returns a handle to the new CUDA array in *pHandle. The
CUDA_ARRAY3D_DESCRIPTORis defined as:View CUDA Toolkit Documentation for a C++ code example
where:
-
Width, Height, and Depth are the width, height, and depth of
the CUDA array (in elements); the following types of CUDA arrays can
be allocated:-
A 1D array is allocated if Height and Depth extents are both
zero. -
A 2D array is allocated if only Depth extent is zero.
-
A 3D array is allocated if all three extents are non-zero.
-
A 1D layered CUDA array is allocated if only Height is zero and
theCUDA_ARRAY3D_LAYEREDflag is set. Each layer is a
1D array. The number of layers is determined by the depth extent. -
A 2D layered CUDA array is allocated if all three extents are non-
zero and theCUDA_ARRAY3D_LAYEREDflag is set. Each
layer is a 2D array. The number of layers is determined by the
depth extent. -
A cubemap CUDA array is allocated if all three extents are non-zero
and theCUDA_ARRAY3D_CUBEMAPflag is set. Width must
be equal to Height, and Depth must be six. A cubemap is a
special type of 2D layered CUDA array, where the six layers
represent the six faces of a cube. The order of the six layers in
memory is the same as that listed in
CUarray_cubemap_face. -
A cubemap layered CUDA array is allocated if all three extents are
non-zero, and both,CUDA_ARRAY3D_CUBEMAPand
CUDA_ARRAY3D_LAYEREDflags are set. Width must be
equal to Height, and Depth must be a multiple of six. A cubemap
layered CUDA array is a special type of 2D layered CUDA array that
consists of a collection of cubemaps. The first six layers
represent the first cubemap, the next six layers form the second
cubemap, and so on.
-
-
Formatspecifies the format of the elements;
CUarray_formatis defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
NumChannels specifies the number of packed components per CUDA
array element; it may be 1, 2, or 4; -
Flagsmay be set to-
CUDA_ARRAY3D_LAYEREDto enable creation of layered CUDA
arrays. If this flag is set, Depth specifies the number of
layers, not the depth of a 3D array. -
CUDA_ARRAY3D_SURFACE_LDSTto enable surface references
to be bound to the CUDA array. If this flag is not set,
cuSurfRefSetArraywill fail when attempting to bind the
CUDA array to a surface reference. -
CUDA_ARRAY3D_CUBEMAPto enable creation of cubemaps. If
this flag is set, Width must be equal to Height, and Depth
must be six. If theCUDA_ARRAY3D_LAYEREDflag is also
set, then Depth must be a multiple of six. -
CUDA_ARRAY3D_TEXTURE_GATHERto indicate that the CUDA
array will be used for texture gather. Texture gather can only be
performed on 2D CUDA arrays.
-
Width, Height and Depth must meet certain size requirements as
listed in the following table. All values are specified in elements.
Note that for brevity’s sake, the full name of the device attribute is
not specified. For ex., TEXTURE1D_WIDTH refers to the device attribute
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH.Note that 2D CUDA arrays have different size requirements if the
CUDA_ARRAY3D_TEXTURE_GATHERflag is set. Width and
Height must not be greater than
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_WIDTHand
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_HEIGHT
respectively, in that case.View CUDA Toolkit Documentation for a table example
Here are examples of CUDA array descriptions:
Description for a CUDA array of 2048 floats:
View CUDA Toolkit Documentation for a C++ code example
Description for a 64 x 64 CUDA array of floats:
View CUDA Toolkit Documentation for a C++ code example
Description for a width x height x depth CUDA array of 64-bit,
4×16-bit float16’s:View CUDA Toolkit Documentation for a C++ code example
- Parameters:
-
pAllocateArray (
CUDA_ARRAY3D_DESCRIPTOR) – 3D array descriptor - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_UNKNOWN -
pHandle (
CUarray) – Returned array
-
See also
cuArray3DGetDescriptor,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaMalloc3DArray -
- cuda.cuda.cuArray3DGetDescriptor(hArray)#
-
Get a 3D CUDA array descriptor.
Returns in *pArrayDescriptor a descriptor containing information on
the format and dimensions of the CUDA array hArray. It is useful for
subroutines that have been passed a CUDA array, but need to know the
CUDA array parameters for validation or other purposes.This function may be called on 1D and 2D arrays, in which case the
Height and/or Depth members of the descriptor struct will be set to
0.- Parameters:
-
hArray (
CUarray) – 3D array to get descriptor of - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_CONTEXT_IS_DESTROYED -
pArrayDescriptor (
CUDA_ARRAY3D_DESCRIPTOR) – Returned 3D array descriptor
-
See also
cuArray3DCreate,cuArrayCreate,cuArrayDestroy,cuArrayGetDescriptor,cuMemAlloc,cuMemAllocHost,cuMemAllocPitch,cuMemcpy2D,cuMemcpy2DAsync,cuMemcpy2DUnaligned,cuMemcpy3D,cuMemcpy3DAsync,cuMemcpyAtoA,cuMemcpyAtoD,cuMemcpyAtoH,cuMemcpyAtoHAsync,cuMemcpyDtoA,cuMemcpyDtoD,cuMemcpyDtoDAsync,cuMemcpyDtoH,cuMemcpyDtoHAsync,cuMemcpyHtoA,cuMemcpyHtoAAsync,cuMemcpyHtoD,cuMemcpyHtoDAsync,cuMemFree,cuMemFreeHost,cuMemGetAddressRange,cuMemGetInfo,cuMemHostAlloc,cuMemHostGetDevicePointer,cuMemsetD2D8,cuMemsetD2D16,cuMemsetD2D32,cuMemsetD8,cuMemsetD16,cuMemsetD32,cudaArrayGetInfo
- cuda.cuda.cuMipmappedArrayCreate(CUDA_ARRAY3D_DESCRIPTOR pMipmappedArrayDesc: CUDA_ARRAY3D_DESCRIPTOR, unsigned int numMipmapLevels)#
-
Creates a CUDA mipmapped array.
Creates a CUDA mipmapped array according to the
CUDA_ARRAY3D_DESCRIPTORstructure pMipmappedArrayDesc and
returns a handle to the new CUDA mipmapped array in *pHandle.
numMipmapLevels specifies the number of mipmap levels to be
allocated. This value is clamped to the range [1, 1 +
floor(log2(max(width, height, depth)))].The
CUDA_ARRAY3D_DESCRIPTORis defined as:View CUDA Toolkit Documentation for a C++ code example
where:
-
Width, Height, and Depth are the width, height, and depth of
the CUDA array (in elements); the following types of CUDA arrays can
be allocated:-
A 1D mipmapped array is allocated if Height and Depth extents
are both zero. -
A 2D mipmapped array is allocated if only Depth extent is zero.
-
A 3D mipmapped array is allocated if all three extents are non-
zero. -
A 1D layered CUDA mipmapped array is allocated if only Height is
zero and theCUDA_ARRAY3D_LAYEREDflag is set. Each
layer is a 1D array. The number of layers is determined by the
depth extent. -
A 2D layered CUDA mipmapped array is allocated if all three extents
are non-zero and theCUDA_ARRAY3D_LAYEREDflag is set.
Each layer is a 2D array. The number of layers is determined by the
depth extent. -
A cubemap CUDA mipmapped array is allocated if all three extents
are non-zero and theCUDA_ARRAY3D_CUBEMAPflag is set.
Width must be equal to Height, and Depth must be six. A
cubemap is a special type of 2D layered CUDA array, where the six
layers represent the six faces of a cube. The order of the six
layers in memory is the same as that listed in
CUarray_cubemap_face. -
A cubemap layered CUDA mipmapped array is allocated if all three
extents are non-zero, and both,CUDA_ARRAY3D_CUBEMAP
andCUDA_ARRAY3D_LAYEREDflags are set. Width must be
equal to Height, and Depth must be a multiple of six. A cubemap
layered CUDA array is a special type of 2D layered CUDA array that
consists of a collection of cubemaps. The first six layers
represent the first cubemap, the next six layers form the second
cubemap, and so on.
-
-
Formatspecifies the format of the elements;
CUarray_formatis defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
NumChannels specifies the number of packed components per CUDA
array element; it may be 1, 2, or 4; -
Flagsmay be set to-
CUDA_ARRAY3D_LAYEREDto enable creation of layered CUDA
mipmapped arrays. If this flag is set, Depth specifies the number
of layers, not the depth of a 3D array. -
CUDA_ARRAY3D_SURFACE_LDSTto enable surface references
to be bound to individual mipmap levels of the CUDA mipmapped
array. If this flag is not set,cuSurfRefSetArraywill
fail when attempting to bind a mipmap level of the CUDA mipmapped
array to a surface reference.
-
-
CUDA_ARRAY3D_CUBEMAPto enable creation of mipmapped
cubemaps. If this flag is set, Width must be equal to Height, and
Depth must be six. If theCUDA_ARRAY3D_LAYEREDflag is
also set, then Depth must be a multiple of six.-
CUDA_ARRAY3D_TEXTURE_GATHERto indicate that the CUDA
mipmapped array will be used for texture gather. Texture gather can
only be performed on 2D CUDA mipmapped arrays.
Width, Height and Depth must meet certain size requirements as
listed in the following table. All values are specified in elements.
Note that for brevity’s sake, the full name of the device attribute is
not specified. For ex., TEXTURE1D_MIPMAPPED_WIDTH refers to the device
attribute
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_MIPMAPPED_WIDTH.View CUDA Toolkit Documentation for a table example
- Parameters:
-
-
pMipmappedArrayDesc (
CUDA_ARRAY3D_DESCRIPTOR) – mipmapped array descriptor -
numMipmapLevels (unsigned int) – Number of mipmap levels
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_UNKNOWN -
pHandle (
CUmipmappedArray) – Returned mipmapped array
-
-
- cuda.cuda.cuMipmappedArrayGetLevel(hMipmappedArray, unsigned int level)#
-
Gets a mipmap level of a CUDA mipmapped array.
Returns in *pLevelArray a CUDA array that represents a single mipmap
level of the CUDA mipmapped array hMipmappedArray.If level is greater than the maximum number of levels in this
mipmapped array,CUDA_ERROR_INVALID_VALUEis returned.- Parameters:
-
-
hMipmappedArray (
CUmipmappedArray) – CUDA mipmapped array -
level (unsigned int) – Mipmap level
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE -
pLevelArray (
CUarray) – Returned mipmap level CUDA array
-
- cuda.cuda.cuMipmappedArrayDestroy(hMipmappedArray)#
-
Destroys a CUDA mipmapped array.
Destroys the CUDA mipmapped array hMipmappedArray.
- Parameters:
-
hMipmappedArray (
CUmipmappedArray) – Mipmapped array to destroy - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_ARRAY_IS_MAPPED,CUDA_ERROR_CONTEXT_IS_DESTROYED - Return type:
-
CUresult
- cuda.cuda.cuMemGetHandleForAddressRange(dptr, size_t size, handleType: CUmemRangeHandleType, unsigned long long flags)#
-
Retrieve handle for an address range.
Get a handle of the specified type to an address range. The address
range must have been obtained by a prior call to either
cuMemAllocorcuMemAddressReserve. If the
address range was obtained viacuMemAddressReserve, it must
also be fully mapped viacuMemMap.Users must ensure the dptr and size are aligned to the host page
size.When requesting
CUmemRangeHandleType::CU_MEM_RANGE_HANDLE_TYPE_DMA_BUF_FD, users are
expected to query for dma_buf support for the platform by using
CU_DEVICE_ATTRIBUTE_DMA_BUF_SUPPORTEDdevice attribute
before calling this API. The handle will be interpreted as a pointer
to an integer to store the dma_buf file descriptor. Users must ensure
the entire address range is backed and mapped when the address range is
allocated bycuMemAddressReserve. All the physical
allocations backing the address range must be resident on the same
device and have identical allocation properties. Users are also
expected to retrieve a new handle every time the underlying physical
allocation(s) corresponding to a previously queried VA range are
changed.- Parameters:
-
-
dptr (
CUdeviceptr) – Pointer to a valid CUDA device allocation. Must be aligned to host
page size. -
size (size_t) – Length of the address range. Must be aligned to host page size.
-
handleType (
CUmemRangeHandleType) – Type of handle requested (defines type and size of the handle
output parameter) -
flags (unsigned long long) – Reserved, must be zero
-
- Returns:
-
-
CUresult – CUDA_SUCCESS CUDA_ERROR_INVALID_VALUE CUDA_ERROR_NOT_SUPPORTED
-
handle (Any) – Pointer to the location where the returned handle will be stored.
-
Virtual Memory Management#
This section describes the virtual memory management functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuMemAddressReserve(size_t size, size_t alignment, addr, unsigned long long flags)#
-
Allocate an address range reservation.
Reserves a virtual address range based on the given parameters, giving
the starting address of the range in ptr. This API requires a system
that supports UVA. The size and address parameters must be a multiple
of the host page size and the alignment must be a power of two or zero
for default alignment.- Parameters:
-
-
size (size_t) – Size of the reserved virtual address range requested
-
alignment (size_t) – Alignment of the reserved virtual address range requested
-
addr (
CUdeviceptr) – Fixed starting address range requested -
flags (unsigned long long) – Currently unused, must be zero
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_PERMITTED,CUDA_ERROR_NOT_SUPPORTED -
ptr (
CUdeviceptr) – Resulting pointer to start of virtual address range allocated
-
See also
cuMemAddressFree
- cuda.cuda.cuMemAddressFree(ptr, size_t size)#
-
Free an address range reservation.
Frees a virtual address range reserved by cuMemAddressReserve. The size
must match what was given to memAddressReserve and the ptr given must
match what was returned from memAddressReserve.- Parameters:
-
-
ptr (
CUdeviceptr) – Starting address of the virtual address range to free -
size (size_t) – Size of the virtual address region to free
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_PERMITTED,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
- cuda.cuda.cuMemCreate(size_t size, CUmemAllocationProp prop: CUmemAllocationProp, unsigned long long flags)#
-
Create a CUDA memory handle representing a memory allocation of a given size described by the given properties.
This creates a memory allocation on the target device specified through
the prop strcuture. The created allocation will not have any device
or host mappings. The generic memory handle for the allocation can be
mapped to the address space of calling process via
cuMemMap. This handle cannot be transmitted directly to
other processes (seecuMemExportToShareableHandle). On
Windows, the caller must also pass an LPSECURITYATTRIBUTE in prop to
be associated with this handle which limits or allows access to this
handle for a recepient process (see
win32HandleMetaDatafor more). The
size of this allocation must be a multiple of the the value given via
cuMemGetAllocationGranularitywith the
CU_MEM_ALLOC_GRANULARITY_MINIMUMflag. If
CUmemAllocationProp::allocFlags::usage contains
CU_MEM_CREATE_USAGE_TILE_POOLflag then the memory
allocation is intended only to be used as backing tile pool for sparse
CUDA arrays and sparse CUDA mipmapped arrays. (see
cuMemMapArrayAsync).- Parameters:
-
-
size (size_t) – Size of the allocation requested
-
prop (
CUmemAllocationProp) – Properties of the allocation to create. -
flags (unsigned long long) – flags for future use, must be zero now.
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_PERMITTED,CUDA_ERROR_NOT_SUPPORTED -
handle (
CUmemGenericAllocationHandle) – Value of handle returned. All operations on this allocation are to
be performed using this handle.
-
- cuda.cuda.cuMemRelease(handle)#
-
Release a memory handle representing a memory allocation which was previously allocated through cuMemCreate.
Frees the memory that was allocated on a device through cuMemCreate.
The memory allocation will be freed when all outstanding mappings to
the memory are unmapped and when all outstanding references to the
handle (including it’s shareable counterparts) are also released. The
generic memory handle can be freed when there are still outstanding
mappings made with this handle. Each time a recepient process imports a
shareable handle, it needs to pair it withcuMemReleasefor
the handle to be freed. If handle is not a valid handle the behavior
is undefined.- Parameters:
-
handle (
CUmemGenericAllocationHandle) – Value of handle which was returned previously by cuMemCreate. - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_PERMITTED,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
- cuda.cuda.cuMemMap(ptr, size_t size, size_t offset, handle, unsigned long long flags)#
-
Maps an allocation handle to a reserved virtual address range.
Maps bytes of memory represented by handle starting from byte
offset to size to address range [addr, addr + size]. This
range must be an address reservation previously reserved with
cuMemAddressReserve, and offset + size must be less
than the size of the memory allocation. Both ptr, size, and
offset must be a multiple of the value given via
cuMemGetAllocationGranularitywith the
CU_MEM_ALLOC_GRANULARITY_MINIMUMflag.Please note calling
cuMemMapdoes not make the address
accessible, the caller needs to update accessibility of a contiguous
mapped VA range by callingcuMemSetAccess.Once a recipient process obtains a shareable memory handle from
cuMemImportFromShareableHandle, the process must use
cuMemMapto map the memory into its address ranges before
setting accessibility withcuMemSetAccess.cuMemMapcan only create mappings on VA range reservations
that are not currently mapped.- Parameters:
-
-
ptr (
CUdeviceptr) – Address where memory will be mapped. -
size (size_t) – Size of the memory mapping.
-
offset (size_t) – Offset into the memory represented by
-
handle (
CUmemGenericAllocationHandle) – Handle to a shareable memory -
flags (unsigned long long) – flags for future use, must be zero now.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_PERMITTED,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
- cuda.cuda.cuMemMapArrayAsync(mapInfoList: List[CUarrayMapInfo], unsigned int count, hStream)#
-
Maps or unmaps subregions of sparse CUDA arrays and sparse CUDA mipmapped arrays.
Performs map or unmap operations on subregions of sparse CUDA arrays
and sparse CUDA mipmapped arrays. Each operation is specified by a
CUarrayMapInfoentry in the mapInfoList array of size
count. The structureCUarrayMapInfois defined as follow:View CUDA Toolkit Documentation for a C++ code example
where
resourceTypespecifies the type of
resource to be operated on. IfresourceType
is set toCUresourcetype::CU_RESOURCE_TYPE_ARRAY then
CUarrayMapInfo::resource::array must be set to a valid
sparse CUDA array handle. The CUDA array must be either a 2D, 2D
layered or 3D CUDA array and must have been allocated using
cuArrayCreateorcuArray3DCreatewith the flag
CUDA_ARRAY3D_SPARSEor
CUDA_ARRAY3D_DEFERRED_MAPPING. For CUDA arrays obtained
usingcuMipmappedArrayGetLevel,
CUDA_ERROR_INVALID_VALUEwill be returned. If
resourceTypeis set to
CUresourcetype::CU_RESOURCE_TYPE_MIPMAPPED_ARRAY then
CUarrayMapInfo::resource::mipmap must be set to a valid
sparse CUDA mipmapped array handle. The CUDA mipmapped array must be
either a 2D, 2D layered or 3D CUDA mipmapped array and must have been
allocated usingcuMipmappedArrayCreatewith the flag
CUDA_ARRAY3D_SPARSEor
CUDA_ARRAY3D_DEFERRED_MAPPING.subresourceTypespecifies the type of
subresource within the resource.
CUarraySparseSubresourceType_enumis defined as:View CUDA Toolkit Documentation for a C++ code example
where
CUarraySparseSubresourceType::CU_ARRAY_SPARSE_SUBRESOURCE_TYPE_SPARSE_LEVEL
indicates a sparse-miplevel which spans at least one tile in every
dimension. The remaining miplevels which are too small to span at least
one tile in any dimension constitute the mip tail region as indicated
by
CUarraySparseSubresourceType::CU_ARRAY_SPARSE_SUBRESOURCE_TYPE_MIPTAIL
subresource type.If
subresourceTypeis set to
CUarraySparseSubresourceType::CU_ARRAY_SPARSE_SUBRESOURCE_TYPE_SPARSE_LEVEL
thenCUarrayMapInfo::subresource::sparseLevel struct must
contain valid array subregion offsets and extents. The
CUarrayMapInfo::subresource::sparseLevel::offsetX,
CUarrayMapInfo::subresource::sparseLevel::offsetY and
CUarrayMapInfo::subresource::sparseLevel::offsetZ must
specify valid X, Y and Z offsets respectively. The
CUarrayMapInfo::subresource::sparseLevel::extentWidth,
CUarrayMapInfo::subresource::sparseLevel::extentHeight and
CUarrayMapInfo::subresource::sparseLevel::extentDepth must
specify valid width, height and depth extents respectively. These
offsets and extents must be aligned to the corresponding tile
dimension. For CUDA mipmapped arrays
CUarrayMapInfo::subresource::sparseLevel::level must
specify a valid mip level index. Otherwise, must be zero. For layered
CUDA arrays and layered CUDA mipmapped arrays
CUarrayMapInfo::subresource::sparseLevel::layer must
specify a valid layer index. Otherwise, must be zero.
CUarrayMapInfo::subresource::sparseLevel::offsetZ must be
zero and
CUarrayMapInfo::subresource::sparseLevel::extentDepth must
be set to 1 for 2D and 2D layered CUDA arrays and CUDA mipmapped
arrays. Tile extents can be obtained by calling
cuArrayGetSparsePropertiesand
cuMipmappedArrayGetSparsePropertiesIf
subresourceTypeis set to
CUarraySparseSubresourceType::CU_ARRAY_SPARSE_SUBRESOURCE_TYPE_MIPTAIL
thenCUarrayMapInfo::subresource::miptail struct must
contain valid mip tail offset in
CUarrayMapInfo::subresource::miptail::offset and size in
CUarrayMapInfo::subresource::miptail::size. Both, mip tail
offset and mip tail size must be aligned to the tile size. For layered
CUDA mipmapped arrays which don’t have the flag
CU_ARRAY_SPARSE_PROPERTIES_SINGLE_MIPTAILset in
flagsas returned by
cuMipmappedArrayGetSparseProperties,
CUarrayMapInfo::subresource::miptail::layer must specify a
valid layer index. Otherwise, must be zero.If
CUarrayMapInfo::resource::array or
CUarrayMapInfo::resource::mipmap was created with
CUDA_ARRAY3D_DEFERRED_MAPPINGflag set the
subresourceTypeand the contents of
CUarrayMapInfo::subresource will be ignored.memOperationTypespecifies the type of
operation.CUmemOperationTypeis defined as:View CUDA Toolkit Documentation for a C++ code example
If
memOperationTypeis set to
CUmemOperationType::CU_MEM_OPERATION_TYPE_MAP then the
subresource will be mapped onto the tile pool memory specified by
CUarrayMapInfo::memHandle at offset
offset. The tile pool allocation has to be
created by specifying theCU_MEM_CREATE_USAGE_TILE_POOL
flag when callingcuMemCreate. Also,
memHandleTypemust be set to
CUmemHandleType::CU_MEM_HANDLE_TYPE_GENERIC.If
memOperationTypeis set to
CUmemOperationType::CU_MEM_OPERATION_TYPE_UNMAP then an
unmapping operation is performed.CUarrayMapInfo::memHandle
must be NULL.deviceBitMaskspecifies the list of devices
that must map or unmap physical memory. Currently, this mask must have
exactly one bit set, and the corresponding device must match the device
associated with the stream. If
memOperationTypeis set to
CUmemOperationType::CU_MEM_OPERATION_TYPE_MAP, the device
must also match the device associated with the tile pool memory
allocation as specified byCUarrayMapInfo::memHandle.flagsand
:py:obj:`~.CUarrayMapInfo.reserved`[] are unused and must be set to
zero.- Parameters:
-
-
mapInfoList (List[
CUarrayMapInfo]) – List ofCUarrayMapInfo -
count (unsigned int) – Count of
CUarrayMapInfoin mapInfoList -
hStream (
CUstreamorcudaStream_t) – Stream identifier for the stream to use for map or unmap operations
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
- cuda.cuda.cuMemUnmap(ptr, size_t size)#
-
Unmap the backing memory of a given address range.
The range must be the entire contiguous address range that was mapped
to. In other words,cuMemUnmapcannot unmap a sub-range of
an address range mapped bycuMemCreate/
cuMemMap. Any backing memory allocations will be freed if
there are no existing mappings and there are no unreleased memory
handles.When
cuMemUnmapreturns successfully the address range is
converted to an address reservation and can be used for a future calls
tocuMemMap. Any new mapping to this virtual address will
need to have access granted throughcuMemSetAccess, as all
mappings start with no accessibility setup.- Parameters:
-
-
ptr (
CUdeviceptr) – Starting address for the virtual address range to unmap -
size (size_t) – Size of the virtual address range to unmap
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_PERMITTED,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
- cuda.cuda.cuMemSetAccess(ptr, size_t size, desc: List[CUmemAccessDesc], size_t count)#
-
Set the access flags for each location specified in desc for the given virtual address range.
Given the virtual address range via ptr and size, and the locations
in the array given by desc and count, set the access flags for the
target locations. The range must be a fully mapped address range
containing all allocations created bycuMemMap/
cuMemCreate.- Parameters:
-
-
ptr (
CUdeviceptr) – Starting address for the virtual address range -
size (size_t) – Length of the virtual address range
-
desc (List[
CUmemAccessDesc]) – Array ofCUmemAccessDescthat describe how to change
the -
count (size_t) – Number of
CUmemAccessDescin desc
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
- cuda.cuda.cuMemGetAccess(CUmemLocation location: CUmemLocation, ptr)#
-
Get the access flags set for the given location and ptr.
- Parameters:
-
-
location (
CUmemLocation) – Location in which to check the flags for -
ptr (
CUdeviceptr) – Address in which to check the access flags for
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_PERMITTED,CUDA_ERROR_NOT_SUPPORTED -
flags (unsigned long long) – Flags set for this location
-
- cuda.cuda.cuMemExportToShareableHandle(handle, handleType: CUmemAllocationHandleType, unsigned long long flags)#
-
Exports an allocation to a requested shareable handle type.
Given a CUDA memory handle, create a shareable memory allocation handle
that can be used to share the memory with other processes. The
recipient process can convert the shareable handle back into a CUDA
memory handle usingcuMemImportFromShareableHandleand map
it withcuMemMap. The implementation of what this handle is
and how it can be transferred is defined by the requested handle type
in handleTypeOnce all shareable handles are closed and the allocation is released,
the allocated memory referenced will be released back to the OS and
uses of the CUDA handle afterward will lead to undefined behavior.This API can also be used in conjunction with other APIs (e.g. Vulkan,
OpenGL) that support importing memory from the shareable type- Parameters:
-
-
handle (
CUmemGenericAllocationHandle) – CUDA handle for the memory allocation -
handleType (
CUmemAllocationHandleType) – Type of shareable handle requested (defines type and size of the
shareableHandle output parameter) -
flags (unsigned long long) – Reserved, must be zero
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_PERMITTED,CUDA_ERROR_NOT_SUPPORTED -
shareableHandle (Any) – Pointer to the location in which to store the requested handle type
-
- cuda.cuda.cuMemImportFromShareableHandle(osHandle, shHandleType: CUmemAllocationHandleType)#
-
Imports an allocation from a requested shareable handle type.
If the current process cannot support the memory described by this
shareable handle, this API will error as CUDA_ERROR_NOT_SUPPORTED.- Parameters:
-
-
osHandle (Any) – Shareable Handle representing the memory allocation that is to be
imported. -
shHandleType (
CUmemAllocationHandleType) – handle type of the exported handle
CUmemAllocationHandleType.
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_PERMITTED,CUDA_ERROR_NOT_SUPPORTED -
handle (
CUmemGenericAllocationHandle) – CUDA Memory handle for the memory allocation.
-
Notes
Importing shareable handles exported from some graphics APIs(VUlkan, OpenGL, etc) created on devices under an SLI group may not be supported, and thus this API will return CUDA_ERROR_NOT_SUPPORTED. There is no guarantee that the contents of handle will be the same CUDA memory handle for the same given OS shareable handle, or the same underlying allocation.
- cuda.cuda.cuMemGetAllocationGranularity(CUmemAllocationProp prop: CUmemAllocationProp, option: CUmemAllocationGranularity_flags)#
-
Calculates either the minimal or recommended granularity.
Calculates either the minimal or recommended granularity for a given
allocation specification and returns it in granularity. This
granularity can be used as a multiple for alignment, size, or address
mapping.- Parameters:
-
-
prop (
CUmemAllocationProp) – Property for which to determine the granularity for -
option (
CUmemAllocationGranularity_flags) – Determines which granularity to return
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_PERMITTED,CUDA_ERROR_NOT_SUPPORTED -
granularity (int) – Returned granularity.
-
See also
cuMemCreate,cuMemMap
- cuda.cuda.cuMemGetAllocationPropertiesFromHandle(handle)#
-
Retrieve the contents of the property structure defining properties for this handle.
- Parameters:
-
handle (
CUmemGenericAllocationHandle) – Handle which to perform the query on - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_PERMITTED,CUDA_ERROR_NOT_SUPPORTED -
prop (
CUmemAllocationProp) – Pointer to a properties structure which will hold the information
about this handle
-
- cuda.cuda.cuMemRetainAllocationHandle(addr)#
-
Given an address addr, returns the allocation handle of the backing memory allocation.
The handle is guaranteed to be the same handle value used to map the
memory. If the address requested is not mapped, the function will fail.
The returned handle must be released with corresponding number of calls
tocuMemRelease.- Parameters:
-
addr (Any) – Memory address to query, that has been mapped previously.
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_PERMITTED,CUDA_ERROR_NOT_SUPPORTED -
handle (
CUmemGenericAllocationHandle) – CUDA Memory handle for the backing memory allocation.
-
Notes
The address addr, can be any address in a range previously mapped by
cuMemMap, and not necessarily the start address.
Stream Ordered Memory Allocator#
This section describes the stream ordered memory allocator exposed by the low-level CUDA driver application programming interface.
overview
The asynchronous allocator allows the user to allocate and free in stream order. All asynchronous accesses of the allocation must happen between the stream executions of the allocation and the free. If the memory is accessed outside of the promised stream order, a use before allocation / use after free error will cause undefined behavior.
The allocator is free to reallocate the memory as long as it can guarantee that compliant memory accesses will not overlap temporally. The allocator may refer to internal stream ordering as well as inter-stream dependencies (such as CUDA events and null stream dependencies) when establishing the temporal guarantee. The allocator may also insert inter-stream dependencies to establish the temporal guarantee.
Supported Platforms
Whether or not a device supports the integrated stream ordered memory allocator may be queried by calling cuDeviceGetAttribute() with the device attribute CU_DEVICE_ATTRIBUTE_MEMORY_POOLS_SUPPORTED
- cuda.cuda.cuMemFreeAsync(dptr, hStream)#
-
Frees memory with stream ordered semantics.
Inserts a free operation into hStream. The allocation must not be
accessed after stream execution reaches the free. After this API
returns, accessing the memory from any subsequent work launched on the
GPU or querying its pointer attributes results in undefined behavior.- Parameters:
-
-
dptr (
CUdeviceptr) – memory to free -
hStream (
CUstreamorcudaStream_t) – The stream establishing the stream ordering contract.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT(default stream specified with no current context),CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
Notes
During stream capture, this function results in the creation of a free node and must therefore be passed the address of a graph allocation.
- cuda.cuda.cuMemAllocAsync(size_t bytesize, hStream)#
-
Allocates memory with stream ordered semantics.
Inserts an allocation operation into hStream. A pointer to the
allocated memory is returned immediately in *dptr. The allocation must
not be accessed until the the allocation operation completes. The
allocation comes from the memory pool current to the stream’s device.- Parameters:
-
-
bytesize (size_t) – Number of bytes to allocate
-
hStream (
CUstreamorcudaStream_t) – The stream establishing the stream ordering contract and the memory
pool to allocate from
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT(default stream specified with no current context),CUDA_ERROR_NOT_SUPPORTED,CUDA_ERROR_OUT_OF_MEMORY -
dptr (
CUdeviceptr) – Returned device pointer
-
Notes
The default memory pool of a device contains device memory from that device.
Basic stream ordering allows future work submitted into the same stream to use the allocation. Stream query, stream synchronize, and CUDA events can be used to guarantee that the allocation operation completes before work submitted in a separate stream runs.
During stream capture, this function results in the creation of an allocation node. In this case, the allocation is owned by the graph instead of the memory pool. The memory pool’s properties are used to set the node’s creation parameters.
- cuda.cuda.cuMemPoolTrimTo(pool, size_t minBytesToKeep)#
-
Tries to release memory back to the OS.
Releases memory back to the OS until the pool contains fewer than
minBytesToKeep reserved bytes, or there is no more memory that the
allocator can safely release. The allocator cannot release OS
allocations that back outstanding asynchronous allocations. The OS
allocations may happen at different granularity from the user
allocations.- Parameters:
-
-
pool (
CUmemoryPoolorcudaMemPool_t) – The memory pool to trim -
minBytesToKeep (size_t) – If the pool has less than minBytesToKeep reserved, the TrimTo
operation is a no-op. Otherwise the pool will be guaranteed to have
at least minBytesToKeep bytes reserved after the operation.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
Notes
: Allocations that have not been freed count as outstanding.
: Allocations that have been asynchronously freed but whose completion has not been observed on the host (eg. by a synchronize) can count as outstanding.
- cuda.cuda.cuMemPoolSetAttribute(pool, attr: CUmemPool_attribute, value)#
-
Sets attributes of a memory pool.
Supported attributes are:
-
CU_MEMPOOL_ATTR_RELEASE_THRESHOLD: (value type =
cuuint64_t) Amount of reserved memory in bytes to hold onto before
trying to release memory back to the OS. When more than the release
threshold bytes of memory are held by the memory pool, the allocator
will try to release memory back to the OS on the next call to stream,
event or context synchronize. (default 0) -
CU_MEMPOOL_ATTR_REUSE_FOLLOW_EVENT_DEPENDENCIES: (value
type = int) AllowcuMemAllocAsyncto use memory
asynchronously freed in another stream as long as a stream ordering
dependency of the allocating stream on the free action exists. Cuda
events and null stream interactions can create the required stream
ordered dependencies. (default enabled) -
CU_MEMPOOL_ATTR_REUSE_ALLOW_OPPORTUNISTIC: (value type =
int) Allow reuse of already completed frees when there is no
dependency between the free and allocation. (default enabled) -
CU_MEMPOOL_ATTR_REUSE_ALLOW_INTERNAL_DEPENDENCIES: (value
type = int) AllowcuMemAllocAsyncto insert new stream
dependencies in order to establish the stream ordering required to
reuse a piece of memory released bycuMemFreeAsync
(default enabled). -
CU_MEMPOOL_ATTR_RESERVED_MEM_HIGH: (value type =
cuuint64_t) Reset the high watermark that tracks the amount of
backing memory that was allocated for the memory pool. It is illegal
to set this attribute to a non-zero value. -
CU_MEMPOOL_ATTR_USED_MEM_HIGH: (value type = cuuint64_t)
Reset the high watermark that tracks the amount of used memory that
was allocated for the memory pool.
- Parameters:
-
-
pool (
CUmemoryPoolorcudaMemPool_t) – The memory pool to modify -
attr (
CUmemPool_attribute) – The attribute to modify -
value (Any) – Pointer to the value to assign
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
-
- cuda.cuda.cuMemPoolGetAttribute(pool, attr: CUmemPool_attribute)#
-
Gets attributes of a memory pool.
Supported attributes are:
-
CU_MEMPOOL_ATTR_RELEASE_THRESHOLD: (value type =
cuuint64_t) Amount of reserved memory in bytes to hold onto before
trying to release memory back to the OS. When more than the release
threshold bytes of memory are held by the memory pool, the allocator
will try to release memory back to the OS on the next call to stream,
event or context synchronize. (default 0) -
CU_MEMPOOL_ATTR_REUSE_FOLLOW_EVENT_DEPENDENCIES: (value
type = int) AllowcuMemAllocAsyncto use memory
asynchronously freed in another stream as long as a stream ordering
dependency of the allocating stream on the free action exists. Cuda
events and null stream interactions can create the required stream
ordered dependencies. (default enabled) -
CU_MEMPOOL_ATTR_REUSE_ALLOW_OPPORTUNISTIC: (value type =
int) Allow reuse of already completed frees when there is no
dependency between the free and allocation. (default enabled) -
CU_MEMPOOL_ATTR_REUSE_ALLOW_INTERNAL_DEPENDENCIES: (value
type = int) AllowcuMemAllocAsyncto insert new stream
dependencies in order to establish the stream ordering required to
reuse a piece of memory released bycuMemFreeAsync
(default enabled). -
CU_MEMPOOL_ATTR_RESERVED_MEM_CURRENT: (value type =
cuuint64_t) Amount of backing memory currently allocated for the
mempool -
CU_MEMPOOL_ATTR_RESERVED_MEM_HIGH: (value type =
cuuint64_t) High watermark of backing memory allocated for the
mempool since the last time it was reset. -
CU_MEMPOOL_ATTR_USED_MEM_CURRENT: (value type =
cuuint64_t) Amount of memory from the pool that is currently in use
by the application. -
CU_MEMPOOL_ATTR_USED_MEM_HIGH: (value type = cuuint64_t)
High watermark of the amount of memory from the pool that was in use
by the application.
- Parameters:
-
-
pool (
CUmemoryPoolorcudaMemPool_t) – The memory pool to get attributes of -
attr (
CUmemPool_attribute) – The attribute to get
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
value (Any) – Retrieved value
-
-
- cuda.cuda.cuMemPoolSetAccess(pool, map: List[CUmemAccessDesc], size_t count)#
-
Controls visibility of pools between devices.
- Parameters:
-
-
pool (
CUmemoryPoolorcudaMemPool_t) – The pool being modified -
map (List[
CUmemAccessDesc]) – Array of access descriptors. Each descriptor instructs the access
to enable for a single gpu. -
count (size_t) – Number of descriptors in the map array.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuMemPoolGetAccess(memPool, CUmemLocation location: CUmemLocation)#
-
Returns the accessibility of a pool from a device.
Returns the accessibility of the pool’s memory from the specified
location.- Parameters:
-
-
memPool (
CUmemoryPoolorcudaMemPool_t) – the pool being queried -
location (
CUmemLocation) – the location accessing the pool
-
- Returns:
-
-
CUresult
-
flags (
CUmemAccess_flags) – the accessibility of the pool from the specified location
-
- cuda.cuda.cuMemPoolCreate(CUmemPoolProps poolProps: CUmemPoolProps)#
-
Creates a memory pool.
Creates a CUDA memory pool and returns the handle in pool. The
poolProps determines the properties of the pool such as the backing
device and IPC capabilities.By default, the pool’s memory will be accessible from the device it is
allocated on.- Parameters:
-
poolProps (
CUmemPoolProps) – None - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY,CUDA_ERROR_NOT_SUPPORTED -
pool (
CUmemoryPool) – None
-
Notes
Specifying CU_MEM_HANDLE_TYPE_NONE creates a memory pool that will not support IPC.
- cuda.cuda.cuMemPoolDestroy(pool)#
-
Destroys the specified memory pool.
If any pointers obtained from this pool haven’t been freed or the pool
has free operations that haven’t completed when
cuMemPoolDestroyis invoked, the function will return
immediately and the resources associated with the pool will be released
automatically once there are no more outstanding allocations.Destroying the current mempool of a device sets the default mempool of
that device as the current mempool for that device.- Parameters:
-
pool (
CUmemoryPoolorcudaMemPool_t) – None - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
Notes
A device’s default memory pool cannot be destroyed.
- cuda.cuda.cuMemAllocFromPoolAsync(size_t bytesize, pool, hStream)#
-
Allocates memory from a specified pool with stream ordered semantics.
Inserts an allocation operation into hStream. A pointer to the
allocated memory is returned immediately in *dptr. The allocation must
not be accessed until the the allocation operation completes. The
allocation comes from the specified memory pool.- Parameters:
-
-
bytesize (size_t) – Number of bytes to allocate
-
pool (
CUmemoryPoolorcudaMemPool_t) – The pool to allocate from -
hStream (
CUstreamorcudaStream_t) – The stream establishing the stream ordering semantic
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT(default stream specified with no current context),CUDA_ERROR_NOT_SUPPORTED,CUDA_ERROR_OUT_OF_MEMORY -
dptr (
CUdeviceptr) – Returned device pointer
-
Notes
During stream capture, this function results in the creation of an allocation node. In this case, the allocation is owned by the graph instead of the memory pool. The memory pool’s properties are used to set the node’s creation parameters.
- cuda.cuda.cuMemPoolExportToShareableHandle(pool, handleType: CUmemAllocationHandleType, unsigned long long flags)#
-
Exports a memory pool to the requested handle type.
Given an IPC capable mempool, create an OS handle to share the pool
with another process. A recipient process can convert the shareable
handle into a mempool with
cuMemPoolImportFromShareableHandle. Individual pointers can
then be shared with thecuMemPoolExportPointerand
cuMemPoolImportPointerAPIs. The implementation of what the
shareable handle is and how it can be transferred is defined by the
requested handle type.- Parameters:
-
-
pool (
CUmemoryPoolorcudaMemPool_t) – pool to export -
handleType (
CUmemAllocationHandleType) – the type of handle to create -
flags (unsigned long long) – must be 0
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_OUT_OF_MEMORY -
handle_out (Any) – Returned OS handle
-
Notes
: To create an IPC capable mempool, create a mempool with a CUmemAllocationHandleType other than CU_MEM_HANDLE_TYPE_NONE.
- cuda.cuda.cuMemPoolImportFromShareableHandle(handle, handleType: CUmemAllocationHandleType, unsigned long long flags)#
-
imports a memory pool from a shared handle.
Specific allocations can be imported from the imported pool with
cuMemPoolImportPointer.- Parameters:
-
-
handle (Any) – OS handle of the pool to open
-
handleType (
CUmemAllocationHandleType) – The type of handle being imported -
flags (unsigned long long) – must be 0
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_OUT_OF_MEMORY -
pool_out (
CUmemoryPool) – Returned memory pool
-
Notes
Imported memory pools do not support creating new allocations. As such imported memory pools may not be used in cuDeviceSetMemPool or
cuMemAllocFromPoolAsynccalls.
- cuda.cuda.cuMemPoolExportPointer(ptr)#
-
Export data to share a memory pool allocation between processes.
Constructs shareData_out for sharing a specific allocation from an
already shared memory pool. The recipient process can import the
allocation with thecuMemPoolImportPointerapi. The data is
not a handle and may be shared through any IPC mechanism.- Parameters:
-
ptr (
CUdeviceptr) – pointer to memory being exported - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_OUT_OF_MEMORY -
shareData_out (
CUmemPoolPtrExportData) – Returned export data
-
- cuda.cuda.cuMemPoolImportPointer(pool, CUmemPoolPtrExportData shareData: CUmemPoolPtrExportData)#
-
Import a memory pool allocation from another process.
Returns in ptr_out a pointer to the imported memory. The imported
memory must not be accessed before the allocation operation completes
in the exporting process. The imported memory must be freed from all
importing processes before being freed in the exporting process. The
pointer may be freed with cuMemFree or cuMemFreeAsync. If
cuMemFreeAsync is used, the free must be completed on the importing
process before the free operation on the exporting process.- Parameters:
-
-
pool (
CUmemoryPoolorcudaMemPool_t) – pool from which to import -
shareData (
CUmemPoolPtrExportData) – data specifying the memory to import
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_OUT_OF_MEMORY -
ptr_out (
CUdeviceptr) – pointer to imported memory
-
Notes
The cuMemFreeAsync api may be used in the exporting process before the cuMemFreeAsync operation completes in its stream as long as the cuMemFreeAsync in the exporting process specifies a stream with a stream dependency on the importing process’s cuMemFreeAsync.
Unified Addressing#
This section describes the unified addressing functions of the low-level CUDA driver application programming interface.
Overview
CUDA devices can share a unified address space with the host. For these devices there is no distinction between a device pointer and a host pointer – the same pointer value may be used to access memory from the host program and from a kernel running on the device (with exceptions enumerated below).
Supported Platforms
Whether or not a device supports unified addressing may be queried by calling cuDeviceGetAttribute() with the device attribute CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING.
Unified addressing is automatically enabled in 64-bit processes
Looking Up Information from Pointer Values
It is possible to look up information about the memory which backs a pointer value. For instance, one may want to know if a pointer points to host or device memory. As another example, in the case of device memory, one may want to know on which CUDA device the memory resides. These properties may be queried using the function cuPointerGetAttribute()
Since pointers are unique, it is not necessary to specify information about the pointers specified to the various copy functions in the CUDA API. The function cuMemcpy() may be used to perform a copy between two pointers, ignoring whether they point to host or device memory (making cuMemcpyHtoD(), cuMemcpyDtoD(), and cuMemcpyDtoH() unnecessary for devices supporting unified addressing). For multidimensional copies, the memory type CU_MEMORYTYPE_UNIFIED may be used to specify that the CUDA driver should infer the location of the pointer from its value.
Automatic Mapping of Host Allocated Host Memory
All host memory allocated in all contexts using cuMemAllocHost() and cuMemHostAlloc() is always directly accessible from all contexts on all devices that support unified addressing. This is the case regardless of whether or not the flags CU_MEMHOSTALLOC_PORTABLE and CU_MEMHOSTALLOC_DEVICEMAP are specified.
The pointer value through which allocated host memory may be accessed in kernels on all devices that support unified addressing is the same as the pointer value through which that memory is accessed on the host, so it is not necessary to call cuMemHostGetDevicePointer() to get the device pointer for these allocations.
Note that this is not the case for memory allocated using the flag CU_MEMHOSTALLOC_WRITECOMBINED, as discussed below.
Automatic Registration of Peer Memory
Upon enabling direct access from a context that supports unified addressing to another peer context that supports unified addressing using cuCtxEnablePeerAccess() all memory allocated in the peer context using cuMemAlloc() and cuMemAllocPitch() will immediately be accessible by the current context. The device pointer value through which any peer memory may be accessed in the current context is the same pointer value through which that memory may be accessed in the peer context.
Exceptions, Disjoint Addressing
Not all memory may be accessed on devices through the same pointer value through which they are accessed on the host. These exceptions are host memory registered using cuMemHostRegister() and host memory allocated using the flag CU_MEMHOSTALLOC_WRITECOMBINED. For these exceptions, there exists a distinct host and device address for the memory. The device address is guaranteed to not overlap any valid host pointer range and is guaranteed to have the same value across all contexts that support unified addressing.
This device address may be queried using cuMemHostGetDevicePointer() when a context using unified addressing is current. Either the host or the unified device pointer value may be used to refer to this memory through cuMemcpy() and similar functions using the CU_MEMORYTYPE_UNIFIED memory type.
- cuda.cuda.cuPointerGetAttribute(attribute: CUpointer_attribute, ptr)#
-
Returns information about a pointer.
The supported attributes are:
-
CU_POINTER_ATTRIBUTE_CONTEXT: -
Returns in *data the
CUcontextin which ptr was
allocated or registered. The type of data must be
CUcontext*. -
If ptr was not allocated by, mapped by, or registered with a
CUcontextwhich uses unified virtual addressing then
CUDA_ERROR_INVALID_VALUEis returned. -
CU_POINTER_ATTRIBUTE_MEMORY_TYPE: -
Returns in *data the physical memory type of the memory that ptr
addresses as aCUmemorytypeenumerated value. The type of
data must be unsigned int. -
If ptr addresses device memory then *data is set to
CU_MEMORYTYPE_DEVICE. The particularCUdevice
on which the memory resides is theCUdeviceof the
CUcontextreturned by the
CU_POINTER_ATTRIBUTE_CONTEXTattribute of ptr. -
If ptr addresses host memory then *data is set to
CU_MEMORYTYPE_HOST. -
If ptr was not allocated by, mapped by, or registered with a
CUcontextwhich uses unified virtual addressing then
CUDA_ERROR_INVALID_VALUEis returned. -
If the current
CUcontextdoes not support unified virtual
addressing thenCUDA_ERROR_INVALID_CONTEXTis returned. -
CU_POINTER_ATTRIBUTE_DEVICE_POINTER: -
Returns in *data the device pointer value through which ptr may
be accessed by kernels running in the currentCUcontext.
The type of data must be CUdeviceptr *. -
If there exists no device pointer value through which kernels running
in the currentCUcontextmay access ptr then
CUDA_ERROR_INVALID_VALUEis returned. -
If there is no current
CUcontextthen
CUDA_ERROR_INVALID_CONTEXTis returned. -
Except in the exceptional disjoint addressing cases discussed below,
the value returned in *data will equal the input value ptr. -
CU_POINTER_ATTRIBUTE_HOST_POINTER: -
Returns in *data the host pointer value through which ptr may be
accessed by by the host program. The type of data must be void **.
If there exists no host pointer value through which the host program
may directly access ptr thenCUDA_ERROR_INVALID_VALUE
is returned. -
Except in the exceptional disjoint addressing cases discussed below,
the value returned in *data will equal the input value ptr. -
CU_POINTER_ATTRIBUTE_P2P_TOKENS: -
Returns in *data two tokens for use with the nv-p2p.h Linux kernel
interface. data must be a struct of type
CUDA_POINTER_ATTRIBUTE_P2P_TOKENS. -
ptr must be a pointer to memory obtained from
pycuMemAlloc(). Note that p2pToken and
vaSpaceToken are only valid for the lifetime of the source
allocation. A subsequent allocation at the same address may return
completely different tokens. Querying this attribute has a side
effect of setting the attribute
CU_POINTER_ATTRIBUTE_SYNC_MEMOPSfor the region of memory
that ptr points to. -
CU_POINTER_ATTRIBUTE_SYNC_MEMOPS: -
A boolean attribute which when set, ensures that synchronous memory
operations initiated on the region of memory that ptr points to
will always synchronize. See further documentation in the section
titled “API synchronization behavior” to learn more about cases when
synchronous memory operations can exhibit asynchronous behavior. -
CU_POINTER_ATTRIBUTE_BUFFER_ID: -
Returns in *data a buffer ID which is guaranteed to be unique
within the process. data must point to an unsigned long long. -
ptr must be a pointer to memory obtained from a CUDA memory
allocation API. Every memory allocation from any of the CUDA memory
allocation APIs will have a unique ID over a process lifetime.
Subsequent allocations do not reuse IDs from previous freed
allocations. IDs are only unique within a single process. -
CU_POINTER_ATTRIBUTE_IS_MANAGED: -
Returns in *data a boolean that indicates whether the pointer
points to managed memory or not. -
If ptr is not a valid CUDA pointer then
CUDA_ERROR_INVALID_VALUEis returned. -
CU_POINTER_ATTRIBUTE_DEVICE_ORDINAL: -
Returns in *data an integer representing a device ordinal of a
device against which the memory was allocated or registered. -
CU_POINTER_ATTRIBUTE_IS_LEGACY_CUDA_IPC_CAPABLE: -
Returns in *data a boolean that indicates if this pointer maps to
an allocation that is suitable forcudaIpcGetMemHandle. -
CU_POINTER_ATTRIBUTE_RANGE_START_ADDR: -
Returns in *data the starting address for the allocation referenced
by the device pointer ptr. Note that this is not necessarily the
address of the mapped region, but the address of the mappable address
range ptr references (e.g. fromcuMemAddressReserve). -
CU_POINTER_ATTRIBUTE_RANGE_SIZE: -
Returns in *data the size for the allocation referenced by the
device pointer ptr. Note that this is not necessarily the size of
the mapped region, but the size of the mappable address range ptr
references (e.g. fromcuMemAddressReserve). To retrieve
the size of the mapped region, seecuMemGetAddressRange -
CU_POINTER_ATTRIBUTE_MAPPED: -
Returns in *data a boolean that indicates if this pointer is in a
valid address range that is mapped to a backing allocation. -
CU_POINTER_ATTRIBUTE_ALLOWED_HANDLE_TYPES: -
Returns a bitmask of the allowed handle types for an allocation that
may be passed tocuMemExportToShareableHandle. -
CU_POINTER_ATTRIBUTE_MEMPOOL_HANDLE: -
Returns in *data the handle to the mempool that the allocation was
obtained from.
Note that for most allocations in the unified virtual address space the
host and device pointer for accessing the allocation will be the same.
The exceptions to this are-
user memory registered using
cuMemHostRegister -
host memory allocated using
cuMemHostAllocwith the
CU_MEMHOSTALLOC_WRITECOMBINEDflag For these types of
allocation there will exist separate, disjoint host and device
addresses for accessing the allocation. In particular -
The host address will correspond to an invalid unmapped device
address (which will result in an exception if accessed from the
device) -
The device address will correspond to an invalid unmapped host
address (which will result in an exception if accessed from the
host). For these types of allocations, querying
CU_POINTER_ATTRIBUTE_HOST_POINTERand
CU_POINTER_ATTRIBUTE_DEVICE_POINTERmay be used to
retrieve the host and device addresses from either address.
- Parameters:
-
-
attribute (
CUpointer_attribute) – Pointer attribute to query -
ptr (
CUdeviceptr) – Pointer
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
data (Any) – Returned pointer attribute value
-
-
- cuda.cuda.cuMemPrefetchAsync(devPtr, size_t count, dstDevice, hStream)#
-
Prefetches memory to the specified destination device.
Prefetches memory to the specified destination device. devPtr is the
base device pointer of the memory to be prefetched and dstDevice is
the destination device. count specifies the number of bytes to copy.
hStream is the stream in which the operation is enqueued. The memory
range must refer to managed memory allocated via
cuMemAllocManagedor declared via managed variables.Passing in CU_DEVICE_CPU for dstDevice will prefetch the data to host
memory. If dstDevice is a GPU, then the device attribute
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESSmust be non-
zero. Additionally, hStream must be associated with a device that has
a non-zero value for the device attribute
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS.The start address and end address of the memory range will be rounded
down and rounded up respectively to be aligned to CPU page size before
the prefetch operation is enqueued in the stream.If no physical memory has been allocated for this region, then this
memory region will be populated and mapped on the destination device.
If there’s insufficient memory to prefetch the desired region, the
Unified Memory driver may evict pages from other
cuMemAllocManagedallocations to host memory in order to
make room. Device memory allocated usingcuMemAllocor
cuArrayCreatewill not be evicted.By default, any mappings to the previous location of the migrated pages
are removed and mappings for the new location are only setup on
dstDevice. The exact behavior however also depends on the settings
applied to this memory range viacuMemAdviseas described
below:If
CU_MEM_ADVISE_SET_READ_MOSTLYwas set on any subset of
this memory range, then that subset will create a read-only copy of the
pages on dstDevice.If
CU_MEM_ADVISE_SET_PREFERRED_LOCATIONwas called on any
subset of this memory range, then the pages will be migrated to
dstDevice even if dstDevice is not the preferred location of any
pages in the memory range.If
CU_MEM_ADVISE_SET_ACCESSED_BYwas called on any subset
of this memory range, then mappings to those pages from all the
appropriate processors are updated to refer to the new location if
establishing such a mapping is possible. Otherwise, those mappings are
cleared.Note that this API is not required for functionality and only serves to
improve performance by allowing the application to migrate data to a
suitable location before it is accessed. Memory accesses to this range
are always coherent and are allowed even when the data is actively
being migrated.Note that this function is asynchronous with respect to the host and
all work on other devices.- Parameters:
-
-
devPtr (
CUdeviceptr) – Pointer to be prefetched -
count (size_t) – Size in bytes
-
dstDevice (
CUdevice) – Destination device to prefetch to -
hStream (
CUstreamorcudaStream_t) – Stream to enqueue prefetch operation
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE - Return type:
-
CUresult
- cuda.cuda.cuMemAdvise(devPtr, size_t count, advice: CUmem_advise, device)#
-
Advise about the usage of a given memory range.
Advise the Unified Memory subsystem about the usage pattern for the
memory range starting at devPtr with a size of count bytes. The
start address and end address of the memory range will be rounded down
and rounded up respectively to be aligned to CPU page size before the
advice is applied. The memory range must refer to managed memory
allocated viacuMemAllocManagedor declared via managed
variables. The memory range could also refer to system-allocated
pageable memory provided it represents a valid, host-accessible region
of memory and all additional constraints imposed by advice as
outlined below are also satisfied. Specifying an invalid system-
allocated pageable memory range results in an error being returned.The advice parameter can take the following values:
-
CU_MEM_ADVISE_SET_READ_MOSTLY: This implies that the data
is mostly going to be read from and only occasionally written to. Any
read accesses from any processor to this region will create a read-
only copy of at least the accessed pages in that processor’s memory.
Additionally, ifcuMemPrefetchAsyncis called on this
region, it will create a read-only copy of the data on the
destination processor. If any processor writes to this region, all
copies of the corresponding page will be invalidated except for the
one where the write occurred. The device argument is ignored for
this advice. Note that for a page to be read-duplicated, the
accessing processor must either be the CPU or a GPU that has a non-
zero value for the device attribute
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS. Also, if a
context is created on a device that does not have the device
attributeCU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS
set, then read-duplication will not occur until all such contexts are
destroyed. If the memory region refers to valid system-allocated
pageable memory, then the accessing device must have a non-zero value
for the device attribute
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESSfor a read-
only copy to be created on that device. Note however that if the
accessing device also has a non-zero value for the device attribute
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS_USES_HOST_PAGE_TABLES,
then setting this advice will not create a read-only copy when that
device accesses this memory region. -
CU_MEM_ADVISE_UNSET_READ_MOSTLY: Undoes the effect of
CU_MEM_ADVISE_SET_READ_MOSTLYand also prevents the
Unified Memory driver from attempting heuristic read-duplication on
the memory range. Any read-duplicated copies of the data will be
collapsed into a single copy. The location for the collapsed copy
will be the preferred location if the page has a preferred location
and one of the read-duplicated copies was resident at that location.
Otherwise, the location chosen is arbitrary. -
CU_MEM_ADVISE_SET_PREFERRED_LOCATION: This advice sets
the preferred location for the data to be the memory belonging to
device. Passing in CU_DEVICE_CPU for device sets the preferred
location as host memory. If device is a GPU, then it must have a
non-zero value for the device attribute
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS. Setting
the preferred location does not cause data to migrate to that
location immediately. Instead, it guides the migration policy when a
fault occurs on that memory region. If the data is already in its
preferred location and the faulting processor can establish a mapping
without requiring the data to be migrated, then data migration will
be avoided. On the other hand, if the data is not in its preferred
location or if a direct mapping cannot be established, then it will
be migrated to the processor accessing it. It is important to note
that setting the preferred location does not prevent data prefetching
done usingcuMemPrefetchAsync. Having a preferred
location can override the page thrash detection and resolution logic
in the Unified Memory driver. Normally, if a page is detected to be
constantly thrashing between for example host and device memory, the
page may eventually be pinned to host memory by the Unified Memory
driver. But if the preferred location is set as device memory, then
the page will continue to thrash indefinitely. If
CU_MEM_ADVISE_SET_READ_MOSTLYis also set on this memory
region or any subset of it, then the policies associated with that
advice will override the policies of this advice, unless read
accesses from device will not result in a read-only copy being
created on that device as outlined in description for the advice
CU_MEM_ADVISE_SET_READ_MOSTLY. If the memory region
refers to valid system-allocated pageable memory, then device must
have a non-zero value for the device attribute
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS. Additionally,
if device has a non-zero value for the device attribute
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS_USES_HOST_PAGE_TABLES,
then this call has no effect. Note however that this behavior may
change in the future. -
CU_MEM_ADVISE_UNSET_PREFERRED_LOCATION: Undoes the effect
ofCU_MEM_ADVISE_SET_PREFERRED_LOCATIONand changes the
preferred location to none. -
CU_MEM_ADVISE_SET_ACCESSED_BY: This advice implies that
the data will be accessed by device. Passing in
CU_DEVICE_CPUfor device will set the advice for the
CPU. If device is a GPU, then the device attribute
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESSmust be
non-zero. This advice does not cause data migration and has no impact
on the location of the data per se. Instead, it causes the data to
always be mapped in the specified processor’s page tables, as long as
the location of the data permits a mapping to be established. If the
data gets migrated for any reason, the mappings are updated
accordingly. This advice is recommended in scenarios where data
locality is not important, but avoiding faults is. Consider for
example a system containing multiple GPUs with peer-to-peer access
enabled, where the data located on one GPU is occasionally accessed
by peer GPUs. In such scenarios, migrating data over to the other
GPUs is not as important because the accesses are infrequent and the
overhead of migration may be too high. But preventing faults can
still help improve performance, and so having a mapping set up in
advance is useful. Note that on CPU access of this data, the data may
be migrated to host memory because the CPU typically cannot access
device memory directly. Any GPU that had the
CU_MEM_ADVISE_SET_ACCESSED_BYflag set for this data will
now have its mapping updated to point to the page in host memory. If
CU_MEM_ADVISE_SET_READ_MOSTLYis also set on this memory
region or any subset of it, then the policies associated with that
advice will override the policies of this advice. Additionally, if
the preferred location of this memory region or any subset of it is
also device, then the policies associated with
CU_MEM_ADVISE_SET_PREFERRED_LOCATIONwill override the
policies of this advice. If the memory region refers to valid system-
allocated pageable memory, then device must have a non-zero value
for the device attribute
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS. Additionally,
if device has a non-zero value for the device attribute
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS_USES_HOST_PAGE_TABLES,
then this call has no effect. -
CU_MEM_ADVISE_UNSET_ACCESSED_BY: Undoes the effect of
CU_MEM_ADVISE_SET_ACCESSED_BY. Any mappings to the data
from device may be removed at any time causing accesses to result
in non-fatal page faults. If the memory region refers to valid
system-allocated pageable memory, then device must have a non-zero
value for the device attribute
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS. Additionally,
if device has a non-zero value for the device attribute
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS_USES_HOST_PAGE_TABLES,
then this call has no effect.
- Parameters:
-
-
devPtr (
CUdeviceptr) – Pointer to memory to set the advice for -
count (size_t) – Size in bytes of the memory range
-
advice (
CUmem_advise) – Advice to be applied for the specified memory range -
device (
CUdevice) – Device to apply the advice for
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE - Return type:
-
CUresult
-
- cuda.cuda.cuMemRangeGetAttribute(size_t dataSize, attribute: CUmem_range_attribute, devPtr, size_t count)#
-
Query an attribute of a given memory range.
Query an attribute about the memory range starting at devPtr with a
size of count bytes. The memory range must refer to managed memory
allocated viacuMemAllocManagedor declared via managed
variables.The attribute parameter can take the following values:
-
CU_MEM_RANGE_ATTRIBUTE_READ_MOSTLY: If this attribute is
specified, data will be interpreted as a 32-bit integer, and
dataSize must be 4. The result returned will be 1 if all pages in
the given memory range have read-duplication enabled, or 0 otherwise. -
CU_MEM_RANGE_ATTRIBUTE_PREFERRED_LOCATION: If this
attribute is specified, data will be interpreted as a 32-bit
integer, and dataSize must be 4. The result returned will be a GPU
device id if all pages in the memory range have that GPU as their
preferred location, or it will be CU_DEVICE_CPU if all pages in the
memory range have the CPU as their preferred location, or it will be
CU_DEVICE_INVALID if either all the pages don’t have the same
preferred location or some of the pages don’t have a preferred
location at all. Note that the actual location of the pages in the
memory range at the time of the query may be different from the
preferred location. -
CU_MEM_RANGE_ATTRIBUTE_ACCESSED_BY: If this attribute is
specified, data will be interpreted as an array of 32-bit integers,
and dataSize must be a non-zero multiple of 4. The result returned
will be a list of device ids that had
CU_MEM_ADVISE_SET_ACCESSED_BYset for that entire memory
range. If any device does not have that advice set for the entire
memory range, that device will not be included. If data is larger
than the number of devices that have that advice set for that memory
range, CU_DEVICE_INVALID will be returned in all the extra space
provided. For ex., if dataSize is 12 (i.e. data has 3 elements)
and only device 0 has the advice set, then the result returned will
be { 0, CU_DEVICE_INVALID, CU_DEVICE_INVALID }. If data is smaller
than the number of devices that have that advice set, then only as
many devices will be returned as can fit in the array. There is no
guarantee on which specific devices will be returned, however. -
CU_MEM_RANGE_ATTRIBUTE_LAST_PREFETCH_LOCATION: If this
attribute is specified, data will be interpreted as a 32-bit
integer, and dataSize must be 4. The result returned will be the
last location to which all pages in the memory range were prefetched
explicitly viacuMemPrefetchAsync. This will either be a
GPU id or CU_DEVICE_CPU depending on whether the last location for
prefetch was a GPU or the CPU respectively. If any page in the memory
range was never explicitly prefetched or if all pages were not
prefetched to the same location, CU_DEVICE_INVALID will be returned.
Note that this simply returns the last location that the applicaton
requested to prefetch the memory range to. It gives no indication as
to whether the prefetch operation to that location has completed or
even begun.
- Parameters:
-
-
dataSize (size_t) – Array containing the size of data
-
attribute (
CUmem_range_attribute) – The attribute to query -
devPtr (
CUdeviceptr) – Start of the range to query -
count (size_t) – Size of the range to query
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
data (Any) – A pointers to a memory location where the result of each attribute
query will be written to.
-
-
- cuda.cuda.cuMemRangeGetAttributes(dataSizes: List[int], attributes: List[CUmem_range_attribute], size_t numAttributes, devPtr, size_t count)#
-
Query attributes of a given memory range.
Query attributes of the memory range starting at devPtr with a size
of count bytes. The memory range must refer to managed memory
allocated viacuMemAllocManagedor declared via managed
variables. The attributes array will be interpreted to have
numAttributes entries. The dataSizes array will also be interpreted
to have numAttributes entries. The results of the query will be
stored in data.The list of supported attributes are given below. Please refer to
cuMemRangeGetAttributefor attribute descriptions and
restrictions.-
CU_MEM_RANGE_ATTRIBUTE_READ_MOSTLY -
CU_MEM_RANGE_ATTRIBUTE_PREFERRED_LOCATION -
CU_MEM_RANGE_ATTRIBUTE_ACCESSED_BY -
CU_MEM_RANGE_ATTRIBUTE_LAST_PREFETCH_LOCATION
- Parameters:
-
-
dataSizes (List[int]) – Array containing the sizes of each result
-
attributes (List[
CUmem_range_attribute]) – An array of attributes to query (numAttributes and the number of
attributes in this array should match) -
numAttributes (size_t) – Number of attributes to query
-
devPtr (
CUdeviceptr) – Start of the range to query -
count (size_t) – Size of the range to query
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
data (List[Any]) – A two-dimensional array containing pointers to memory locations
where the result of each attribute query will be written to.
-
-
- cuda.cuda.cuPointerSetAttribute(value, attribute: CUpointer_attribute, ptr)#
-
Set attributes on a previously allocated memory region.
The supported attributes are:
-
CU_POINTER_ATTRIBUTE_SYNC_MEMOPS: -
A boolean attribute that can either be set (1) or unset (0). When
set, the region of memory that ptr points to is guaranteed to
always synchronize memory operations that are synchronous. If there
are some previously initiated synchronous memory operations that are
pending when this attribute is set, the function does not return
until those memory operations are complete. See further documentation
in the section titled “API synchronization behavior” to learn more
about cases when synchronous memory operations can exhibit
asynchronous behavior. value will be considered as a pointer to an
unsigned integer to which this attribute is to be set.
- Parameters:
-
-
value (Any) – Pointer to memory containing the value to be set
-
attribute (
CUpointer_attribute) – Pointer attribute to set -
ptr (
CUdeviceptr) – Pointer to a memory region allocated using CUDA memory allocation
APIs
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE - Return type:
-
CUresult
-
- cuda.cuda.cuPointerGetAttributes(unsigned int numAttributes, attributes: List[CUpointer_attribute], ptr)#
-
Returns information about a pointer.
The supported attributes are (refer to
cuPointerGetAttributefor attribute descriptions and
restrictions):-
CU_POINTER_ATTRIBUTE_CONTEXT -
CU_POINTER_ATTRIBUTE_MEMORY_TYPE -
CU_POINTER_ATTRIBUTE_DEVICE_POINTER -
CU_POINTER_ATTRIBUTE_HOST_POINTER -
CU_POINTER_ATTRIBUTE_SYNC_MEMOPS -
CU_POINTER_ATTRIBUTE_BUFFER_ID -
CU_POINTER_ATTRIBUTE_IS_MANAGED -
CU_POINTER_ATTRIBUTE_DEVICE_ORDINAL -
CU_POINTER_ATTRIBUTE_RANGE_START_ADDR -
CU_POINTER_ATTRIBUTE_RANGE_SIZE -
CU_POINTER_ATTRIBUTE_MAPPED -
CU_POINTER_ATTRIBUTE_IS_LEGACY_CUDA_IPC_CAPABLE -
CU_POINTER_ATTRIBUTE_ALLOWED_HANDLE_TYPES -
CU_POINTER_ATTRIBUTE_MEMPOOL_HANDLE
Unlike
cuPointerGetAttribute, this function will not return
an error when the ptr encountered is not a valid CUDA pointer.
Instead, the attributes are assigned default NULL values and
CUDA_SUCCESS is returned.If ptr was not allocated by, mapped by, or registered with a
CUcontextwhich uses UVA (Unified Virtual Addressing),
CUDA_ERROR_INVALID_CONTEXTis returned.- Parameters:
-
-
numAttributes (unsigned int) – Number of attributes to query
-
attributes (List[
CUpointer_attribute]) – An array of attributes to query (numAttributes and the number of
attributes in this array should match) -
ptr (
CUdeviceptr) – Pointer to query
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_DEVICE -
data (List[Any]) – A two-dimensional array containing pointers to memory locations
where the result of each attribute query will be written to.
-
-
Stream Management#
This section describes the stream management functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuStreamCreate(unsigned int Flags)#
-
Create a stream.
Creates a stream and returns a handle in phStream. The Flags
argument determines behaviors of the stream.Valid values for Flags are:
-
CU_STREAM_DEFAULT: Default stream creation flag. -
CU_STREAM_NON_BLOCKING: Specifies that work running in
the created stream may run concurrently with work in stream 0 (the
NULL stream), and that the created stream should perform no implicit
synchronization with stream 0.
- Parameters:
-
Flags (unsigned int) – Parameters for stream creation
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY -
phStream (
CUstream) – Returned newly created stream
-
-
- cuda.cuda.cuStreamCreateWithPriority(unsigned int flags, int priority)#
-
Create a stream with the given priority.
Creates a stream with the specified priority and returns a handle in
phStream. This API alters the scheduler priority of work in the
stream. Work in a higher priority stream may preempt work already
executing in a low priority stream.priority follows a convention where lower numbers represent higher
priorities. ‘0’ represents default priority. The range of meaningful
numerical priorities can be queried using
cuCtxGetStreamPriorityRange. If the specified priority is
outside the numerical range returned by
cuCtxGetStreamPriorityRange, it will automatically be
clamped to the lowest or the highest number in the range.- Parameters:
-
-
flags (unsigned int) – Flags for stream creation. See
cuStreamCreatefor a
list of valid flags -
priority (int) – Stream priority. Lower numbers represent higher priorities. See
cuCtxGetStreamPriorityRangefor more information about
meaningful stream priorities that can be passed.
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY -
phStream (
CUstream) – Returned newly created stream
-
Notes
Stream priorities are supported only on GPUs with compute capability 3.5 or higher.
In the current implementation, only compute kernels launched in priority streams are affected by the stream’s priority. Stream priorities have no effect on host-to-device and device-to-host memory operations.
- cuda.cuda.cuStreamGetPriority(hStream)#
-
Query the priority of a given stream.
Query the priority of a stream created using
cuStreamCreate
orcuStreamCreateWithPriorityand return the priority in
priority. Note that if the stream was created with a priority outside
the numerical range returned by
cuCtxGetStreamPriorityRange, this function returns the
clamped priority. SeecuStreamCreateWithPriorityfor
details about priority clamping.- Parameters:
-
hStream (
CUstreamorcudaStream_t) – Handle to the stream to be queried - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_OUT_OF_MEMORY -
priority (int) – Pointer to a signed integer in which the stream’s priority is
returned
-
- cuda.cuda.cuStreamGetFlags(hStream)#
-
Query the flags of a given stream.
Query the flags of a stream created using
cuStreamCreateor
cuStreamCreateWithPriorityand return the flags in flags.- Parameters:
-
hStream (
CUstreamorcudaStream_t) – Handle to the stream to be queried - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_OUT_OF_MEMORY -
flags (unsigned int) – Pointer to an unsigned integer in which the stream’s flags are
returned The value returned in flags is a logical ‘OR’ of all
flags that were used while creating this stream. See
cuStreamCreatefor the list of valid flags
-
- cuda.cuda.cuStreamGetId(hStream)#
-
Returns the unique Id associated with the stream handle supplied.
Returns in streamId the unique Id which is associated with the given
stream handle. The Id is unique for the life of the program for this
instance of CUDA.The stream handle hStream can refer to any of the following:
-
a stream created via any of the CUDA driver APIs such as
cuStreamCreateand
cuStreamCreateWithPriority, or their runtime API
equivalents such ascudaStreamCreate,
cudaStreamCreateWithFlagsand
cudaStreamCreateWithPriority. Passing an invalid handle
will result in undefined behavior. -
any of the special streams such as the NULL stream,
CU_STREAM_LEGACYandCU_STREAM_PER_THREAD.
The runtime API equivalents of these are also accepted, which are
NULL,cudaStreamLegacyand
cudaStreamPerThreadrespectively.
- Parameters:
-
hStream (
CUstreamorcudaStream_t) – Handle to the stream to be queried - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE -
streamId (unsigned long long) – Pointer to store the Id of the stream
-
-
- cuda.cuda.cuStreamGetCtx(hStream)#
-
Query the context associated with a stream.
Returns the CUDA context that the stream is associated with.
The stream handle hStream can refer to any of the following:
-
a stream created via any of the CUDA driver APIs such as
cuStreamCreateand
cuStreamCreateWithPriority, or their runtime API
equivalents such ascudaStreamCreate,
cudaStreamCreateWithFlagsand
cudaStreamCreateWithPriority. The returned context is the
context that was active in the calling thread when the stream was
created. Passing an invalid handle will result in undefined behavior. -
any of the special streams such as the NULL stream,
CU_STREAM_LEGACYandCU_STREAM_PER_THREAD.
The runtime API equivalents of these are also accepted, which are
NULL,cudaStreamLegacyand
cudaStreamPerThreadrespectively. Specifying any of the
special handles will return the context current to the calling
thread. If no context is current to the calling thread,
CUDA_ERROR_INVALID_CONTEXTis returned.
- Parameters:
-
hStream (
CUstreamorcudaStream_t) – Handle to the stream to be queried - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE, -
pctx (
CUcontext) – Returned context associated with the stream
-
-
- cuda.cuda.cuStreamWaitEvent(hStream, hEvent, unsigned int Flags)#
-
Make a compute stream wait on an event.
Makes all future work submitted to hStream wait for all work captured
in hEvent. SeecuEventRecord()for details on what is
captured by an event. The synchronization will be performed efficiently
on the device when applicable. hEvent may be from a different context
or device than hStream.flags include:
-
CU_EVENT_WAIT_DEFAULT: Default event creation flag. -
CU_EVENT_WAIT_EXTERNAL: Event is captured in the graph as
an external event node when performing stream capture. This flag is
invalid outside of stream capture.
- Parameters:
-
-
hStream (
CUstreamorcudaStream_t) – Stream to wait -
hEvent (
CUeventorcudaEvent_t) – Event to wait on (may not be NULL) -
Flags (unsigned int) – See
CUevent_capture_flags
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE, - Return type:
-
CUresult
-
- cuda.cuda.cuStreamAddCallback(hStream, callback, userData, unsigned int flags)#
-
Add a callback to a compute stream.
Adds a callback to be called on the host after all currently enqueued
items in the stream have completed. For each cuStreamAddCallback call,
the callback will be executed exactly once. The callback will block
later work in the stream until it is finished.The callback may be passed
CUDA_SUCCESSor an error code.
In the event of a device error, all subsequently executed callbacks
will receive an appropriateCUresult.Callbacks must not make any CUDA API calls. Attempting to use a CUDA
API will result inCUDA_ERROR_NOT_PERMITTED. Callbacks must
not perform any synchronization that may depend on outstanding device
work or other callbacks that are not mandated to run earlier. Callbacks
without a mandated order (in independent streams) execute in undefined
order and may be serialized.For the purposes of Unified Memory, callback execution makes a number
of guarantees:-
The callback stream is considered idle for the duration of the
callback. Thus, for example, a callback may always use memory
attached to the callback stream. -
The start of execution of a callback has the same effect as
synchronizing an event recorded in the same stream immediately prior
to the callback. It thus synchronizes streams which have been
“joined” prior to the callback. -
Adding device work to any stream does not have the effect of making
the stream active until all preceding host functions and stream
callbacks have executed. Thus, for example, a callback might use
global attached memory even if work has been added to another stream,
if the work has been ordered behind the callback with an event. -
Completion of a callback does not cause a stream to become active
except as described above. The callback stream will remain idle if no
device work follows the callback, and will remain idle across
consecutive callbacks without device work in between. Thus, for
example, stream synchronization can be done by signaling from a
callback at the end of the stream.
- Parameters:
-
-
hStream (
CUstreamorcudaStream_t) – Stream to add callback to -
callback (
CUstreamCallback) – The function to call once preceding stream operations are complete -
userData (Any) – User specified data to be passed to the callback function
-
flags (unsigned int) – Reserved for future use, must be 0
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
Notes
This function is slated for eventual deprecation and removal. If you do not require the callback to execute in case of a device error, consider using
cuLaunchHostFunc. Additionally, this function is not supported withcuStreamBeginCaptureandcuStreamEndCapture, unlikecuLaunchHostFunc. -
- cuda.cuda.cuStreamBeginCapture(hStream, mode: CUstreamCaptureMode)#
-
Begins graph capture on a stream.
Begin graph capture on hStream. When a stream is in capture mode, all
operations pushed into the stream will not be executed, but will
instead be captured into a graph, which will be returned via
cuStreamEndCapture. Capture may not be initiated if
stream is CU_STREAM_LEGACY. Capture must be ended on the same stream
in which it was initiated, and it may only be initiated if the stream
is not already in capture mode. The capture mode may be queried via
cuStreamIsCapturing. A unique id representing the capture
sequence may be queried viacuStreamGetCaptureInfo.If mode is not
CU_STREAM_CAPTURE_MODE_RELAXED,
cuStreamEndCapturemust be called on this stream from the
same thread.- Parameters:
-
-
hStream (
CUstreamorcudaStream_t) – Stream in which to initiate capture -
mode (
CUstreamCaptureMode) – Controls the interaction of this capture sequence with other API
calls that are potentially unsafe. For more details see
cuThreadExchangeStreamCaptureMode.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
Notes
Kernels captured using this API must not use texture and surface references. Reading or writing through any texture or surface reference is undefined behavior. This restriction does not apply to texture and surface objects.
- cuda.cuda.cuThreadExchangeStreamCaptureMode(mode: CUstreamCaptureMode)#
-
Swaps the stream capture interaction mode for a thread.
Sets the calling thread’s stream capture interaction mode to the value
contained in *mode, and overwrites *mode with the previous mode for
the thread. To facilitate deterministic behavior across function or
module boundaries, callers are encouraged to use this API in a push-pop
fashion:View CUDA Toolkit Documentation for a C++ code example
During stream capture (see
cuStreamBeginCapture), some
actions, such as a call tocudaMalloc, may be unsafe. In
the case ofcudaMalloc, the operation is not enqueued
asynchronously to a stream, and is not observed by stream capture.
Therefore, if the sequence of operations captured via
cuStreamBeginCapturedepended on the allocation being
replayed whenever the graph is launched, the captured graph would be
invalid.Therefore, stream capture places restrictions on API calls that can be
made within or concurrently to a
cuStreamBeginCapture—cuStreamEndCapture
sequence. This behavior can be controlled via this API and flags to
cuStreamBeginCapture.A thread’s mode is one of the following:
-
CU_STREAM_CAPTURE_MODE_GLOBAL: This is the default mode. If the
local thread has an ongoing capture sequence that was not initiated
with CU_STREAM_CAPTURE_MODE_RELAXED at cuStreamBeginCapture, or
if any other thread has a concurrent capture sequence initiated with
CU_STREAM_CAPTURE_MODE_GLOBAL, this thread is prohibited from
potentially unsafe API calls. -
CU_STREAM_CAPTURE_MODE_THREAD_LOCAL: If the local thread has an
ongoing capture sequence not initiated with
CU_STREAM_CAPTURE_MODE_RELAXED, it is prohibited from potentially
unsafe API calls. Concurrent capture sequences in other threads are
ignored. -
CU_STREAM_CAPTURE_MODE_RELAXED: The local thread is not prohibited
from potentially unsafe API calls. Note that the thread is still
prohibited from API calls which necessarily conflict with stream
capture, for example, attemptingcuEventQueryon an event
that was last recorded inside a capture sequence.
- Parameters:
-
mode (
CUstreamCaptureMode) – Pointer to mode value to swap with the current mode - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
mode (
CUstreamCaptureMode) – Pointer to mode value to swap with the current mode
-
-
- cuda.cuda.cuStreamEndCapture(hStream)#
-
Ends capture on a stream, returning the captured graph.
End capture on hStream, returning the captured graph via phGraph.
Capture must have been initiated on hStream via a call to
cuStreamBeginCapture. If capture was invalidated, due to a
violation of the rules of stream capture, then a NULL graph will be
returned.If the mode argument to
cuStreamBeginCapturewas not
CU_STREAM_CAPTURE_MODE_RELAXED, this call must be from the
same thread ascuStreamBeginCapture.- Parameters:
-
hStream (
CUstreamorcudaStream_t) – Stream to query - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_STREAM_CAPTURE_WRONG_THREAD -
phGraph (
CUgraph) – The captured graph
-
- cuda.cuda.cuStreamIsCapturing(hStream)#
-
Returns a stream’s capture status.
Return the capture status of hStream via captureStatus. After a
successful call, *captureStatus will contain one of the following:-
CU_STREAM_CAPTURE_STATUS_NONE: The stream is not
capturing. -
CU_STREAM_CAPTURE_STATUS_ACTIVE: The stream is capturing. -
CU_STREAM_CAPTURE_STATUS_INVALIDATED: The stream was
capturing but an error has invalidated the capture sequence. The
capture sequence must be terminated with
cuStreamEndCaptureon the stream where it was initiated
in order to continue using hStream.
Note that, if this is called on
CU_STREAM_LEGACY(the “null
stream”) while a blocking stream in the same context is capturing, it
will returnCUDA_ERROR_STREAM_CAPTURE_IMPLICITand
*captureStatus is unspecified after the call. The blocking stream
capture is not invalidated.When a blocking stream is capturing, the legacy stream is in an
unusable state until the blocking stream capture is terminated. The
legacy stream is not supported for stream capture, but attempted use
would have an implicit dependency on the capturing stream(s).- Parameters:
-
hStream (
CUstreamorcudaStream_t) – Stream to query - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_STREAM_CAPTURE_IMPLICIT -
captureStatus (
CUstreamCaptureStatus) – Returns the stream’s capture status
-
-
- cuda.cuda.cuStreamGetCaptureInfo(hStream)#
-
Query a stream’s capture state.
Query stream state related to stream capture.
If called on
CU_STREAM_LEGACY(the “null stream”) while a
stream not created withCU_STREAM_NON_BLOCKINGis
capturing, returnsCUDA_ERROR_STREAM_CAPTURE_IMPLICIT.Valid data (other than capture status) is returned only if both of the
following are true:-
the call returns CUDA_SUCCESS
-
the returned capture status is
CU_STREAM_CAPTURE_STATUS_ACTIVE
- Parameters:
-
hStream (
CUstreamorcudaStream_t) – The stream to query - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_STREAM_CAPTURE_IMPLICIT -
captureStatus_out (
CUstreamCaptureStatus) – Location to return the capture status of the stream; required -
id_out (
cuuint64_t) – Optional location to return an id for the capture sequence, which
is unique over the lifetime of the process -
graph_out (
CUgraph) – Optional location to return the graph being captured into. All
operations other than destroy and node removal are permitted on the
graph while the capture sequence is in progress. This API does not
transfer ownership of the graph, which is transferred or destroyed
atcuStreamEndCapture. Note that the graph handle may
be invalidated before end of capture for certain errors. Nodes that
are or become unreachable from the original stream at
cuStreamEndCapturedue to direct actions on the graph
do not triggerCUDA_ERROR_STREAM_CAPTURE_UNJOINED. -
dependencies_out (List[
CUgraphNode]) – Optional location to store a pointer to an array of nodes. The next
node to be captured in the stream will depend on this set of nodes,
absent operations such as event wait which modify this set. The
array pointer is valid until the next API call which operates on
the stream or until end of capture. The node handles may be copied
out and are valid until they or the graph is destroyed. The driver-
owned array may also be passed directly to APIs that operate on the
graph (not the stream) without copying. -
numDependencies_out (int) – Optional location to store the size of the array returned in
dependencies_out.
-
-
- cuda.cuda.cuStreamUpdateCaptureDependencies(hStream, dependencies: List[CUgraphNode], size_t numDependencies, unsigned int flags)#
-
Update the set of dependencies in a capturing stream (11.3+)
Modifies the dependency set of a capturing stream. The dependency set
is the set of nodes that the next captured node in the stream will
depend on.Valid flags are
CU_STREAM_ADD_CAPTURE_DEPENDENCIESand
CU_STREAM_SET_CAPTURE_DEPENDENCIES. These control whether
the set passed to the API is added to the existing set or replaces it.
A flags value of 0 defaults to
CU_STREAM_ADD_CAPTURE_DEPENDENCIES.Nodes that are removed from the dependency set via this API do not
result inCUDA_ERROR_STREAM_CAPTURE_UNJOINEDif they are
unreachable from the stream atcuStreamEndCapture.Returns
CUDA_ERROR_ILLEGAL_STATEif the stream is not
capturing.This API is new in CUDA 11.3. Developers requiring compatibility across
minor versions to CUDA 11.0 should not use this API or provide a
fallback.- Parameters:
-
-
hStream (
CUstreamorcudaStream_t) – None -
dependencies (List[
CUgraphNode]) – None -
numDependencies (size_t) – None
-
flags (unsigned int) – None
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_ILLEGAL_STATE - Return type:
-
CUresult
- cuda.cuda.cuStreamAttachMemAsync(hStream, dptr, size_t length, unsigned int flags)#
-
Attach memory to a stream asynchronously.
Enqueues an operation in hStream to specify stream association of
length bytes of memory starting from dptr. This function is a
stream-ordered operation, meaning that it is dependent on, and will
only take effect when, previous work in stream has completed. Any
previous association is automatically replaced.dptr must point to one of the following types of memories:
-
managed memory declared using the managed keyword or allocated with
cuMemAllocManaged. -
a valid host-accessible region of system-allocated pageable memory.
This type of memory may only be specified if the device associated
with the stream reports a non-zero value for the device attribute
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS.
For managed allocations, length must be either zero or the entire
allocation’s size. Both indicate that the entire allocation’s stream
association is being changed. Currently, it is not possible to change
stream association for a portion of a managed allocation.For pageable host allocations, length must be non-zero.
The stream association is specified using flags which must be one of
CUmemAttach_flags. If theCU_MEM_ATTACH_GLOBAL
flag is specified, the memory can be accessed by any stream on any
device. If theCU_MEM_ATTACH_HOSTflag is specified, the
program makes a guarantee that it won’t access the memory on the device
from any stream on a device that has a zero value for the device
attributeCU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS. If
theCU_MEM_ATTACH_SINGLEflag is specified and hStream is
associated with a device that has a zero value for the device attribute
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS, the program
makes a guarantee that it will only access the memory on the device
from hStream. It is illegal to attach singly to the NULL stream,
because the NULL stream is a virtual global stream and not a specific
stream. An error will be returned in this case.When memory is associated with a single stream, the Unified Memory
system will allow CPU access to this memory region so long as all
operations in hStream have completed, regardless of whether other
streams are active. In effect, this constrains exclusive ownership of
the managed memory region by an active GPU to per-stream activity
instead of whole-GPU activity.Accessing memory on the device from streams that are not associated
with it will produce undefined results. No error checking is performed
by the Unified Memory system to ensure that kernels launched into other
streams do not access this region.It is a program’s responsibility to order calls to
cuStreamAttachMemAsyncvia events, synchronization or other
means to ensure legal access to memory at all times. Data visibility
and coherency will be changed appropriately for all kernels which
follow a stream-association change.If hStream is destroyed while data is associated with it, the
association is removed and the association reverts to the default
visibility of the allocation as specified at
cuMemAllocManaged. For managed variables, the default
association is alwaysCU_MEM_ATTACH_GLOBAL. Note that
destroying a stream is an asynchronous operation, and as a result, the
change to default association won’t happen until all work in the stream
has completed.- Parameters:
-
-
hStream (
CUstreamorcudaStream_t) – Stream in which to enqueue the attach operation -
dptr (
CUdeviceptr) – Pointer to memory (must be a pointer to managed memory or to a
valid host-accessible region of system-allocated pageable memory) -
length (size_t) – Length of memory
-
flags (unsigned int) – Must be one of
CUmemAttach_flags
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
-
- cuda.cuda.cuStreamQuery(hStream)#
-
Determine status of a compute stream.
Returns
CUDA_SUCCESSif all operations in the stream
specified by hStream have completed, or
CUDA_ERROR_NOT_READYif not.For the purposes of Unified Memory, a return value of
CUDA_SUCCESSis equivalent to having called
cuStreamSynchronize().- Parameters:
-
hStream (
CUstreamorcudaStream_t) – Stream to query status of - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_READY - Return type:
-
CUresult
- cuda.cuda.cuStreamSynchronize(hStream)#
-
Wait until a stream’s tasks are completed.
Waits until the device has completed all operations in the stream
specified by hStream. If the context was created with the
CU_CTX_SCHED_BLOCKING_SYNCflag, the CPU thread will block
until the stream is finished with all of its tasks.ote_null_stream
- cuda.cuda.cuStreamDestroy(hStream)#
-
Destroys a stream.
Destroys the stream specified by hStream.
In case the device is still doing work in the stream hStream when
cuStreamDestroy()is called, the function will return
immediately and the resources associated with hStream will be
released automatically once the device has completed all work in
hStream.- Parameters:
-
hStream (
CUstreamorcudaStream_t) – Stream to destroy - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
- cuda.cuda.cuStreamCopyAttributes(dst, src)#
-
Copies attributes from source stream to destination stream.
Copies attributes from source stream src to destination stream dst.
Both streams must have the same context.- Parameters:
-
-
dst (
CUstreamorcudaStream_t) – Destination stream -
src (
CUstreamorcudaStream_t) – Source stream For list of attributes seeCUstreamAttrID
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuStreamGetAttribute(hStream, attr: CUstreamAttrID)#
-
Queries stream attribute.
Queries attribute attr from hStream and stores it in corresponding
member of value_out.- Parameters:
-
-
hStream (
CUstreamorcudaStream_t) – -
attr (
CUstreamAttrID) –
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE -
value_out (
CUstreamAttrValue)
-
- cuda.cuda.cuStreamSetAttribute(hStream, attr: CUstreamAttrID, CUstreamAttrValue value: CUstreamAttrValue)#
-
Sets stream attribute.
Sets attribute attr on hStream from corresponding attribute of
value. The updated attribute will be applied to subsequent work
submitted to the stream. It will not affect previously submitted work.- Parameters:
-
-
hStream (
CUstreamorcudaStream_t) – -
attr (
CUstreamAttrID) – -
value (
CUstreamAttrValue) –
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
Event Management#
This section describes the event management functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuEventCreate(unsigned int Flags)#
-
Creates an event.
Creates an event *phEvent for the current context with the flags
specified via Flags. Valid flags include:-
CU_EVENT_DEFAULT: Default event creation flag. -
CU_EVENT_BLOCKING_SYNC: Specifies that the created event
should use blocking synchronization. A CPU thread that uses
cuEventSynchronize()to wait on an event created with
this flag will block until the event has actually been recorded. -
CU_EVENT_DISABLE_TIMING: Specifies that the created event
does not need to record timing data. Events created with this flag
specified and theCU_EVENT_BLOCKING_SYNCflag not
specified will provide the best performance when used with
cuStreamWaitEvent()andcuEventQuery(). -
CU_EVENT_INTERPROCESS: Specifies that the created event
may be used as an interprocess event by
cuIpcGetEventHandle().CU_EVENT_INTERPROCESS
must be specified along withCU_EVENT_DISABLE_TIMING.
- Parameters:
-
Flags (unsigned int) – Event creation flags
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY -
phEvent (
CUevent) – Returns newly created event
-
-
- cuda.cuda.cuEventRecord(hEvent, hStream)#
-
Records an event.
Captures in hEvent the contents of hStream at the time of this
call. hEvent and hStream must be from the same context. Calls such
ascuEventQuery()orcuStreamWaitEvent()will
then examine or wait for completion of the work that was captured. Uses
of hStream after this call do not modify hEvent. See note on
default stream behavior for what is captured in the default case.cuEventRecord()can be called multiple times on the same
event and will overwrite the previously captured state. Other APIs such
ascuStreamWaitEvent()use the most recently captured state
at the time of the API call, and are not affected by later calls to
cuEventRecord(). Before the first call to
cuEventRecord(), an event represents an empty set of work,
so for examplecuEventQuery()would return
CUDA_SUCCESS.- Parameters:
-
-
hEvent (
CUeventorcudaEvent_t) – Event to record -
hStream (
CUstreamorcudaStream_t) – Stream to record event for
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuEventRecordWithFlags(hEvent, hStream, unsigned int flags)#
-
Records an event.
Captures in hEvent the contents of hStream at the time of this
call. hEvent and hStream must be from the same context. Calls such
ascuEventQuery()orcuStreamWaitEvent()will
then examine or wait for completion of the work that was captured. Uses
of hStream after this call do not modify hEvent. See note on
default stream behavior for what is captured in the default case.cuEventRecordWithFlags()can be called multiple times on
the same event and will overwrite the previously captured state. Other
APIs such ascuStreamWaitEvent()use the most recently
captured state at the time of the API call, and are not affected by
later calls tocuEventRecordWithFlags(). Before the first
call tocuEventRecordWithFlags(), an event represents an
empty set of work, so for examplecuEventQuery()would
returnCUDA_SUCCESS.flags include:
-
CU_EVENT_RECORD_DEFAULT: Default event creation flag. -
CU_EVENT_RECORD_EXTERNAL: Event is captured in the graph
as an external event node when performing stream capture. This flag
is invalid outside of stream capture.
- Parameters:
-
-
hEvent (
CUeventorcudaEvent_t) – Event to record -
hStream (
CUstreamorcudaStream_t) – Stream to record event for -
flags (unsigned int) – See
CUevent_capture_flags
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
-
- cuda.cuda.cuEventQuery(hEvent)#
-
Queries an event’s status.
Queries the status of all work currently captured by hEvent. See
cuEventRecord()for details on what is captured by an
event.Returns
CUDA_SUCCESSif all captured work has been
completed, orCUDA_ERROR_NOT_READYif any captured work is
incomplete.For the purposes of Unified Memory, a return value of
CUDA_SUCCESSis equivalent to having called
cuEventSynchronize().- Parameters:
-
hEvent (
CUeventorcudaEvent_t) – Event to query - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_READY - Return type:
-
CUresult
- cuda.cuda.cuEventSynchronize(hEvent)#
-
Waits for an event to complete.
Waits until the completion of all work currently captured in hEvent.
SeecuEventRecord()for details on what is captured by an
event.Waiting for an event that was created with the
CU_EVENT_BLOCKING_SYNCflag will cause the calling CPU
thread to block until the event has been completed by the device. If
theCU_EVENT_BLOCKING_SYNCflag has not been set, then the
CPU thread will busy-wait until the event has been completed by the
device.- Parameters:
-
hEvent (
CUeventorcudaEvent_t) – Event to wait for - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
- cuda.cuda.cuEventDestroy(hEvent)#
-
Destroys an event.
Destroys the event specified by hEvent.
An event may be destroyed before it is complete (i.e., while
cuEventQuery()would return
CUDA_ERROR_NOT_READY). In this case, the call does not
block on completion of the event, and any associated resources will
automatically be released asynchronously at completion.- Parameters:
-
hEvent (
CUeventorcudaEvent_t) – Event to destroy - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
- cuda.cuda.cuEventElapsedTime(hStart, hEnd)#
-
Computes the elapsed time between two events.
Computes the elapsed time between two events (in milliseconds with a
resolution of around 0.5 microseconds).If either event was last recorded in a non-NULL stream, the resulting
time may be greater than expected (even if both used the same stream
handle). This happens because thecuEventRecord()operation
takes place asynchronously and there is no guarantee that the measured
latency is actually just between the two events. Any number of other
different stream operations could execute in between the two measured
events, thus altering the timing in a significant way.If
cuEventRecord()has not been called on either event then
CUDA_ERROR_INVALID_HANDLEis returned. If
cuEventRecord()has been called on both events but one or
both of them has not yet been completed (that is,
cuEventQuery()would return
CUDA_ERROR_NOT_READYon at least one of the events),
CUDA_ERROR_NOT_READYis returned. If either event was
created with theCU_EVENT_DISABLE_TIMINGflag, then this
function will returnCUDA_ERROR_INVALID_HANDLE.- Parameters:
-
-
hStart (
CUeventorcudaEvent_t) – Starting event -
hEnd (
CUeventorcudaEvent_t) – Ending event
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_READY,CUDA_ERROR_UNKNOWN -
pMilliseconds (float) – Time between hStart and hEnd in ms
-
External Resource Interoperability#
This section describes the external resource interoperability functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuImportExternalMemory(CUDA_EXTERNAL_MEMORY_HANDLE_DESC memHandleDesc: CUDA_EXTERNAL_MEMORY_HANDLE_DESC)#
-
Imports an external memory object.
Imports an externally allocated memory object and returns a handle to
that in extMem_out.The properties of the handle being imported must be described in
memHandleDesc. TheCUDA_EXTERNAL_MEMORY_HANDLE_DESC
structure is defined as follows:View CUDA Toolkit Documentation for a C++ code example
where
typespecifies the
type of handle being imported.CUexternalMemoryHandleType
is defined as:View CUDA Toolkit Documentation for a C++ code example
If
typeis
CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD, then
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::fd must be a
valid file descriptor referencing a memory object. Ownership of the
file descriptor is transferred to the CUDA driver when the handle is
imported successfully. Performing any operations on the file descriptor
after it is imported results in undefined behavior.If
typeis
CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32, then exactly
one of
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::handle and
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::name must
not be NULL. If
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::handle is
not NULL, then it must represent a valid shared NT handle that
references a memory object. Ownership of this handle is not transferred
to CUDA after the import operation, so the application must release the
handle using the appropriate system call. If
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::name is
not NULL, then it must point to a NULL-terminated array of UTF-16
characters that refers to a memory object.If
typeis
CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT, then
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::handle
must be non-NULL and
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::name must
be NULL. The handle specified must be a globally shared KMT handle.
This handle does not hold a reference to the underlying object, and
thus will be invalid when all references to the memory object are
destroyed.If
typeis
CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP, then exactly one
ofCUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::handle
andCUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::name
must not be NULL. If
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::handle is
not NULL, then it must represent a valid shared NT handle that is
returned by ID3D12Device::CreateSharedHandle when referring to a
ID3D12Heap object. This handle holds a reference to the underlying
object. If
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::name is
not NULL, then it must point to a NULL-terminated array of UTF-16
characters that refers to a ID3D12Heap object.If
typeis
CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE, then exactly
one of
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::handle and
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::name must
not be NULL. If
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::handle is
not NULL, then it must represent a valid shared NT handle that is
returned by ID3D12Device::CreateSharedHandle when referring to a
ID3D12Resource object. This handle holds a reference to the underlying
object. If
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::name is
not NULL, then it must point to a NULL-terminated array of UTF-16
characters that refers to a ID3D12Resource object.If
typeis
CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_RESOURCE, then
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::handle
must represent a valid shared NT handle that is returned by
IDXGIResource1::CreateSharedHandle when referring to a ID3D11Resource
object. If
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::name is
not NULL, then it must point to a NULL-terminated array of UTF-16
characters that refers to a ID3D11Resource object.If
typeis
CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_RESOURCE_KMT, then
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::handle
must represent a valid shared KMT handle that is returned by
IDXGIResource::GetSharedHandle when referring to a ID3D11Resource
object and
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::win32::name must
be NULL.If
typeis
CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF, then
CUDA_EXTERNAL_MEMORY_HANDLE_DESC::handle::nvSciBufObject
must be non-NULL and reference a valid NvSciBuf object. If the NvSciBuf
object imported into CUDA is also mapped by other drivers, then the
application must usecuWaitExternalSemaphoresAsyncor
cuSignalExternalSemaphoresAsyncas appropriate barriers to
maintain coherence between CUDA and the other drivers. See
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_SKIP_NVSCIBUF_MEMSYNCand
CUDA_EXTERNAL_SEMAPHORE_WAIT_SKIP_NVSCIBUF_MEMSYNCfor
memory synchronization.The size of the memory object must be specified in
size.Specifying the flag
CUDA_EXTERNAL_MEMORY_DEDICATEDin
flagsindicates that the
resource is a dedicated resource. The definition of what a dedicated
resource is outside the scope of this extension. This flag must be set
iftypeis one of the
following:CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE
CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_RESOURCE
CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_RESOURCE_KMT- Parameters:
-
memHandleDesc (
CUDA_EXTERNAL_MEMORY_HANDLE_DESC) – Memory import handle descriptor - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_OPERATING_SYSTEM -
extMem_out (
CUexternalMemory) – Returned handle to an external memory object
-
Notes
If the Vulkan memory imported into CUDA is mapped on the CPU then the application must use vkInvalidateMappedMemoryRanges/vkFlushMappedMemoryRanges as well as appropriate Vulkan pipeline barriers to maintain coherence between CPU and GPU. For more information on these APIs, please refer to “Synchronization
and Cache Control” chapter from Vulkan specification.
- cuda.cuda.cuExternalMemoryGetMappedBuffer(extMem, CUDA_EXTERNAL_MEMORY_BUFFER_DESC bufferDesc: CUDA_EXTERNAL_MEMORY_BUFFER_DESC)#
-
Maps a buffer onto an imported memory object.
Maps a buffer onto an imported memory object and returns a device
pointer in devPtr.The properties of the buffer being mapped must be described in
bufferDesc. TheCUDA_EXTERNAL_MEMORY_BUFFER_DESC
structure is defined as follows:View CUDA Toolkit Documentation for a C++ code example
where
offsetis the offset
in the memory object where the buffer’s base address is.
sizeis the size of the
buffer.flagsmust be
zero.The offset and size have to be suitably aligned to match the
requirements of the external API. Mapping two buffers whose ranges
overlap may or may not result in the same virtual address being
returned for the overlapped portion. In such cases, the application
must ensure that all accesses to that region from the GPU are volatile.
Otherwise writes made via one address are not guaranteed to be visible
via the other address, even if they’re issued by the same thread. It is
recommended that applications map the combined range instead of mapping
separate buffers and then apply the appropriate offsets to the returned
pointer to derive the individual buffers.The returned pointer devPtr must be freed using
cuMemFree.- Parameters:
-
-
extMem (
CUexternalMemory) – Handle to external memory object -
bufferDesc (
CUDA_EXTERNAL_MEMORY_BUFFER_DESC) – Buffer descriptor
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE -
devPtr (
CUdeviceptr) – Returned device pointer to buffer
-
- cuda.cuda.cuExternalMemoryGetMappedMipmappedArray(extMem, CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC mipmapDesc: CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC)#
-
Maps a CUDA mipmapped array onto an external memory object.
Maps a CUDA mipmapped array onto an external object and returns a
handle to it in mipmap.The properties of the CUDA mipmapped array being mapped must be
described in mipmapDesc. The structure
CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESCis defined as
follows:View CUDA Toolkit Documentation for a C++ code example
where
offsetis
the offset in the memory object where the base level of the mipmap
chain is.
arrayDesc
describes the format, dimensions and type of the base level of the
mipmap chain. For further details on these parameters, please refer to
the documentation forcuMipmappedArrayCreate. Note that if
the mipmapped array is bound as a color target in the graphics API,
then the flagCUDA_ARRAY3D_COLOR_ATTACHMENTmust be
specified in
CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC::arrayDesc::Flags.
numLevels
specifies the total number of levels in the mipmap chain.If extMem was imported from a handle of type
CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF, then
numLevelsmust be
equal to 1.The returned CUDA mipmapped array must be freed using
cuMipmappedArrayDestroy.- Parameters:
-
-
extMem (
CUexternalMemory) – Handle to external memory object -
mipmapDesc (
CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC) – CUDA array descriptor
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE -
mipmap (
CUmipmappedArray) – Returned CUDA mipmapped array
-
- cuda.cuda.cuDestroyExternalMemory(extMem)#
-
Destroys an external memory object.
Destroys the specified external memory object. Any existing buffers and
CUDA mipmapped arrays mapped onto this object must no longer be used
and must be explicitly freed usingcuMemFreeand
cuMipmappedArrayDestroyrespectively.- Parameters:
-
extMem (
CUexternalMemory) – External memory object to be destroyed - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
- cuda.cuda.cuImportExternalSemaphore(CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC semHandleDesc: CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC)#
-
Imports an external semaphore.
Imports an externally allocated synchronization object and returns a
handle to that in extSem_out.The properties of the handle being imported must be described in
semHandleDesc. TheCUDA_EXTERNAL_SEMAPHORE_HANDLE_DESCis
defined as follows:View CUDA Toolkit Documentation for a C++ code example
where
typespecifies
the type of handle being imported.
CUexternalSemaphoreHandleTypeis defined as:View CUDA Toolkit Documentation for a C++ code example
If
typeis
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD, then
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::fd must be a
valid file descriptor referencing a synchronization object. Ownership
of the file descriptor is transferred to the CUDA driver when the
handle is imported successfully. Performing any operations on the file
descriptor after it is imported results in undefined behavior.If
typeis
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32, then
exactly one of
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::handle
and
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::name
must not be NULL. If
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::handle
is not NULL, then it must represent a valid shared NT handle that
references a synchronization object. Ownership of this handle is not
transferred to CUDA after the import operation, so the application must
release the handle using the appropriate system call. If
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::name is
not NULL, then it must name a valid synchronization object.If
typeis
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT, then
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::handle
must be non-NULL and
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::name
must be NULL. The handle specified must be a globally shared KMT
handle. This handle does not hold a reference to the underlying object,
and thus will be invalid when all references to the synchronization
object are destroyed.If
typeis
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE, then exactly
one of
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::handle
and
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::name
must not be NULL. If
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::handle
is not NULL, then it must represent a valid shared NT handle that is
returned by ID3D12Device::CreateSharedHandle when referring to a
ID3D12Fence object. This handle holds a reference to the underlying
object. If
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::name is
not NULL, then it must name a valid synchronization object that refers
to a valid ID3D12Fence object.If
typeis
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_FENCE, then
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::handle
represents a valid shared NT handle that is returned by
ID3D11Fence::CreateSharedHandle. If
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::name is
not NULL, then it must name a valid synchronization object that refers
to a valid ID3D11Fence object.If
typeis
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNC, then
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::nvSciSyncObj
represents a valid NvSciSyncObj.CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_KEYED_MUTEX, then
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::handle
represents a valid shared NT handle that is returned by
IDXGIResource1::CreateSharedHandle when referring to a IDXGIKeyedMutex
object. If
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::name is
not NULL, then it must name a valid synchronization object that refers
to a valid IDXGIKeyedMutex object.If
typeis
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_KEYED_MUTEX_KMT,
then
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::handle
represents a valid shared KMT handle that is returned by
IDXGIResource::GetSharedHandle when referring to a IDXGIKeyedMutex
object and
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::name
must be NULL.If
typeis
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_FD,
thenCUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::fd must
be a valid file descriptor referencing a synchronization object.
Ownership of the file descriptor is transferred to the CUDA driver when
the handle is imported successfully. Performing any operations on the
file descriptor after it is imported results in undefined behavior.If
typeis
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_WIN32,
then exactly one of
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::handle
and
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::name
must not be NULL. If
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::handle
is not NULL, then it must represent a valid shared NT handle that
references a synchronization object. Ownership of this handle is not
transferred to CUDA after the import operation, so the application must
release the handle using the appropriate system call. If
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC::handle::win32::name is
not NULL, then it must name a valid synchronization object.- Parameters:
-
semHandleDesc (
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC) – Semaphore import handle descriptor - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_NOT_SUPPORTED,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_OPERATING_SYSTEM -
extSem_out (
CUexternalSemaphore) – Returned handle to an external semaphore
-
- cuda.cuda.cuSignalExternalSemaphoresAsync(extSemArray: List[CUexternalSemaphore], paramsArray: List[CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS], unsigned int numExtSems, stream)#
-
Signals a set of external semaphore objects.
Enqueues a signal operation on a set of externally allocated semaphore
object in the specified stream. The operations will be executed when
all prior operations in the stream complete.The exact semantics of signaling a semaphore depends on the type of the
object.If the semaphore object is any one of the following types:
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD,
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32,
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMTthen
signaling the semaphore will set it to the signaled state.If the semaphore object is any one of the following types:
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE,
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_FENCE,
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_FD,
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_WIN32
then the semaphore will be set to the value specified in
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS::params::fence::value.If the semaphore object is of the type
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNCthis API sets
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS::params::nvSciSync::fence
to a value that can be used by subsequent waiters of the same NvSciSync
object to order operations with those currently submitted in stream.
Such an update will overwrite previous contents of
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS::params::nvSciSync::fence.
By default, signaling such an external semaphore object causes
appropriate memory synchronization operations to be performed over all
external memory objects that are imported as
CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF. This ensures that
any subsequent accesses made by other importers of the same set of
NvSciBuf memory object(s) are coherent. These operations can be skipped
by specifying the flag
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_SKIP_NVSCIBUF_MEMSYNC, which
can be used as a performance optimization when data coherency is not
required. But specifying this flag in scenarios where data coherency is
required results in undefined behavior. Also, for semaphore object of
the typeCU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNC, if
the NvSciSyncAttrList used to create the NvSciSyncObj had not set the
flags incuDeviceGetNvSciSyncAttributesto
CUDA_NVSCISYNC_ATTR_SIGNAL, this API will return
CUDA_ERROR_NOT_SUPPORTED. NvSciSyncFence associated with semaphore
object of the type
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNCcan be
deterministic. For this the NvSciSyncAttrList used to create the
semaphore object must have value of
NvSciSyncAttrKey_RequireDeterministicFences key set to true.
Deterministic fences allow users to enqueue a wait over the semaphore
object even before corresponding signal is enqueued. For such a
semaphore object, CUDA guarantees that each signal operation will
increment the fence value by ‘1’. Users are expected to track count of
signals enqueued on the semaphore object and insert waits accordingly.
When such a semaphore object is signaled from multiple streams, due to
concurrent stream execution, it is possible that the order in which the
semaphore gets signaled is indeterministic. This could lead to waiters
of the semaphore getting unblocked incorrectly. Users are expected to
handle such situations, either by not using the same semaphore object
with deterministic fence support enabled in different streams or by
adding explicit dependency amongst such streams so that the semaphore
is signaled in order.If the semaphore object is any one of the following types:
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_KEYED_MUTEX,
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_KEYED_MUTEX_KMT
then the keyed mutex will be released with the key specified in
CUDA_EXTERNAL_SEMAPHORE_PARAMS::params::keyedmutex::key.- Parameters:
-
-
extSemArray (List[
CUexternalSemaphore]) – Set of external semaphores to be signaled -
paramsArray (List[
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS]) – Array of semaphore parameters -
numExtSems (unsigned int) – Number of semaphores to signal
-
stream (
CUstreamorcudaStream_t) – Stream to enqueue the signal operations in
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
- cuda.cuda.cuWaitExternalSemaphoresAsync(extSemArray: List[CUexternalSemaphore], paramsArray: List[CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS], unsigned int numExtSems, stream)#
-
Waits on a set of external semaphore objects.
Enqueues a wait operation on a set of externally allocated semaphore
object in the specified stream. The operations will be executed when
all prior operations in the stream complete.The exact semantics of waiting on a semaphore depends on the type of
the object.If the semaphore object is any one of the following types:
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD,
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32,
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMTthen
waiting on the semaphore will wait until the semaphore reaches the
signaled state. The semaphore will then be reset to the unsignaled
state. Therefore for every signal operation, there can only be one wait
operation.If the semaphore object is any one of the following types:
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE,
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_FENCE,
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_FD,
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_WIN32
then waiting on the semaphore will wait until the value of the
semaphore is greater than or equal to
CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS::params::fence::value.If the semaphore object is of the type
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNCthen, waiting
on the semaphore will wait until the
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS::params::nvSciSync::fence
is signaled by the signaler of the NvSciSyncObj that was associated
with this semaphore object. By default, waiting on such an external
semaphore object causes appropriate memory synchronization operations
to be performed over all external memory objects that are imported as
CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF. This ensures that
any subsequent accesses made by other importers of the same set of
NvSciBuf memory object(s) are coherent. These operations can be skipped
by specifying the flag
CUDA_EXTERNAL_SEMAPHORE_WAIT_SKIP_NVSCIBUF_MEMSYNC, which
can be used as a performance optimization when data coherency is not
required. But specifying this flag in scenarios where data coherency is
required results in undefined behavior. Also, for semaphore object of
the typeCU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNC, if
the NvSciSyncAttrList used to create the NvSciSyncObj had not set the
flags incuDeviceGetNvSciSyncAttributesto
CUDA_NVSCISYNC_ATTR_WAIT, this API will return
CUDA_ERROR_NOT_SUPPORTED.If the semaphore object is any one of the following types:
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_KEYED_MUTEX,
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_KEYED_MUTEX_KMT
then the keyed mutex will be acquired when it is released with the key
specified in
CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS::params::keyedmutex::key
or until the timeout specified by
CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS::params::keyedmutex::timeoutMs
has lapsed. The timeout interval can either be a finite value specified
in milliseconds or an infinite value. In case an infinite value is
specified the timeout never elapses. The windows INFINITE macro must be
used to specify infinite timeout.- Parameters:
-
-
extSemArray (List[
CUexternalSemaphore]) – External semaphores to be waited on -
paramsArray (List[
CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS]) – Array of semaphore parameters -
numExtSems (unsigned int) – Number of semaphores to wait on
-
stream (
CUstreamorcudaStream_t) – Stream to enqueue the wait operations in
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_SUPPORTED,CUDA_ERROR_TIMEOUT - Return type:
-
CUresult
- cuda.cuda.cuDestroyExternalSemaphore(extSem)#
-
Destroys an external semaphore.
Destroys an external semaphore object and releases any references to
the underlying resource. Any outstanding signals or waits must have
completed before the semaphore is destroyed.- Parameters:
-
extSem (
CUexternalSemaphore) – External semaphore to be destroyed - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
Stream Memory Operations#
This section describes the stream memory operations of the low-level CUDA driver application programming interface.
Support for the CU_STREAM_WAIT_VALUE_NOR flag can be queried with ::CU_DEVICE_ATTRIBUTE_CAN_USE_STREAM_WAIT_VALUE_NOR_V2.
Support for the cuStreamWriteValue64() and cuStreamWaitValue64() functions, as well as for the CU_STREAM_MEM_OP_WAIT_VALUE_64 and CU_STREAM_MEM_OP_WRITE_VALUE_64 flags, can be queried with CU_DEVICE_ATTRIBUTE_CAN_USE_64_BIT_STREAM_MEM_OPS.
Support for both CU_STREAM_WAIT_VALUE_FLUSH and CU_STREAM_MEM_OP_FLUSH_REMOTE_WRITES requires dedicated platform hardware features and can be queried with cuDeviceGetAttribute() and CU_DEVICE_ATTRIBUTE_CAN_FLUSH_REMOTE_WRITES.
Note that all memory pointers passed as parameters to these operations are device pointers. Where necessary a device pointer should be obtained, for example with cuMemHostGetDevicePointer().
None of the operations accepts pointers to managed memory buffers (cuMemAllocManaged).
Warning: Improper use of these APIs may deadlock the application. Synchronization ordering established through these APIs is not visible to CUDA. CUDA tasks that are (even indirectly) ordered by these APIs should also have that order expressed with CUDA-visible dependencies such as events. This ensures that the scheduler does not serialize them in an improper order.
- cuda.cuda.cuStreamWaitValue32(stream, addr, value, unsigned int flags)#
-
Wait on a memory location.
Enqueues a synchronization of the stream on the given memory location.
Work ordered after the operation will block until the given condition
on the memory is satisfied. By default, the condition is to wait for
(int32_t)(*addr — value) >= 0, a cyclic greater-or-equal. Other
condition types can be specified via flags.If the memory was registered via
cuMemHostRegister(), the
device pointer should be obtained with
cuMemHostGetDevicePointer(). This function cannot be used
with managed memory (cuMemAllocManaged).Support for CU_STREAM_WAIT_VALUE_NOR can be queried with
cuDeviceGetAttribute()and
CU_DEVICE_ATTRIBUTE_CAN_USE_STREAM_WAIT_VALUE_NOR_V2.- Parameters:
-
-
stream (
CUstreamorcudaStream_t) – The stream to synchronize on the memory location. -
addr (
CUdeviceptr) – The memory location to wait on. -
value (Any) – The value to compare with the memory location.
-
flags (unsigned int) – See
CUstreamWaitValue_flags.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
Notes
Warning: Improper use of this API may deadlock the application. Synchronization ordering established through this API is not visible to CUDA. CUDA tasks that are (even indirectly) ordered by this API should also have that order expressed with CUDA-visible dependencies such as events. This ensures that the scheduler does not serialize them in an improper order. For more information, see the Stream Memory Operations section in the programming guide(https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html).
- cuda.cuda.cuStreamWaitValue64(stream, addr, value, unsigned int flags)#
-
Wait on a memory location.
Enqueues a synchronization of the stream on the given memory location.
Work ordered after the operation will block until the given condition
on the memory is satisfied. By default, the condition is to wait for
(int64_t)(*addr — value) >= 0, a cyclic greater-or-equal. Other
condition types can be specified via flags.If the memory was registered via
cuMemHostRegister(), the
device pointer should be obtained with
cuMemHostGetDevicePointer().Support for this can be queried with
cuDeviceGetAttribute()
andCU_DEVICE_ATTRIBUTE_CAN_USE_64_BIT_STREAM_MEM_OPS.- Parameters:
-
-
stream (
CUstreamorcudaStream_t) – The stream to synchronize on the memory location. -
addr (
CUdeviceptr) – The memory location to wait on. -
value (Any) – The value to compare with the memory location.
-
flags (unsigned int) – See
CUstreamWaitValue_flags.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
Notes
Warning: Improper use of this API may deadlock the application. Synchronization ordering established through this API is not visible to CUDA. CUDA tasks that are (even indirectly) ordered by this API should also have that order expressed with CUDA-visible dependencies such as events. This ensures that the scheduler does not serialize them in an improper order. For more information, see the Stream Memory Operations section in the programming guide(https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html).
- cuda.cuda.cuStreamWriteValue32(stream, addr, value, unsigned int flags)#
-
Write a value to memory.
Write a value to memory.
If the memory was registered via
cuMemHostRegister(), the
device pointer should be obtained with
cuMemHostGetDevicePointer(). This function cannot be used
with managed memory (cuMemAllocManaged).- Parameters:
-
-
stream (
CUstreamorcudaStream_t) – The stream to do the write in. -
addr (
CUdeviceptr) – The device address to write to. -
value (Any) – The value to write.
-
flags (unsigned int) – See
CUstreamWriteValue_flags.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
- cuda.cuda.cuStreamWriteValue64(stream, addr, value, unsigned int flags)#
-
Write a value to memory.
Write a value to memory.
If the memory was registered via
cuMemHostRegister(), the
device pointer should be obtained with
cuMemHostGetDevicePointer().Support for this can be queried with
cuDeviceGetAttribute()
andCU_DEVICE_ATTRIBUTE_CAN_USE_64_BIT_STREAM_MEM_OPS.- Parameters:
-
-
stream (
CUstreamorcudaStream_t) – The stream to do the write in. -
addr (
CUdeviceptr) – The device address to write to. -
value (Any) – The value to write.
-
flags (unsigned int) – See
CUstreamWriteValue_flags.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
- cuda.cuda.cuStreamBatchMemOp(stream, unsigned int count, paramArray: List[CUstreamBatchMemOpParams], unsigned int flags)#
-
Batch operations to synchronize the stream via memory operations.
This is a batch version of
cuStreamWaitValue32()and
cuStreamWriteValue32(). Batching operations may avoid some
performance overhead in both the API call and the device execution
versus adding them to the stream in separate API calls. The operations
are enqueued in the order they appear in the array.See
CUstreamBatchMemOpTypefor the full set of supported
operations, andcuStreamWaitValue32(),
cuStreamWaitValue64(),cuStreamWriteValue32(),
andcuStreamWriteValue64()for details of specific
operations.See related APIs for details on querying support for specific
operations.- Parameters:
-
-
stream (
CUstreamorcudaStream_t) – The stream to enqueue the operations in. -
count (unsigned int) – The number of operations in the array. Must be less than 256.
-
paramArray (List[
CUstreamBatchMemOpParams]) – The types and parameters of the individual operations. -
flags (unsigned int) – Reserved for future expansion; must be 0.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
Notes
Warning: Improper use of this API may deadlock the application. Synchronization ordering established through this API is not visible to CUDA. CUDA tasks that are (even indirectly) ordered by this API should also have that order expressed with CUDA-visible dependencies such as events. This ensures that the scheduler does not serialize them in an improper order. For more information, see the Stream Memory Operations section in the programming guide(https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html).
Execution Control#
This section describes the execution control functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuFuncGetAttribute(attrib: CUfunction_attribute, hfunc)#
-
Returns information about a function.
Returns in *pi the integer value of the attribute attrib on the
kernel given by hfunc. The supported attributes are:-
CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK: The maximum
number of threads per block, beyond which a launch of the function
would fail. This number depends on both the function and the device
on which the function is currently loaded. -
CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES: The size in bytes of
statically-allocated shared memory per block required by this
function. This does not include dynamically-allocated shared memory
requested by the user at runtime. -
CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES: The size in bytes of
user-allocated constant memory required by this function. -
CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES: The size in bytes of
local memory used by each thread of this function. -
CU_FUNC_ATTRIBUTE_NUM_REGS: The number of registers used
by each thread of this function. -
CU_FUNC_ATTRIBUTE_PTX_VERSION: The PTX virtual
architecture version for which the function was compiled. This value
is the major PTX version * 10-
the minor PTX version, so a PTX version 1.3 function would return
the value 13. Note that this may return the undefined value of 0
for cubins compiled prior to CUDA 3.0.
-
-
CU_FUNC_ATTRIBUTE_BINARY_VERSION: The binary architecture
version for which the function was compiled. This value is the major
binary version * 10 + the minor binary version, so a binary version
1.3 function would return the value 13. Note that this will return a
value of 10 for legacy cubins that do not have a properly-encoded
binary architecture version. -
CU_FUNC_CACHE_MODE_CA: The attribute to indicate whether
the function has been compiled with user specified option “-Xptxas
–dlcm=ca” set . -
CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES: The
maximum size in bytes of dynamically-allocated shared memory. -
CU_FUNC_ATTRIBUTE_PREFERRED_SHARED_MEMORY_CARVEOUT:
Preferred shared memory-L1 cache split ratio in percent of total
shared memory. -
CU_FUNC_ATTRIBUTE_CLUSTER_SIZE_MUST_BE_SET: If this
attribute is set, the kernel must launch with a valid cluster size
specified. -
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_WIDTH: The required
cluster width in blocks. -
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_HEIGHT: The required
cluster height in blocks. -
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_DEPTH: The required
cluster depth in blocks. -
CU_FUNC_ATTRIBUTE_NON_PORTABLE_CLUSTER_SIZE_ALLOWED:
Indicates whether the function can be launched with non-portable
cluster size. 1 is allowed, 0 is disallowed. A non-portable cluster
size may only function on the specific SKUs the program is tested on.
The launch might fail if the program is run on a different hardware
platform. CUDA API provides cudaOccupancyMaxActiveClusters to assist
with checking whether the desired size can be launched on the current
device. A portable cluster size is guaranteed to be functional on all
compute capabilities higher than the target compute capability. The
portable cluster size for sm_90 is 8 blocks per cluster. This value
may increase for future compute capabilities. The specific hardware
unit may support higher cluster sizes that’s not guaranteed to be
portable. -
CU_FUNC_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE:
The block scheduling policy of a function. The value type is
CUclusterSchedulingPolicy.
- Parameters:
-
-
attrib (
CUfunction_attribute) – Attribute requested -
hfunc (
CUfunction) – Function to query attribute of
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_VALUE -
pi (int) – Returned attribute value
-
-
- cuda.cuda.cuFuncSetAttribute(hfunc, attrib: CUfunction_attribute, int value)#
-
Sets information about a function.
This call sets the value of a specified attribute attrib on the
kernel given by hfunc to an integer value specified by val This
function returns CUDA_SUCCESS if the new value of the attribute could
be successfully set. If the set fails, this call will return an error.
Not all attributes can have values set. Attempting to set a value on a
read-only attribute will result in an error (CUDA_ERROR_INVALID_VALUE)Supported attributes for the cuFuncSetAttribute call are:
-
CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES: This
maximum size in bytes of dynamically-allocated shared memory. The
value should contain the requested maximum size of dynamically-
allocated shared memory. The sum of this value and the function
attributeCU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTEScannot
exceed the device attribute
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN.
The maximal size of requestable dynamic shared memory may differ by
GPU architecture. -
CU_FUNC_ATTRIBUTE_PREFERRED_SHARED_MEMORY_CARVEOUT: On
devices where the L1 cache and shared memory use the same hardware
resources, this sets the shared memory carveout preference, in
percent of the total shared memory. See
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR
This is only a hint, and the driver can choose a different ratio if
required to execute the function. -
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_WIDTH: The required
cluster width in blocks. The width, height, and depth values must
either all be 0 or all be positive. The validity of the cluster
dimensions is checked at launch time. If the value is set during
compile time, it cannot be set at runtime. Setting it at runtime will
return CUDA_ERROR_NOT_PERMITTED. -
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_HEIGHT: The required
cluster height in blocks. The width, height, and depth values must
either all be 0 or all be positive. The validity of the cluster
dimensions is checked at launch time. If the value is set during
compile time, it cannot be set at runtime. Setting it at runtime will
return CUDA_ERROR_NOT_PERMITTED. -
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_DEPTH: The required
cluster depth in blocks. The width, height, and depth values must
either all be 0 or all be positive. The validity of the cluster
dimensions is checked at launch time. If the value is set during
compile time, it cannot be set at runtime. Setting it at runtime will
return CUDA_ERROR_NOT_PERMITTED. -
CU_FUNC_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE:
The block scheduling policy of a function. The value type is
CUclusterSchedulingPolicy.
- Parameters:
-
-
hfunc (
CUfunction) – Function to query attribute of -
attrib (
CUfunction_attribute) – Attribute requested -
value (int) – The value to set
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
-
- cuda.cuda.cuFuncSetCacheConfig(hfunc, config: CUfunc_cache)#
-
Sets the preferred cache configuration for a device function.
On devices where the L1 cache and shared memory use the same hardware
resources, this sets through config the preferred cache configuration
for the device function hfunc. This is only a preference. The driver
will use the requested configuration if possible, but it is free to
choose a different configuration if required to execute hfunc. Any
context-wide preference set viacuCtxSetCacheConfig()will
be overridden by this per-function setting unless the per-function
setting isCU_FUNC_CACHE_PREFER_NONE. In that case, the
current context-wide setting will be used.This setting does nothing on devices where the size of the L1 cache and
shared memory are fixed.Launching a kernel with a different preference than the most recent
preference setting may insert a device-side synchronization point.The supported cache configurations are:
-
CU_FUNC_CACHE_PREFER_NONE: no preference for shared
memory or L1 (default) -
CU_FUNC_CACHE_PREFER_SHARED: prefer larger shared memory
and smaller L1 cache -
CU_FUNC_CACHE_PREFER_L1: prefer larger L1 cache and
smaller shared memory -
CU_FUNC_CACHE_PREFER_EQUAL: prefer equal sized L1 cache
and shared memory
- Parameters:
-
-
hfunc (
CUfunction) – Kernel to configure cache for -
config (
CUfunc_cache) – Requested cache configuration
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT - Return type:
-
CUresult
-
- cuda.cuda.cuFuncSetSharedMemConfig(hfunc, config: CUsharedconfig)#
-
Sets the shared memory configuration for a device function.
On devices with configurable shared memory banks, this function will
force all subsequent launches of the specified device function to have
the given shared memory bank size configuration. On any given launch of
the function, the shared memory configuration of the device will be
temporarily changed if needed to suit the function’s preferred
configuration. Changes in shared memory configuration between
subsequent launches of functions, may introduce a device side
synchronization point.Any per-function setting of shared memory bank size set via
cuFuncSetSharedMemConfigwill override the context wide
setting set withcuCtxSetSharedMemConfig.Changing the shared memory bank size will not increase shared memory
usage or affect occupancy of kernels, but may have major effects on
performance. Larger bank sizes will allow for greater potential
bandwidth to shared memory, but will change what kinds of accesses to
shared memory will result in bank conflicts.This function will do nothing on devices with fixed shared memory bank
size.The supported bank configurations are:
-
CU_SHARED_MEM_CONFIG_DEFAULT_BANK_SIZE: use the context’s
shared memory configuration when launching this function. -
CU_SHARED_MEM_CONFIG_FOUR_BYTE_BANK_SIZE: set shared
memory bank width to be natively four bytes when launching this
function. -
CU_SHARED_MEM_CONFIG_EIGHT_BYTE_BANK_SIZE: set shared
memory bank width to be natively eight bytes when launching this
function.
- Parameters:
-
-
hfunc (
CUfunction) – kernel to be given a shared memory config -
config (
CUsharedconfig) – requested shared memory configuration
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT - Return type:
-
CUresult
-
- cuda.cuda.cuFuncGetModule(hfunc)#
-
Returns a module handle.
Returns in *hmod the handle of the module that function hfunc is
located in. The lifetime of the module corresponds to the lifetime of
the context it was loaded in or until the module is explicitly
unloaded.The CUDA runtime manages its own modules loaded into the primary
context. If the handle returned by this API refers to a module loaded
by the CUDA runtime, callingcuModuleUnload()on that
module will result in undefined behavior.- Parameters:
-
hfunc (
CUfunction) – Function to retrieve module for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_FOUND -
hmod (
CUmodule) – Returned module handle
-
- cuda.cuda.cuLaunchKernel(f, unsigned int gridDimX, unsigned int gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int blockDimY, unsigned int blockDimZ, unsigned int sharedMemBytes, hStream, kernelParams, void_ptr extra)#
-
Launches a CUDA function
CUfunctionor a CUDA kernelCUkernel.Invokes the function
CUfunctionor the kernel
CUkernelf on a gridDimX x gridDimY x gridDimZ grid
of blocks. Each block contains blockDimX x blockDimY x blockDimZ
threads.sharedMemBytes sets the amount of dynamic shared memory that will be
available to each thread block.Kernel parameters to f can be specified in one of two ways:
1) Kernel parameters can be specified via kernelParams. If f has N
parameters, then kernelParams needs to be an array of N pointers.
Each of `kernelParams`[0] through `kernelParams`[N-1] must point to a
region of memory from which the actual kernel parameter will be copied.
The number of kernel parameters and their offsets and sizes do not need
to be specified as that information is retrieved directly from the
kernel’s image.2) Kernel parameters can also be packaged by the application into a
single buffer that is passed in via the extra parameter. This places
the burden on the application of knowing each kernel parameter’s size
and alignment/padding within the buffer. Here is an example of using
the extra parameter in this manner:View CUDA Toolkit Documentation for a C++ code example
The extra parameter exists to allow
cuLaunchKernelto
take additional less commonly used arguments. extra specifies a list
of names of extra settings and their corresponding values. Each extra
setting name is immediately followed by the corresponding value. The
list must be terminated with either NULL or
CU_LAUNCH_PARAM_END.-
CU_LAUNCH_PARAM_END, which indicates the end of the
extra array; -
CU_LAUNCH_PARAM_BUFFER_POINTER, which specifies that the
next value in extra will be a pointer to a buffer containing all
the kernel parameters for launching kernel f; -
CU_LAUNCH_PARAM_BUFFER_SIZE, which specifies that the
next value in extra will be a pointer to a size_t containing the
size of the buffer specified with
CU_LAUNCH_PARAM_BUFFER_POINTER;
The error
CUDA_ERROR_INVALID_VALUEwill be returned if
kernel parameters are specified with both kernelParams and extra
(i.e. both kernelParams and extra are non-NULL).Calling
cuLaunchKernel()invalidates the persistent
function state set through the following deprecated APIs:
cuFuncSetBlockShape(),cuFuncSetSharedSize(),
cuParamSetSize(),cuParamSeti(),
cuParamSetf(),cuParamSetv().Note that to use
cuLaunchKernel(), the kernel f must
either have been compiled with toolchain version 3.2 or later so that
it will contain kernel parameter information, or have no kernel
parameters. If either of these conditions is not met, then
cuLaunchKernel()will return
CUDA_ERROR_INVALID_IMAGE.Note that the API can also be used to launch context-less kernel
CUkernelby querying the handle using
cuLibraryGetKernel()and then passing it to the API by
casting toCUfunction. Here, the context to launch the
kernel on will either be taken from the specified stream hStream or
the current context in case of NULL stream.- Parameters:
-
-
f (
CUfunction) – FunctionCUfunctionor KernelCUkernelto
launch -
gridDimX (unsigned int) – Width of grid in blocks
-
gridDimY (unsigned int) – Height of grid in blocks
-
gridDimZ (unsigned int) – Depth of grid in blocks
-
blockDimX (unsigned int) – X dimension of each thread block
-
blockDimY (unsigned int) – Y dimension of each thread block
-
blockDimZ (unsigned int) – Z dimension of each thread block
-
sharedMemBytes (unsigned int) – Dynamic shared-memory size per thread block in bytes
-
hStream (
CUstreamorcudaStream_t) – Stream identifier -
kernelParams (Any) – Array of pointers to kernel parameters
-
extra (List[Any]) – Extra options
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_IMAGE,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_LAUNCH_FAILED,CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES,CUDA_ERROR_LAUNCH_TIMEOUT,CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING,CUDA_ERROR_SHARED_OBJECT_INIT_FAILED,CUDA_ERROR_NOT_FOUND - Return type:
-
CUresult
-
- cuda.cuda.cuLaunchKernelEx(CUlaunchConfig config: CUlaunchConfig, f, kernelParams, void_ptr extra)#
-
Launches a CUDA function
CUfunctionor a CUDA kernelCUkernelwith launch-time configuration.Invokes the function
CUfunctionor the kernel
CUkernelf with the specified launch-time configuration
config.The
CUlaunchConfigstructure is defined as:View CUDA Toolkit Documentation for a C++ code example
where:
-
gridDimXis the width of the grid in
blocks. -
gridDimYis the height of the grid in
blocks. -
gridDimZis the depth of the grid in
blocks. -
blockDimXis the X dimension of each
thread block. -
blockDimXis the Y dimension of each
thread block. -
blockDimZis the Z dimension of each
thread block. -
sharedMemBytesis the dynamic shared-
memory size per thread block in bytes. -
hStreamis the handle to the stream to
perform the launch in. The CUDA context associated with this stream
must match that associated with function f. -
attrsis an array of
numAttrscontinguous
CUlaunchAttributeelements. The value of this pointer is
not considered ifnumAttrsis zero.
However, in that case, it is recommended to set the pointer to NULL. -
numAttrsis the numbers of attributes
populating the firstnumAttrspositions of
theattrsarray.
Launch-time configuration is specified by adding entries to
attrs. Each entry is an attribute ID and a
corresponding attribute value.The
CUlaunchAttributestructure is defined as:View CUDA Toolkit Documentation for a C++ code example
where:
-
CUlaunchAttribute::id is a unique enum identifying the
attribute. -
CUlaunchAttribute::value is a union that hold the
attribute value.
An example of using the config parameter:
View CUDA Toolkit Documentation for a C++ code example
The
CUlaunchAttributeIDenum is defined as:View CUDA Toolkit Documentation for a C++ code example
and the corresponding
CUlaunchAttributeValueunion as :View CUDA Toolkit Documentation for a C++ code example
Setting
CU_LAUNCH_ATTRIBUTE_COOPERATIVEto a non-zero value
causes the kernel launch to be a cooperative launch, with exactly the
same usage and semantics ofcuLaunchCooperativeKernel.Setting
CU_LAUNCH_ATTRIBUTE_PROGRAMMATIC_STREAM_SERIALIZATIONto a
non-zero values causes the kernel to use programmatic means to resolve
its stream dependency – enabling the CUDA runtime to opportunistically
allow the grid’s execution to overlap with the previous kernel in the
stream, if that kernel requests the overlap.CU_LAUNCH_ATTRIBUTE_PROGRAMMATIC_EVENTrecords an event
along with the kernel launch. Event recorded through this launch
attribute is guaranteed to only trigger after all block in the
associated kernel trigger the event. A block can trigger the event
through PTX launchdep.release or CUDA builtin function
cudaTriggerProgrammaticLaunchCompletion(). A trigger can also be
inserted at the beginning of each block’s execution if
triggerAtBlockStart is set to non-0. Note that dependents (including
the CPU thread callingcuEventSynchronize()) are not
guaranteed to observe the release precisely when it is released. For
example,cuEventSynchronize()may only observe the event
trigger long after the associated kernel has completed. This recording
type is primarily meant for establishing programmatic dependency
between device tasks. The event supplied must not be an interprocess or
interop event. The event must disable timing (i.e. created with
CU_EVENT_DISABLE_TIMINGflag set).The effect of other attributes is consistent with their effect when set
via persistent APIs.See
cuStreamSetAttributefor-
CU_LAUNCH_ATTRIBUTE_ACCESS_POLICY_WINDOW -
CU_LAUNCH_ATTRIBUTE_SYNCHRONIZATION_POLICY
See
cuFunctionSetAttributefor-
CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION -
CU_LAUNCH_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE
Kernel parameters to f can be specified in the same ways that they
can be usingcuLaunchKernel.Note that the API can also be used to launch context-less kernel
CUkernelby querying the handle using
cuLibraryGetKernel()and then passing it to the API by
casting toCUfunction. Here, the context to launch the
kernel on will either be taken from the specified stream
hStreamor the current context in case of
NULL stream.- Parameters:
-
-
config (
CUlaunchConfig) – Config to launch -
f (
CUfunction) – FunctionCUfunctionor KernelCUkernelto
launch -
kernelParams (Any) – Array of pointers to kernel parameters
-
extra (List[Any]) – Extra options
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_IMAGE,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_LAUNCH_FAILED,CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES,CUDA_ERROR_LAUNCH_TIMEOUT,CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING,CUDA_ERROR_COOPERATIVE_LAUNCH_TOO_LARGE,CUDA_ERROR_SHARED_OBJECT_INIT_FAILED,CUDA_ERROR_NOT_FOUND - Return type:
-
CUresult
-
- cuda.cuda.cuLaunchCooperativeKernel(f, unsigned int gridDimX, unsigned int gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int blockDimY, unsigned int blockDimZ, unsigned int sharedMemBytes, hStream, kernelParams)#
-
Launches a CUDA function
CUfunctionor a CUDA kernelCUkernelwhere thread blocks can cooperate and synchronize as they execute.Invokes the function
CUfunctionor the kernel
CUkernelf on a gridDimX x gridDimY x gridDimZ grid
of blocks. Each block contains blockDimX x blockDimY x blockDimZ
threads.Note that the API can also be used to launch context-less kernel
CUkernelby querying the handle using
cuLibraryGetKernel()and then passing it to the API by
casting toCUfunction. Here, the context to launch the
kernel on will either be taken from the specified stream hStream or
the current context in case of NULL stream.sharedMemBytes sets the amount of dynamic shared memory that will be
available to each thread block.The device on which this kernel is invoked must have a non-zero value
for the device attribute
CU_DEVICE_ATTRIBUTE_COOPERATIVE_LAUNCH.The total number of blocks launched cannot exceed the maximum number of
blocks per multiprocessor as returned by
cuOccupancyMaxActiveBlocksPerMultiprocessor(or
cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags) times
the number of multiprocessors as specified by the device attribute
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT.The kernel cannot make use of CUDA dynamic parallelism.
Kernel parameters must be specified via kernelParams. If f has N
parameters, then kernelParams needs to be an array of N pointers.
Each of `kernelParams`[0] through `kernelParams`[N-1] must point to a
region of memory from which the actual kernel parameter will be copied.
The number of kernel parameters and their offsets and sizes do not need
to be specified as that information is retrieved directly from the
kernel’s image.Calling
cuLaunchCooperativeKernel()sets persistent
function state that is the same as function state set through
cuLaunchKernelAPIWhen the kernel f is launched via
cuLaunchCooperativeKernel(), the previous block shape,
shared size and parameter info associated with f is overwritten.Note that to use
cuLaunchCooperativeKernel(), the kernel
f must either have been compiled with toolchain version 3.2 or later
so that it will contain kernel parameter information, or have no kernel
parameters. If either of these conditions is not met, then
cuLaunchCooperativeKernel()will return
CUDA_ERROR_INVALID_IMAGE.Note that the API can also be used to launch context-less kernel
CUkernelby querying the handle using
cuLibraryGetKernel()and then passing it to the API by
casting toCUfunction. Here, the context to launch the
kernel on will either be taken from the specified stream hStream or
the current context in case of NULL stream.- Parameters:
-
-
f (
CUfunction) – FunctionCUfunctionor KernelCUkernelto
launch -
gridDimX (unsigned int) – Width of grid in blocks
-
gridDimY (unsigned int) – Height of grid in blocks
-
gridDimZ (unsigned int) – Depth of grid in blocks
-
blockDimX (unsigned int) – X dimension of each thread block
-
blockDimY (unsigned int) – Y dimension of each thread block
-
blockDimZ (unsigned int) – Z dimension of each thread block
-
sharedMemBytes (unsigned int) – Dynamic shared-memory size per thread block in bytes
-
hStream (
CUstreamorcudaStream_t) – Stream identifier -
kernelParams (Any) – Array of pointers to kernel parameters
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_IMAGE,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_LAUNCH_FAILED,CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES,CUDA_ERROR_LAUNCH_TIMEOUT,CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING,CUDA_ERROR_COOPERATIVE_LAUNCH_TOO_LARGE,CUDA_ERROR_SHARED_OBJECT_INIT_FAILED,CUDA_ERROR_NOT_FOUND - Return type:
-
CUresult
- cuda.cuda.cuLaunchCooperativeKernelMultiDevice(launchParamsList: List[CUDA_LAUNCH_PARAMS], unsigned int numDevices, unsigned int flags)#
-
Launches CUDA functions on multiple devices where thread blocks can cooperate and synchronize as they execute.
[Deprecated]
Invokes kernels as specified in the launchParamsList array where each
element of the array specifies all the parameters required to perform a
single kernel launch. These kernels can cooperate and synchronize as
they execute. The size of the array is specified by numDevices.No two kernels can be launched on the same device. All the devices
targeted by this multi-device launch must be identical. All devices
must have a non-zero value for the device attribute
CU_DEVICE_ATTRIBUTE_COOPERATIVE_MULTI_DEVICE_LAUNCH.All kernels launched must be identical with respect to the compiled
code. Note that any device, constant or managed variables present in
the module that owns the kernel launched on each device, are
independently instantiated on every device. It is the application’s
responsiblity to ensure these variables are initialized and used
appropriately.The size of the grids as specified in blocks, the size of the blocks
themselves and the amount of shared memory used by each thread block
must also match across all launched kernels.The streams used to launch these kernels must have been created via
eithercuStreamCreateor
cuStreamCreateWithPriority. The NULL stream or
CU_STREAM_LEGACYorCU_STREAM_PER_THREADcannot
be used.The total number of blocks launched per kernel cannot exceed the
maximum number of blocks per multiprocessor as returned by
cuOccupancyMaxActiveBlocksPerMultiprocessor(or
cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags) times
the number of multiprocessors as specified by the device attribute
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT. Since the total
number of blocks launched per device has to match across all devices,
the maximum number of blocks that can be launched per device will be
limited by the device with the least number of multiprocessors.The kernels cannot make use of CUDA dynamic parallelism.
The
CUDA_LAUNCH_PARAMSstructure is defined as:View CUDA Toolkit Documentation for a C++ code example
where:
-
functionspecifies the kernel to be
launched. All functions must be identical with respect to the
compiled code. Note that you can also specify context-less kernel
CUkernelby querying the handle using
cuLibraryGetKernel()and then casting to
CUfunction. In this case, the context to launch the
kernel on be taken from the specified stream
hStream. -
gridDimXis the width of the grid in
blocks. This must match across all kernels launched. -
gridDimYis the height of the grid in
blocks. This must match across all kernels launched. -
gridDimZis the depth of the grid in
blocks. This must match across all kernels launched. -
blockDimXis the X dimension of each
thread block. This must match across all kernels launched. -
blockDimXis the Y dimension of each
thread block. This must match across all kernels launched. -
blockDimZis the Z dimension of each
thread block. This must match across all kernels launched. -
sharedMemBytesis the dynamic shared-
memory size per thread block in bytes. This must match across all
kernels launched. -
hStreamis the handle to the stream to
perform the launch in. This cannot be the NULL stream or
CU_STREAM_LEGACYorCU_STREAM_PER_THREAD. The
CUDA context associated with this stream must match that associated
withfunction. -
kernelParamsis an array of pointers
to kernel parameters. Iffunctionhas
N parameters, thenkernelParamsneeds
to be an array of N pointers. Each of
:py:obj:`~.CUDA_LAUNCH_PARAMS.kernelParams`[0] through
:py:obj:`~.CUDA_LAUNCH_PARAMS.kernelParams`[N-1] must point to a
region of memory from which the actual kernel parameter will be
copied. The number of kernel parameters and their offsets and sizes
do not need to be specified as that information is retrieved directly
from the kernel’s image.
By default, the kernel won’t begin execution on any GPU until all prior
work in all the specified streams has completed. This behavior can be
overridden by specifying the flag
CUDA_COOPERATIVE_LAUNCH_MULTI_DEVICE_NO_PRE_LAUNCH_SYNC.
When this flag is specified, each kernel will only wait for prior work
in the stream corresponding to that GPU to complete before it begins
execution.Similarly, by default, any subsequent work pushed in any of the
specified streams will not begin execution until the kernels on all
GPUs have completed. This behavior can be overridden by specifying the
flag
CUDA_COOPERATIVE_LAUNCH_MULTI_DEVICE_NO_POST_LAUNCH_SYNC.
When this flag is specified, any subsequent work pushed in any of the
specified streams will only wait for the kernel launched on the GPU
corresponding to that stream to complete before it begins execution.Calling
cuLaunchCooperativeKernelMultiDevice()sets
persistent function state that is the same as function state set
throughcuLaunchKernelAPI when called individually for
each element in launchParamsList.When kernels are launched via
cuLaunchCooperativeKernelMultiDevice(), the previous block
shape, shared size and parameter info associated with each
functionin launchParamsList is
overwritten.Note that to use
cuLaunchCooperativeKernelMultiDevice(),
the kernels must either have been compiled with toolchain version 3.2
or later so that it will contain kernel parameter information, or have
no kernel parameters. If either of these conditions is not met, then
cuLaunchCooperativeKernelMultiDevice()will return
CUDA_ERROR_INVALID_IMAGE.- Parameters:
-
-
launchParamsList (List[
CUDA_LAUNCH_PARAMS]) – List of launch parameters, one per device -
numDevices (unsigned int) – Size of the launchParamsList array
-
flags (unsigned int) – Flags to control launch behavior
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_IMAGE,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_LAUNCH_FAILED,CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES,CUDA_ERROR_LAUNCH_TIMEOUT,CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING,CUDA_ERROR_COOPERATIVE_LAUNCH_TOO_LARGE,CUDA_ERROR_SHARED_OBJECT_INIT_FAILED - Return type:
-
CUresult
See also
cuCtxGetCacheConfig,cuCtxSetCacheConfig,cuFuncSetCacheConfig,cuFuncGetAttribute,cuLaunchCooperativeKernel,cudaLaunchCooperativeKernelMultiDevice -
- cuda.cuda.cuLaunchHostFunc(hStream, fn, userData)#
-
Enqueues a host function call in a stream.
Enqueues a host function to run in a stream. The function will be
called after currently enqueued work and will block work added after
it.The host function must not make any CUDA API calls. Attempting to use a
CUDA API may result inCUDA_ERROR_NOT_PERMITTED, but this
is not required. The host function must not perform any synchronization
that may depend on outstanding CUDA work not mandated to run earlier.
Host functions without a mandated order (such as in independent
streams) execute in undefined order and may be serialized.For the purposes of Unified Memory, execution makes a number of
guarantees:-
The stream is considered idle for the duration of the function’s
execution. Thus, for example, the function may always use memory
attached to the stream it was enqueued in. -
The start of execution of the function has the same effect as
synchronizing an event recorded in the same stream immediately prior
to the function. It thus synchronizes streams which have been
“joined” prior to the function. -
Adding device work to any stream does not have the effect of making
the stream active until all preceding host functions and stream
callbacks have executed. Thus, for example, a function might use
global attached memory even if work has been added to another stream,
if the work has been ordered behind the function call with an event. -
Completion of the function does not cause a stream to become active
except as described above. The stream will remain idle if no device
work follows the function, and will remain idle across consecutive
host functions or stream callbacks without device work in between.
Thus, for example, stream synchronization can be done by signaling
from a host function at the end of the stream.
Note that, in contrast to
cuStreamAddCallback, the function
will not be called in the event of an error in the CUDA context.- Parameters:
-
-
hStream (
CUstreamorcudaStream_t) – Stream to enqueue function call in -
fn (
CUhostFn) – The function to call once preceding stream operations are complete -
userData (Any) – User-specified data to be passed to the function
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_SUPPORTED - Return type:
-
CUresult
-
Graph Management#
This section describes the graph management functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuGraphCreate(unsigned int flags)#
-
Creates a graph.
Creates an empty graph, which is returned via phGraph.
- Parameters:
-
flags (unsigned int) – Graph creation flags, must be 0
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY -
phGraph (
CUgraph) – Returns newly created graph
-
See also
cuGraphAddChildGraphNode,cuGraphAddEmptyNode,cuGraphAddKernelNode,cuGraphAddHostNode,cuGraphAddMemcpyNode,cuGraphAddMemsetNode,cuGraphInstantiate,cuGraphDestroy,cuGraphGetNodes,cuGraphGetRootNodes,cuGraphGetEdges,cuGraphClone
- cuda.cuda.cuGraphAddKernelNode(hGraph, dependencies: List[CUgraphNode], size_t numDependencies, CUDA_KERNEL_NODE_PARAMS nodeParams: CUDA_KERNEL_NODE_PARAMS)#
-
Creates a kernel execution node and adds it to a graph.
Creates a new kernel execution node and adds it to hGraph with
numDependencies dependencies specified via dependencies and
arguments specified in nodeParams. It is possible for
numDependencies to be 0, in which case the node will be placed at the
root of the graph. dependencies may not have any duplicate entries. A
handle to the new node will be returned in phGraphNode.The CUDA_KERNEL_NODE_PARAMS structure is defined as:
View CUDA Toolkit Documentation for a C++ code example
When the graph is launched, the node will invoke kernel func on a
(gridDimX x gridDimY x gridDimZ) grid of blocks. Each block
contains (blockDimX x blockDimY x blockDimZ) threads.sharedMemBytes sets the amount of dynamic shared memory that will be
available to each thread block.Kernel parameters to func can be specified in one of two ways:
1) Kernel parameters can be specified via kernelParams. If the kernel
has N parameters, then kernelParams needs to be an array of N
pointers. Each pointer, from `kernelParams`[0] to `kernelParams`[N-1],
points to the region of memory from which the actual parameter will be
copied. The number of kernel parameters and their offsets and sizes do
not need to be specified as that information is retrieved directly from
the kernel’s image.2) Kernel parameters for non-cooperative kernels can also be packaged
by the application into a single buffer that is passed in via extra.
This places the burden on the application of knowing each kernel
parameter’s size and alignment/padding within the buffer. The extra
parameter exists to allow this function to take additional less
commonly used arguments. extra specifies a list of names of extra
settings and their corresponding values. Each extra setting name is
immediately followed by the corresponding value. The list must be
terminated with either NULL or CU_LAUNCH_PARAM_END.-
CU_LAUNCH_PARAM_END, which indicates the end of the
extra array; -
CU_LAUNCH_PARAM_BUFFER_POINTER, which specifies that the
next value in extra will be a pointer to a buffer containing all
the kernel parameters for launching kernel func; -
CU_LAUNCH_PARAM_BUFFER_SIZE, which specifies that the
next value in extra will be a pointer to a size_t containing the
size of the buffer specified with
CU_LAUNCH_PARAM_BUFFER_POINTER;
The error
CUDA_ERROR_INVALID_VALUEwill be returned if
kernel parameters are specified with both kernelParams and extra
(i.e. both kernelParams and extra are non-NULL).
CUDA_ERROR_INVALID_VALUEwill be returned if extra is
used for a cooperative kernel.The kernelParams or extra array, as well as the argument values it
points to, are copied during this call.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which to add the node -
dependencies (List[
CUgraphNode]) – Dependencies of the node -
numDependencies (size_t) – Number of dependencies
-
nodeParams (
CUDA_KERNEL_NODE_PARAMS) – Parameters for the GPU execution node
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
phGraphNode (
CUgraphNode) – Returns newly created node
-
See also
cuLaunchKernel,cuLaunchCooperativeKernel,cuGraphKernelNodeGetParams,cuGraphKernelNodeSetParams,cuGraphCreate,cuGraphDestroyNode,cuGraphAddChildGraphNode,cuGraphAddEmptyNode,cuGraphAddHostNode,cuGraphAddMemcpyNode,cuGraphAddMemsetNodeNotes
Kernels launched using graphs must not use texture and surface references. Reading or writing through any texture or surface reference is undefined behavior. This restriction does not apply to texture and surface objects.
-
- cuda.cuda.cuGraphKernelNodeGetParams(hNode)#
-
Returns a kernel node’s parameters.
Returns the parameters of kernel node hNode in nodeParams. The
kernelParams or extra array returned in nodeParams, as well as
the argument values it points to, are owned by the node. This memory
remains valid until the node is destroyed or its parameters are
modified, and should not be modified directly. Use
cuGraphKernelNodeSetParamsto update the parameters of this
node.The params will contain either kernelParams or extra, according to
which of these was most recently set on the node.- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to get the parameters for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
nodeParams (
CUDA_KERNEL_NODE_PARAMS) – Pointer to return the parameters
-
- cuda.cuda.cuGraphKernelNodeSetParams(hNode, CUDA_KERNEL_NODE_PARAMS nodeParams: CUDA_KERNEL_NODE_PARAMS)#
-
Sets a kernel node’s parameters.
Sets the parameters of kernel node hNode to nodeParams.
- Parameters:
-
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to set the parameters for -
nodeParams (
CUDA_KERNEL_NODE_PARAMS) – Parameters to copy
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_OUT_OF_MEMORY - Return type:
-
CUresult
- cuda.cuda.cuGraphAddMemcpyNode(hGraph, dependencies: List[CUgraphNode], size_t numDependencies, CUDA_MEMCPY3D copyParams: CUDA_MEMCPY3D, ctx)#
-
Creates a memcpy node and adds it to a graph.
Creates a new memcpy node and adds it to hGraph with
numDependencies dependencies specified via dependencies. It is
possible for numDependencies to be 0, in which case the node will be
placed at the root of the graph. dependencies may not have any
duplicate entries. A handle to the new node will be returned in
phGraphNode.When the graph is launched, the node will perform the memcpy described
by copyParams. SeecuMemcpy3D()for a description of the
structure and its restrictions.Memcpy nodes have some additional restrictions with regards to managed
memory, if the system contains at least one device which has a zero
value for the device attribute
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS. If one or
more of the operands refer to managed memory, then using the memory
typeCU_MEMORYTYPE_UNIFIEDis disallowed for those
operand(s). The managed memory will be treated as residing on either
the host or the device, depending on which memory type is specified.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which to add the node -
dependencies (List[
CUgraphNode]) – Dependencies of the node -
numDependencies (size_t) – Number of dependencies
-
copyParams (
CUDA_MEMCPY3D) – Parameters for the memory copy -
ctx (
CUcontext) – Context on which to run the node
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
phGraphNode (
CUgraphNode) – Returns newly created node
-
- cuda.cuda.cuGraphMemcpyNodeGetParams(hNode)#
-
Returns a memcpy node’s parameters.
Returns the parameters of memcpy node hNode in nodeParams.
- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to get the parameters for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
nodeParams (
CUDA_MEMCPY3D) – Pointer to return the parameters
-
- cuda.cuda.cuGraphMemcpyNodeSetParams(hNode, CUDA_MEMCPY3D nodeParams: CUDA_MEMCPY3D)#
-
Sets a memcpy node’s parameters.
Sets the parameters of memcpy node hNode to nodeParams.
- Parameters:
-
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to set the parameters for -
nodeParams (
CUDA_MEMCPY3D) – Parameters to copy
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
- cuda.cuda.cuGraphAddMemsetNode(hGraph, dependencies: List[CUgraphNode], size_t numDependencies, CUDA_MEMSET_NODE_PARAMS memsetParams: CUDA_MEMSET_NODE_PARAMS, ctx)#
-
Creates a memset node and adds it to a graph.
Creates a new memset node and adds it to hGraph with
numDependencies dependencies specified via dependencies. It is
possible for numDependencies to be 0, in which case the node will be
placed at the root of the graph. dependencies may not have any
duplicate entries. A handle to the new node will be returned in
phGraphNode.The element size must be 1, 2, or 4 bytes. When the graph is launched,
the node will perform the memset described by memsetParams.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which to add the node -
dependencies (List[
CUgraphNode]) – Dependencies of the node -
numDependencies (size_t) – Number of dependencies
-
memsetParams (
CUDA_MEMSET_NODE_PARAMS) – Parameters for the memory set -
ctx (
CUcontext) – Context on which to run the node
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_CONTEXT -
phGraphNode (
CUgraphNode) – Returns newly created node
-
- cuda.cuda.cuGraphMemsetNodeGetParams(hNode)#
-
Returns a memset node’s parameters.
Returns the parameters of memset node hNode in nodeParams.
- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to get the parameters for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
nodeParams (
CUDA_MEMSET_NODE_PARAMS) – Pointer to return the parameters
-
- cuda.cuda.cuGraphMemsetNodeSetParams(hNode, CUDA_MEMSET_NODE_PARAMS nodeParams: CUDA_MEMSET_NODE_PARAMS)#
-
Sets a memset node’s parameters.
Sets the parameters of memset node hNode to nodeParams.
- Parameters:
-
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to set the parameters for -
nodeParams (
CUDA_MEMSET_NODE_PARAMS) – Parameters to copy
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuGraphAddHostNode(hGraph, dependencies: List[CUgraphNode], size_t numDependencies, CUDA_HOST_NODE_PARAMS nodeParams: CUDA_HOST_NODE_PARAMS)#
-
Creates a host execution node and adds it to a graph.
Creates a new CPU execution node and adds it to hGraph with
numDependencies dependencies specified via dependencies and
arguments specified in nodeParams. It is possible for
numDependencies to be 0, in which case the node will be placed at the
root of the graph. dependencies may not have any duplicate entries. A
handle to the new node will be returned in phGraphNode.When the graph is launched, the node will invoke the specified CPU
function. Host nodes are not supported under MPS with pre-Volta GPUs.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which to add the node -
dependencies (List[
CUgraphNode]) – Dependencies of the node -
numDependencies (size_t) – Number of dependencies
-
nodeParams (
CUDA_HOST_NODE_PARAMS) – Parameters for the host node
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_NOT_SUPPORTED,CUDA_ERROR_INVALID_VALUE -
phGraphNode (
CUgraphNode) – Returns newly created node
-
- cuda.cuda.cuGraphHostNodeGetParams(hNode)#
-
Returns a host node’s parameters.
Returns the parameters of host node hNode in nodeParams.
- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to get the parameters for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
nodeParams (
CUDA_HOST_NODE_PARAMS) – Pointer to return the parameters
-
- cuda.cuda.cuGraphHostNodeSetParams(hNode, CUDA_HOST_NODE_PARAMS nodeParams: CUDA_HOST_NODE_PARAMS)#
-
Sets a host node’s parameters.
Sets the parameters of host node hNode to nodeParams.
- Parameters:
-
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to set the parameters for -
nodeParams (
CUDA_HOST_NODE_PARAMS) – Parameters to copy
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuGraphAddChildGraphNode(hGraph, dependencies: List[CUgraphNode], size_t numDependencies, childGraph)#
-
Creates a child graph node and adds it to a graph.
Creates a new node which executes an embedded graph, and adds it to
hGraph with numDependencies dependencies specified via
dependencies. It is possible for numDependencies to be 0, in which
case the node will be placed at the root of the graph. dependencies
may not have any duplicate entries. A handle to the new node will be
returned in phGraphNode.If hGraph contains allocation or free nodes, this call will return an
error.The node executes an embedded child graph. The child graph is cloned in
this call.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which to add the node -
dependencies (List[
CUgraphNode]) – Dependencies of the node -
numDependencies (size_t) – Number of dependencies
-
childGraph (
CUgraphorcudaGraph_t) – The graph to clone into this node
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE, -
phGraphNode (
CUgraphNode) – Returns newly created node
-
- cuda.cuda.cuGraphChildGraphNodeGetGraph(hNode)#
-
Gets a handle to the embedded graph of a child graph node.
Gets a handle to the embedded graph in a child graph node. This call
does not clone the graph. Changes to the graph will be reflected in the
node, and the node retains ownership of the graph.Allocation and free nodes cannot be added to the returned graph.
Attempting to do so will return an error.- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to get the embedded graph for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE, -
phGraph (
CUgraph) – Location to store a handle to the graph
-
- cuda.cuda.cuGraphAddEmptyNode(hGraph, dependencies: List[CUgraphNode], size_t numDependencies)#
-
Creates an empty node and adds it to a graph.
Creates a new node which performs no operation, and adds it to hGraph
with numDependencies dependencies specified via dependencies. It is
possible for numDependencies to be 0, in which case the node will be
placed at the root of the graph. dependencies may not have any
duplicate entries. A handle to the new node will be returned in
phGraphNode.An empty node performs no operation during execution, but can be used
for transitive ordering. For example, a phased execution graph with 2
groups of n nodes with a barrier between them can be represented using
an empty node and 2*n dependency edges, rather than no empty node and
n^2 dependency edges.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which to add the node -
dependencies (List[
CUgraphNode]) – Dependencies of the node -
numDependencies (size_t) – Number of dependencies
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE, -
phGraphNode (
CUgraphNode) – Returns newly created node
-
- cuda.cuda.cuGraphAddEventRecordNode(hGraph, dependencies: List[CUgraphNode], size_t numDependencies, event)#
-
Creates an event record node and adds it to a graph.
Creates a new event record node and adds it to hGraph with
numDependencies dependencies specified via dependencies and event
specified in event. It is possible for numDependencies to be 0, in
which case the node will be placed at the root of the graph.
dependencies may not have any duplicate entries. A handle to the new
node will be returned in phGraphNode.Each launch of the graph will record event to capture execution of
the node’s dependencies.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which to add the node -
dependencies (List[
CUgraphNode]) – Dependencies of the node -
numDependencies (size_t) – Number of dependencies
-
event (
CUeventorcudaEvent_t) – Event for the node
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_NOT_SUPPORTED,CUDA_ERROR_INVALID_VALUE -
phGraphNode (
CUgraphNode) – Returns newly created node
-
- cuda.cuda.cuGraphEventRecordNodeGetEvent(hNode)#
-
Returns the event associated with an event record node.
Returns the event of event record node hNode in event_out.
- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to get the event for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
event_out (
CUevent) – Pointer to return the event
-
- cuda.cuda.cuGraphEventRecordNodeSetEvent(hNode, event)#
-
Sets an event record node’s event.
Sets the event of event record node hNode to event.
- Parameters:
-
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to set the event for -
event (
CUeventorcudaEvent_t) – Event to use
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_OUT_OF_MEMORY - Return type:
-
CUresult
- cuda.cuda.cuGraphAddEventWaitNode(hGraph, dependencies: List[CUgraphNode], size_t numDependencies, event)#
-
Creates an event wait node and adds it to a graph.
Creates a new event wait node and adds it to hGraph with
numDependencies dependencies specified via dependencies and event
specified in event. It is possible for numDependencies to be 0, in
which case the node will be placed at the root of the graph.
dependencies may not have any duplicate entries. A handle to the new
node will be returned in phGraphNode.The graph node will wait for all work captured in event. See
cuEventRecord()for details on what is captured by an
event. event may be from a different context or device than the
launch stream.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which to add the node -
dependencies (List[
CUgraphNode]) – Dependencies of the node -
numDependencies (size_t) – Number of dependencies
-
event (
CUeventorcudaEvent_t) – Event for the node
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_NOT_SUPPORTED,CUDA_ERROR_INVALID_VALUE -
phGraphNode (
CUgraphNode) – Returns newly created node
-
- cuda.cuda.cuGraphEventWaitNodeGetEvent(hNode)#
-
Returns the event associated with an event wait node.
Returns the event of event wait node hNode in event_out.
- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to get the event for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
event_out (
CUevent) – Pointer to return the event
-
- cuda.cuda.cuGraphEventWaitNodeSetEvent(hNode, event)#
-
Sets an event wait node’s event.
Sets the event of event wait node hNode to event.
- Parameters:
-
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to set the event for -
event (
CUeventorcudaEvent_t) – Event to use
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_OUT_OF_MEMORY - Return type:
-
CUresult
- cuda.cuda.cuGraphAddExternalSemaphoresSignalNode(hGraph, dependencies: List[CUgraphNode], size_t numDependencies, CUDA_EXT_SEM_SIGNAL_NODE_PARAMS nodeParams: CUDA_EXT_SEM_SIGNAL_NODE_PARAMS)#
-
Creates an external semaphore signal node and adds it to a graph.
Creates a new external semaphore signal node and adds it to hGraph
with numDependencies dependencies specified via dependencies and
arguments specified in nodeParams. It is possible for
numDependencies to be 0, in which case the node will be placed at the
root of the graph. dependencies may not have any duplicate entries. A
handle to the new node will be returned in phGraphNode.Performs a signal operation on a set of externally allocated semaphore
objects when the node is launched. The operation(s) will occur after
all of the node’s dependencies have completed.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which to add the node -
dependencies (List[
CUgraphNode]) – Dependencies of the node -
numDependencies (size_t) – Number of dependencies
-
nodeParams (
CUDA_EXT_SEM_SIGNAL_NODE_PARAMS) – Parameters for the node
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_NOT_SUPPORTED,CUDA_ERROR_INVALID_VALUE -
phGraphNode (
CUgraphNode) – Returns newly created node
-
See also
cuGraphExternalSemaphoresSignalNodeGetParams,cuGraphExternalSemaphoresSignalNodeSetParams,cuGraphExecExternalSemaphoresSignalNodeSetParams,cuGraphAddExternalSemaphoresWaitNode,cuImportExternalSemaphore,cuSignalExternalSemaphoresAsync,cuWaitExternalSemaphoresAsync,cuGraphCreate,cuGraphDestroyNode,cuGraphAddEventRecordNode,cuGraphAddEventWaitNode,cuGraphAddChildGraphNode,cuGraphAddEmptyNode,cuGraphAddKernelNode,cuGraphAddMemcpyNode,cuGraphAddMemsetNode
- cuda.cuda.cuGraphExternalSemaphoresSignalNodeGetParams(hNode)#
-
Returns an external semaphore signal node’s parameters.
Returns the parameters of an external semaphore signal node hNode in
params_out. The extSemArray and paramsArray returned in
params_out, are owned by the node. This memory remains valid until
the node is destroyed or its parameters are modified, and should not be
modified directly. Use
cuGraphExternalSemaphoresSignalNodeSetParamsto update the
parameters of this node.- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to get the parameters for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
params_out (
CUDA_EXT_SEM_SIGNAL_NODE_PARAMS) – Pointer to return the parameters
-
- cuda.cuda.cuGraphExternalSemaphoresSignalNodeSetParams(hNode, CUDA_EXT_SEM_SIGNAL_NODE_PARAMS nodeParams: CUDA_EXT_SEM_SIGNAL_NODE_PARAMS)#
-
Sets an external semaphore signal node’s parameters.
Sets the parameters of an external semaphore signal node hNode to
nodeParams.- Parameters:
-
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to set the parameters for -
nodeParams (
CUDA_EXT_SEM_SIGNAL_NODE_PARAMS) – Parameters to copy
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_OUT_OF_MEMORY - Return type:
-
CUresult
- cuda.cuda.cuGraphAddExternalSemaphoresWaitNode(hGraph, dependencies: List[CUgraphNode], size_t numDependencies, CUDA_EXT_SEM_WAIT_NODE_PARAMS nodeParams: CUDA_EXT_SEM_WAIT_NODE_PARAMS)#
-
Creates an external semaphore wait node and adds it to a graph.
Creates a new external semaphore wait node and adds it to hGraph with
numDependencies dependencies specified via dependencies and
arguments specified in nodeParams. It is possible for
numDependencies to be 0, in which case the node will be placed at the
root of the graph. dependencies may not have any duplicate entries. A
handle to the new node will be returned in phGraphNode.Performs a wait operation on a set of externally allocated semaphore
objects when the node is launched. The node’s dependencies will not be
launched until the wait operation has completed.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which to add the node -
dependencies (List[
CUgraphNode]) – Dependencies of the node -
numDependencies (size_t) – Number of dependencies
-
nodeParams (
CUDA_EXT_SEM_WAIT_NODE_PARAMS) – Parameters for the node
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_NOT_SUPPORTED,CUDA_ERROR_INVALID_VALUE -
phGraphNode (
CUgraphNode) – Returns newly created node
-
See also
cuGraphExternalSemaphoresWaitNodeGetParams,cuGraphExternalSemaphoresWaitNodeSetParams,cuGraphExecExternalSemaphoresWaitNodeSetParams,cuGraphAddExternalSemaphoresSignalNode,cuImportExternalSemaphore,cuSignalExternalSemaphoresAsync,cuWaitExternalSemaphoresAsync,cuGraphCreate,cuGraphDestroyNode,cuGraphAddEventRecordNode,cuGraphAddEventWaitNode,cuGraphAddChildGraphNode,cuGraphAddEmptyNode,cuGraphAddKernelNode,cuGraphAddMemcpyNode,cuGraphAddMemsetNode
- cuda.cuda.cuGraphExternalSemaphoresWaitNodeGetParams(hNode)#
-
Returns an external semaphore wait node’s parameters.
Returns the parameters of an external semaphore wait node hNode in
params_out. The extSemArray and paramsArray returned in
params_out, are owned by the node. This memory remains valid until
the node is destroyed or its parameters are modified, and should not be
modified directly. Use
cuGraphExternalSemaphoresSignalNodeSetParamsto update the
parameters of this node.- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to get the parameters for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
params_out (
CUDA_EXT_SEM_WAIT_NODE_PARAMS) – Pointer to return the parameters
-
- cuda.cuda.cuGraphExternalSemaphoresWaitNodeSetParams(hNode, CUDA_EXT_SEM_WAIT_NODE_PARAMS nodeParams: CUDA_EXT_SEM_WAIT_NODE_PARAMS)#
-
Sets an external semaphore wait node’s parameters.
Sets the parameters of an external semaphore wait node hNode to
nodeParams.- Parameters:
-
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to set the parameters for -
nodeParams (
CUDA_EXT_SEM_WAIT_NODE_PARAMS) – Parameters to copy
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_OUT_OF_MEMORY - Return type:
-
CUresult
- cuda.cuda.cuGraphAddBatchMemOpNode(hGraph, dependencies: List[CUgraphNode], size_t numDependencies, CUDA_BATCH_MEM_OP_NODE_PARAMS nodeParams: CUDA_BATCH_MEM_OP_NODE_PARAMS)#
-
Creates a batch memory operation node and adds it to a graph.
Creates a new batch memory operation node and adds it to hGraph with
numDependencies dependencies specified via dependencies and
arguments specified in nodeParams. It is possible for
numDependencies to be 0, in which case the node will be placed at the
root of the graph. dependencies may not have any duplicate entries. A
handle to the new node will be returned in phGraphNode.When the node is added, the paramArray inside nodeParams is copied
and therefore it can be freed after the call returns.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which to add the node -
dependencies (List[
CUgraphNode]) – Dependencies of the node -
numDependencies (size_t) – Number of dependencies
-
nodeParams (
CUDA_BATCH_MEM_OP_NODE_PARAMS) – Parameters for the node
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_NOT_SUPPORTED,CUDA_ERROR_INVALID_VALUE -
phGraphNode (
CUgraphNode) – Returns newly created node
-
See also
cuStreamBatchMemOp,cuStreamWaitValue32,cuStreamWriteValue32,cuStreamWaitValue64,cuStreamWriteValue64,cuGraphBatchMemOpNodeGetParams,cuGraphBatchMemOpNodeSetParams,cuGraphCreate,cuGraphDestroyNode,cuGraphAddChildGraphNode,cuGraphAddEmptyNode,cuGraphAddKernelNode,cuGraphAddMemcpyNode,cuGraphAddMemsetNodeNotes
Warning: Improper use of this API may deadlock the application. Synchronization ordering established through this API is not visible to CUDA. CUDA tasks that are (even indirectly) ordered by this API should also have that order expressed with CUDA-visible dependencies such as events. This ensures that the scheduler does not serialize them in an improper order. For more information, see the Stream Memory Operations section in the programming guide(https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html).
- cuda.cuda.cuGraphBatchMemOpNodeGetParams(hNode)#
-
Returns a batch mem op node’s parameters.
Returns the parameters of batch mem op node hNode in
nodeParams_out. The paramArray returned in nodeParams_out is
owned by the node. This memory remains valid until the node is
destroyed or its parameters are modified, and should not be modified
directly. UsecuGraphBatchMemOpNodeSetParamsto update the
parameters of this node.- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to get the parameters for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
nodeParams_out (
CUDA_BATCH_MEM_OP_NODE_PARAMS) – Pointer to return the parameters
-
- cuda.cuda.cuGraphBatchMemOpNodeSetParams(hNode, CUDA_BATCH_MEM_OP_NODE_PARAMS nodeParams: CUDA_BATCH_MEM_OP_NODE_PARAMS)#
-
Sets a batch mem op node’s parameters.
Sets the parameters of batch mem op node hNode to nodeParams.
The paramArray inside nodeParams is copied and therefore it can be
freed after the call returns.- Parameters:
-
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to set the parameters for -
nodeParams (
CUDA_BATCH_MEM_OP_NODE_PARAMS) – Parameters to copy
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_OUT_OF_MEMORY - Return type:
-
CUresult
- cuda.cuda.cuGraphExecBatchMemOpNodeSetParams(hGraphExec, hNode, CUDA_BATCH_MEM_OP_NODE_PARAMS nodeParams: CUDA_BATCH_MEM_OP_NODE_PARAMS)#
-
Sets the parameters for a batch mem op node in the given graphExec.
Sets the parameters of a batch mem op node in an executable graph
hGraphExec. The node is identified by the corresponding node hNode
in the non-executable graph, from which the executable graph was
instantiated.The following fields on operations may be modified on an executable
graph:op.waitValue.address op.waitValue.value[64] op.waitValue.flags bits
corresponding to wait type (i.e. CU_STREAM_WAIT_VALUE_FLUSH bit cannot
be modified) op.writeValue.address op.writeValue.value[64]Other fields, such as the context, count or type of operations, and
other types of operations such as membars, may not be modified.hNode must not have been removed from the original graph.
The modifications only affect future launches of hGraphExec. Already
enqueued or running launches of hGraphExec are not affected by this
call. hNode is also not modified by this call.The paramArray inside nodeParams is copied and therefore it can be
freed after the call returns.- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The executable graph in which to set the specified node -
hNode (
CUgraphNodeorcudaGraphNode_t) – Batch mem op node from the graph from which graphExec was
instantiated -
nodeParams (
CUDA_BATCH_MEM_OP_NODE_PARAMS) – Updated Parameters to set
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
- cuda.cuda.cuGraphAddMemAllocNode(hGraph, dependencies: List[CUgraphNode], size_t numDependencies, CUDA_MEM_ALLOC_NODE_PARAMS nodeParams: CUDA_MEM_ALLOC_NODE_PARAMS)#
-
Creates an allocation node and adds it to a graph.
Creates a new allocation node and adds it to hGraph with
numDependencies dependencies specified via dependencies and
arguments specified in nodeParams. It is possible for
numDependencies to be 0, in which case the node will be placed at the
root of the graph. dependencies may not have any duplicate entries. A
handle to the new node will be returned in phGraphNode.When
cuGraphAddMemAllocNodecreates an allocation node, it
returns the address of the allocation in nodeParams.dptr. The
allocation’s address remains fixed across instantiations and launches.If the allocation is freed in the same graph, by creating a free node
usingcuGraphAddMemFreeNode, the allocation can be accessed
by nodes ordered after the allocation node but before the free node.
These allocations cannot be freed outside the owning graph, and they
can only be freed once in the owning graph.If the allocation is not freed in the same graph, then it can be
accessed not only by nodes in the graph which are ordered after the
allocation node, but also by stream operations ordered after the
graph’s execution but before the allocation is freed.Allocations which are not freed in the same graph can be freed by:
-
passing the allocation to
cuMemFreeAsyncor
cuMemFree; -
launching a graph with a free node for that allocation; or
-
specifying
CUDA_GRAPH_INSTANTIATE_FLAG_AUTO_FREE_ON_LAUNCHduring
instantiation, which makes each launch behave as though it called
cuMemFreeAsyncfor every unfreed allocation.
It is not possible to free an allocation in both the owning graph and
another graph. If the allocation is freed in the same graph, a free
node cannot be added to another graph. If the allocation is freed in
another graph, a free node can no longer be added to the owning graph.The following restrictions apply to graphs which contain allocation
and/or memory free nodes:-
Nodes and edges of the graph cannot be deleted.
-
The graph cannot be used in a child node.
-
Only one instantiation of the graph may exist at any point in time.
-
The graph cannot be cloned.
- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which to add the node -
dependencies (List[
CUgraphNode]) – Dependencies of the node -
numDependencies (size_t) – Number of dependencies
-
nodeParams (
CUDA_MEM_ALLOC_NODE_PARAMS) – Parameters for the node
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_NOT_SUPPORTED,CUDA_ERROR_INVALID_VALUE -
phGraphNode (
CUgraphNode) – Returns newly created node
-
See also
cuGraphAddMemFreeNode,cuGraphMemAllocNodeGetParams,cuDeviceGraphMemTrim,cuDeviceGetGraphMemAttribute,cuDeviceSetGraphMemAttribute,cuMemAllocAsync,cuMemFreeAsync,cuGraphCreate,cuGraphDestroyNode,cuGraphAddChildGraphNode,cuGraphAddEmptyNode,cuGraphAddEventRecordNode,cuGraphAddEventWaitNode,cuGraphAddExternalSemaphoresSignalNode,cuGraphAddExternalSemaphoresWaitNode,cuGraphAddKernelNode,cuGraphAddMemcpyNode,cuGraphAddMemsetNode -
- cuda.cuda.cuGraphMemAllocNodeGetParams(hNode)#
-
Returns a memory alloc node’s parameters.
Returns the parameters of a memory alloc node hNode in params_out.
The poolProps and accessDescs returned in params_out, are owned
by the node. This memory remains valid until the node is destroyed. The
returned parameters must not be modified.- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to get the parameters for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
params_out (
CUDA_MEM_ALLOC_NODE_PARAMS) – Pointer to return the parameters
-
- cuda.cuda.cuGraphAddMemFreeNode(hGraph, dependencies: List[CUgraphNode], size_t numDependencies, dptr)#
-
Creates a memory free node and adds it to a graph.
Creates a new memory free node and adds it to hGraph with
numDependencies dependencies specified via dependencies and
arguments specified in nodeParams. It is possible for
numDependencies to be 0, in which case the node will be placed at the
root of the graph. dependencies may not have any duplicate entries. A
handle to the new node will be returned in phGraphNode.cuGraphAddMemFreeNodewill return
CUDA_ERROR_INVALID_VALUEif the user attempts to free:-
an allocation twice in the same graph.
-
an address that was not returned by an allocation node.
-
an invalid address.
The following restrictions apply to graphs which contain allocation
and/or memory free nodes:-
Nodes and edges of the graph cannot be deleted.
-
The graph cannot be used in a child node.
-
Only one instantiation of the graph may exist at any point in time.
-
The graph cannot be cloned.
- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which to add the node -
dependencies (List[
CUgraphNode]) – Dependencies of the node -
numDependencies (size_t) – Number of dependencies
-
dptr (
CUdeviceptr) – Address of memory to free
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_NOT_SUPPORTED,CUDA_ERROR_INVALID_VALUE -
phGraphNode (
CUgraphNode) – Returns newly created node
-
See also
cuGraphAddMemAllocNode,cuGraphMemFreeNodeGetParams,cuDeviceGraphMemTrim,cuDeviceGetGraphMemAttribute,cuDeviceSetGraphMemAttribute,cuMemAllocAsync,cuMemFreeAsync,cuGraphCreate,cuGraphDestroyNode,cuGraphAddChildGraphNode,cuGraphAddEmptyNode,cuGraphAddEventRecordNode,cuGraphAddEventWaitNode,cuGraphAddExternalSemaphoresSignalNode,cuGraphAddExternalSemaphoresWaitNode,cuGraphAddKernelNode,cuGraphAddMemcpyNode,cuGraphAddMemsetNode -
- cuda.cuda.cuGraphMemFreeNodeGetParams(hNode)#
-
Returns a memory free node’s parameters.
Returns the address of a memory free node hNode in dptr_out.
- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to get the parameters for - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
dptr_out (
CUdeviceptr) – Pointer to return the device address
-
- cuda.cuda.cuDeviceGraphMemTrim(device)#
-
Free unused memory that was cached on the specified device for use with graphs back to the OS.
Blocks which are not in use by a graph that is either currently
executing or scheduled to execute are freed back to the operating
system.- Parameters:
-
device (
CUdevice) – The device for which cached memory should be freed. - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_DEVICE - Return type:
-
CUresult
- cuda.cuda.cuDeviceGetGraphMemAttribute(device, attr: CUgraphMem_attribute)#
-
Query asynchronous allocation attributes related to graphs.
Valid attributes are:
-
CU_GRAPH_MEM_ATTR_USED_MEM_CURRENT: Amount of memory, in
bytes, currently associated with graphs -
CU_GRAPH_MEM_ATTR_USED_MEM_HIGH: High watermark of
memory, in bytes, associated with graphs since the last time it was
reset. High watermark can only be reset to zero. -
CU_GRAPH_MEM_ATTR_RESERVED_MEM_CURRENT: Amount of memory,
in bytes, currently allocated for use by the CUDA graphs asynchronous
allocator. -
CU_GRAPH_MEM_ATTR_RESERVED_MEM_HIGH: High watermark of
memory, in bytes, currently allocated for use by the CUDA graphs
asynchronous allocator.
- Parameters:
-
-
device (
CUdevice) – Specifies the scope of the query -
attr (
CUgraphMem_attribute) – attribute to get
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_DEVICE -
value (Any) – retrieved value
-
-
- cuda.cuda.cuDeviceSetGraphMemAttribute(device, attr: CUgraphMem_attribute, value)#
-
Set asynchronous allocation attributes related to graphs.
Valid attributes are:
-
CU_GRAPH_MEM_ATTR_USED_MEM_HIGH: High watermark of
memory, in bytes, associated with graphs since the last time it was
reset. High watermark can only be reset to zero. -
CU_GRAPH_MEM_ATTR_RESERVED_MEM_HIGH: High watermark of
memory, in bytes, currently allocated for use by the CUDA graphs
asynchronous allocator.
- Parameters:
-
-
device (
CUdevice) – Specifies the scope of the query -
attr (
CUgraphMem_attribute) – attribute to get -
value (Any) – pointer to value to set
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_DEVICE - Return type:
-
CUresult
-
- cuda.cuda.cuGraphClone(originalGraph)#
-
Clones a graph.
This function creates a copy of originalGraph and returns it in
phGraphClone. All parameters are copied into the cloned graph. The
original graph may be modified after this call without affecting the
clone.Child graph nodes in the original graph are recursively copied into the
clone.- Parameters:
-
originalGraph (
CUgraphorcudaGraph_t) – Graph to clone - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY -
phGraphClone (
CUgraph) – Returns newly created cloned graph
-
- cuda.cuda.cuGraphNodeFindInClone(hOriginalNode, hClonedGraph)#
-
Finds a cloned version of a node.
This function returns the node in hClonedGraph corresponding to
hOriginalNode in the original graph.hClonedGraph must have been cloned from hOriginalGraph via
cuGraphClone. hOriginalNode must have been in
hOriginalGraph at the time of the call tocuGraphClone,
and the corresponding cloned node in hClonedGraph must not have been
removed. The cloned node is then returned via phClonedNode.- Parameters:
-
-
hOriginalNode (
CUgraphNodeorcudaGraphNode_t) – Handle to the original node -
hClonedGraph (
CUgraphorcudaGraph_t) – Cloned graph to query
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, -
phNode (
CUgraphNode) – Returns handle to the cloned node
-
- cuda.cuda.cuGraphNodeGetType(hNode)#
-
Returns a node’s type.
Returns the node type of hNode in typename.
- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to query - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
typename (
CUgraphNodeType) – Pointer to return the node type
-
See also
cuGraphGetNodes,cuGraphGetRootNodes,cuGraphChildGraphNodeGetGraph,cuGraphKernelNodeGetParams,cuGraphKernelNodeSetParams,cuGraphHostNodeGetParams,cuGraphHostNodeSetParams,cuGraphMemcpyNodeGetParams,cuGraphMemcpyNodeSetParams,cuGraphMemsetNodeGetParams,cuGraphMemsetNodeSetParams
- cuda.cuda.cuGraphGetNodes(hGraph, size_t numNodes=0)#
-
Returns a graph’s nodes.
Returns a list of hGraph’s nodes. nodes may be NULL, in which case
this function will return the number of nodes in numNodes. Otherwise,
numNodes entries will be filled in. If numNodes is higher than the
actual number of nodes, the remaining entries in nodes will be set to
NULL, and the number of nodes actually obtained will be returned in
numNodes.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to query -
numNodes (int) – See description
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
nodes (List[
CUgraphNode]) – Pointer to return the nodes -
numNodes (int) – See description
-
- cuda.cuda.cuGraphGetRootNodes(hGraph, size_t numRootNodes=0)#
-
Returns a graph’s root nodes.
Returns a list of hGraph’s root nodes. rootNodes may be NULL, in
which case this function will return the number of root nodes in
numRootNodes. Otherwise, numRootNodes entries will be filled in. If
numRootNodes is higher than the actual number of root nodes, the
remaining entries in rootNodes will be set to NULL, and the number of
nodes actually obtained will be returned in numRootNodes.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to query -
numRootNodes (int) – See description
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
rootNodes (List[
CUgraphNode]) – Pointer to return the root nodes -
numRootNodes (int) – See description
-
- cuda.cuda.cuGraphGetEdges(hGraph, size_t numEdges=0)#
-
Returns a graph’s dependency edges.
Returns a list of hGraph’s dependency edges. Edges are returned via
corresponding indices in from and to; that is, the node in to`[i]
has a dependency on the node in `from`[i]. `from and to may both be
NULL, in which case this function only returns the number of edges in
numEdges. Otherwise, numEdges entries will be filled in. If
numEdges is higher than the actual number of edges, the remaining
entries in from and to will be set to NULL, and the number of edges
actually returned will be written to numEdges.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to get the edges from -
numEdges (int) – See description
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
from (List[
CUgraphNode]) – Location to return edge endpoints -
to (List[
CUgraphNode]) – Location to return edge endpoints -
numEdges (int) – See description
-
- cuda.cuda.cuGraphNodeGetDependencies(hNode, size_t numDependencies=0)#
-
Returns a node’s dependencies.
Returns a list of node’s dependencies. dependencies may be NULL, in
which case this function will return the number of dependencies in
numDependencies. Otherwise, numDependencies entries will be filled
in. If numDependencies is higher than the actual number of
dependencies, the remaining entries in dependencies will be set to
NULL, and the number of nodes actually obtained will be returned in
numDependencies.- Parameters:
-
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to query -
numDependencies (int) – See description
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
dependencies (List[
CUgraphNode]) – Pointer to return the dependencies -
numDependencies (int) – See description
-
- cuda.cuda.cuGraphNodeGetDependentNodes(hNode, size_t numDependentNodes=0)#
-
Returns a node’s dependent nodes.
Returns a list of node’s dependent nodes. dependentNodes may be
NULL, in which case this function will return the number of dependent
nodes in numDependentNodes. Otherwise, numDependentNodes entries
will be filled in. If numDependentNodes is higher than the actual
number of dependent nodes, the remaining entries in dependentNodes
will be set to NULL, and the number of nodes actually obtained will be
returned in numDependentNodes.- Parameters:
-
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to query -
numDependentNodes (int) – See description
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
dependentNodes (List[
CUgraphNode]) – Pointer to return the dependent nodes -
numDependentNodes (int) – See description
-
- cuda.cuda.cuGraphAddDependencies(hGraph, from_: List[CUgraphNode], to: List[CUgraphNode], size_t numDependencies)#
-
Adds dependency edges to a graph.
The number of dependencies to be added is defined by numDependencies
Elements in from and to at corresponding indices define a
dependency. Each node in from and to must belong to hGraph.If numDependencies is 0, elements in from and to will be ignored.
Specifying an existing dependency will return an error.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to which dependencies are added -
from (List[
CUgraphNode]) – Array of nodes that provide the dependencies -
to (List[
CUgraphNode]) – Array of dependent nodes -
numDependencies (size_t) – Number of dependencies to be added
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuGraphRemoveDependencies(hGraph, from_: List[CUgraphNode], to: List[CUgraphNode], size_t numDependencies)#
-
Removes dependency edges from a graph.
The number of dependencies to be removed is defined by
numDependencies. Elements in from and to at corresponding indices
define a dependency. Each node in from and to must belong to
hGraph.If numDependencies is 0, elements in from and to will be ignored.
Specifying a non-existing dependency will return an error.Dependencies cannot be removed from graphs which contain allocation or
free nodes. Any attempt to do so will return an error.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph from which to remove dependencies -
from (List[
CUgraphNode]) – Array of nodes that provide the dependencies -
to (List[
CUgraphNode]) – Array of dependent nodes -
numDependencies (size_t) – Number of dependencies to be removed
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuGraphDestroyNode(hNode)#
-
Remove a node from the graph.
Removes hNode from its graph. This operation also severs any
dependencies of other nodes on hNode and vice versa.Nodes which belong to a graph which contains allocation or free nodes
cannot be destroyed. Any attempt to do so will return an error.- Parameters:
-
hNode (
CUgraphNodeorcudaGraphNode_t) – Node to remove - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuGraphInstantiate(hGraph, unsigned long long flags)#
-
Creates an executable graph from a graph.
Instantiates hGraph as an executable graph. The graph is validated
for any structural constraints or intra-node constraints which were not
previously validated. If instantiation is successful, a handle to the
instantiated graph is returned in phGraphExec.The flags parameter controls the behavior of instantiation and
subsequent graph launches. Valid flags are:-
CUDA_GRAPH_INSTANTIATE_FLAG_AUTO_FREE_ON_LAUNCH, which
configures a graph containing memory allocation nodes to
automatically free any unfreed memory allocations before the graph is
relaunched. -
CUDA_GRAPH_INSTANTIATE_FLAG_DEVICE_LAUNCH, which
configures the graph for launch from the device. If this flag is
passed, the executable graph handle returned can be used to launch
the graph from both the host and device. This flag can only be used
on platforms which support unified addressing. This flag cannot be
used in conjunction with
CUDA_GRAPH_INSTANTIATE_FLAG_AUTO_FREE_ON_LAUNCH. -
CUDA_GRAPH_INSTANTIATE_FLAG_USE_NODE_PRIORITY, which
causes the graph to use the priorities from the per-node attributes
rather than the priority of the launch stream during execution. Note
that priorities are only available on kernel nodes, and are copied
from stream priority during stream capture.
If hGraph contains any allocation or free nodes, there can be at most
one executable graph in existence for that graph at a time. An attempt
to instantiate a second executable graph before destroying the first
withcuGraphExecDestroywill result in an error.If hGraph contains kernels which call device-side cudaGraphLaunch()
from multiple contexts, this will result in an error.Graphs instantiated for launch on the device have additional
restrictions which do not apply to host graphs:-
The graph’s nodes must reside on a single context.
-
The graph can only contain kernel nodes, memcpy nodes, memset nodes,
and child graph nodes. Operation-specific restrictions are outlined
below. -
Kernel nodes:
-
Use of CUDA Dynamic Parallelism is not permitted.
-
Cooperative launches are permitted as long as MPS is not in use.
-
-
Memcpy nodes:
-
Only copies involving device memory and/or pinned device-mapped
host memory are permitted. -
Copies involving CUDA arrays are not permitted.
-
Both operands must be accessible from the current context, and the
current context must match the context of other nodes in the graph.
-
- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to instantiate -
flags (unsigned long long) – Flags to control instantiation. See
CUgraphInstantiate_flags.
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE -
phGraphExec (
CUgraphExec) – Returns instantiated graph
-
-
- cuda.cuda.cuGraphInstantiateWithParams(hGraph, CUDA_GRAPH_INSTANTIATE_PARAMS instantiateParams: CUDA_GRAPH_INSTANTIATE_PARAMS)#
-
Creates an executable graph from a graph.
Instantiates hGraph as an executable graph according to the
instantiateParams structure. The graph is validated for any
structural constraints or intra-node constraints which were not
previously validated. If instantiation is successful, a handle to the
instantiated graph is returned in phGraphExec.instantiateParams controls the behavior of instantiation and
subsequent graph launches, as well as returning more detailed
information in the event of an error.
CUDA_GRAPH_INSTANTIATE_PARAMSis defined as:View CUDA Toolkit Documentation for a C++ code example
The flags field controls the behavior of instantiation and subsequent
graph launches. Valid flags are:-
CUDA_GRAPH_INSTANTIATE_FLAG_AUTO_FREE_ON_LAUNCH, which
configures a graph containing memory allocation nodes to
automatically free any unfreed memory allocations before the graph is
relaunched. -
CUDA_GRAPH_INSTANTIATE_FLAG_UPLOAD, which will perform an
upload of the graph into hUploadStream once the graph has been
instantiated. -
CUDA_GRAPH_INSTANTIATE_FLAG_DEVICE_LAUNCH, which
configures the graph for launch from the device. If this flag is
passed, the executable graph handle returned can be used to launch
the graph from both the host and device. This flag can only be used
on platforms which support unified addressing. This flag cannot be
used in conjunction with
CUDA_GRAPH_INSTANTIATE_FLAG_AUTO_FREE_ON_LAUNCH. -
CUDA_GRAPH_INSTANTIATE_FLAG_USE_NODE_PRIORITY, which
causes the graph to use the priorities from the per-node attributes
rather than the priority of the launch stream during execution. Note
that priorities are only available on kernel nodes, and are copied
from stream priority during stream capture.
If hGraph contains any allocation or free nodes, there can be at most
one executable graph in existence for that graph at a time. An attempt
to instantiate a second executable graph before destroying the first
withcuGraphExecDestroywill result in an error.If hGraph contains kernels which call device-side cudaGraphLaunch()
from multiple contexts, this will result in an error.Graphs instantiated for launch on the device have additional
restrictions which do not apply to host graphs:-
The graph’s nodes must reside on a single context.
-
The graph can only contain kernel nodes, memcpy nodes, memset nodes,
and child graph nodes. Operation-specific restrictions are outlined
below. -
Kernel nodes:
-
Use of CUDA Dynamic Parallelism is not permitted.
-
Cooperative launches are permitted as long as MPS is not in use.
-
-
Memcpy nodes:
-
Only copies involving device memory and/or pinned device-mapped
host memory are permitted. -
Copies involving CUDA arrays are not permitted.
-
Both operands must be accessible from the current context, and the
current context must match the context of other nodes in the graph.
-
In the event of an error, the result_out and hErrNode_out fields
will contain more information about the nature of the error. Possible
error reporting includes:-
CUDA_GRAPH_INSTANTIATE_ERROR, if passed an invalid value
or if an unexpected error occurred which is described by the return
value of the function. hErrNode_out will be set to NULL. -
CUDA_GRAPH_INSTANTIATE_INVALID_STRUCTURE, if the graph
structure is invalid. hErrNode_out will be set to one of the
offending nodes. -
CUDA_GRAPH_INSTANTIATE_NODE_OPERATION_NOT_SUPPORTED, if
the graph is instantiated for device launch but contains a node of an
unsupported node type, or a node which performs unsupported
operations, such as use of CUDA dynamic parallelism within a kernel
node. hErrNode_out will be set to this node. -
CUDA_GRAPH_INSTANTIATE_MULTIPLE_CTXS_NOT_SUPPORTED, if
the graph is instantiated for device launch but a node’s context
differs from that of another node. This error can also be returned if
a graph is not instantiated for device launch and it contains kernels
which call device-side cudaGraphLaunch() from multiple contexts.
hErrNode_out will be set to this node.
If instantiation is successful, result_out will be set to
CUDA_GRAPH_INSTANTIATE_SUCCESS, and hErrNode_out will be
set to NULL.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – Graph to instantiate -
instantiateParams (
CUDA_GRAPH_INSTANTIATE_PARAMS) – Instantiation parameters
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, -
phGraphExec (
CUgraphExec) – Returns instantiated graph
-
-
- cuda.cuda.cuGraphExecGetFlags(hGraphExec)#
-
Query the instantiation flags of an executable graph.
Returns the flags that were passed to instantiation for the given
executable graph.CUDA_GRAPH_INSTANTIATE_FLAG_UPLOADwill
not be returned by this API as it does not affect the resulting
executable graph.- Parameters:
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The executable graph to query - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, -
flags (
cuuint64_t) – Returns the instantiation flags
-
- cuda.cuda.cuGraphExecKernelNodeSetParams(hGraphExec, hNode, CUDA_KERNEL_NODE_PARAMS nodeParams: CUDA_KERNEL_NODE_PARAMS)#
-
Sets the parameters for a kernel node in the given graphExec.
Sets the parameters of a kernel node in an executable graph
hGraphExec. The node is identified by the corresponding node hNode
in the non-executable graph, from which the executable graph was
instantiated.hNode must not have been removed from the original graph. All
nodeParams fields may change, but the following restrictions apply to
func updates:-
The owning context of the function cannot change.
-
A node whose function originally did not use CUDA dynamic parallelism
cannot be updated to a function which uses CDP -
If hGraphExec was not instantiated for device launch, a node whose
function originally did not use device-side cudaGraphLaunch() cannot
be updated to a function which uses device-side cudaGraphLaunch()
unless the node resides on the same context as nodes which contained
such calls at instantiate-time. If no such calls were present at
instantiation, these updates cannot be performed at all.
The modifications only affect future launches of hGraphExec. Already
enqueued or running launches of hGraphExec are not affected by this
call. hNode is also not modified by this call.- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The executable graph in which to set the specified node -
hNode (
CUgraphNodeorcudaGraphNode_t) – kernel node from the graph from which graphExec was instantiated -
nodeParams (
CUDA_KERNEL_NODE_PARAMS) – Updated Parameters to set
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
See also
cuGraphAddKernelNode,cuGraphKernelNodeSetParams,cuGraphExecMemcpyNodeSetParams,cuGraphExecMemsetNodeSetParams,cuGraphExecHostNodeSetParams,cuGraphExecChildGraphNodeSetParams,cuGraphExecEventRecordNodeSetEvent,cuGraphExecEventWaitNodeSetEvent,cuGraphExecExternalSemaphoresSignalNodeSetParams,cuGraphExecExternalSemaphoresWaitNodeSetParams,cuGraphExecUpdate,cuGraphInstantiate -
- cuda.cuda.cuGraphExecMemcpyNodeSetParams(hGraphExec, hNode, CUDA_MEMCPY3D copyParams: CUDA_MEMCPY3D, ctx)#
-
Sets the parameters for a memcpy node in the given graphExec.
Updates the work represented by hNode in hGraphExec as though
hNode had contained copyParams at instantiation. hNode must remain
in the graph which was used to instantiate hGraphExec. Changed edges
to and from hNode are ignored.The source and destination memory in copyParams must be allocated
from the same contexts as the original source and destination memory.
Both the instantiation-time memory operands and the memory operands in
copyParams must be 1-dimensional. Zero-length operations are not
supported.The modifications only affect future launches of hGraphExec. Already
enqueued or running launches of hGraphExec are not affected by this
call. hNode is also not modified by this call.Returns CUDA_ERROR_INVALID_VALUE if the memory operands’ mappings
changed or either the original or new memory operands are
multidimensional.- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The executable graph in which to set the specified node -
hNode (
CUgraphNodeorcudaGraphNode_t) – Memcpy node from the graph which was used to instantiate graphExec -
copyParams (
CUDA_MEMCPY3D) – The updated parameters to set -
ctx (
CUcontext) – Context on which to run the node
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
See also
cuGraphAddMemcpyNode,cuGraphMemcpyNodeSetParams,cuGraphExecKernelNodeSetParams,cuGraphExecMemsetNodeSetParams,cuGraphExecHostNodeSetParams,cuGraphExecChildGraphNodeSetParams,cuGraphExecEventRecordNodeSetEvent,cuGraphExecEventWaitNodeSetEvent,cuGraphExecExternalSemaphoresSignalNodeSetParams,cuGraphExecExternalSemaphoresWaitNodeSetParams,cuGraphExecUpdate,cuGraphInstantiate
- cuda.cuda.cuGraphExecMemsetNodeSetParams(hGraphExec, hNode, CUDA_MEMSET_NODE_PARAMS memsetParams: CUDA_MEMSET_NODE_PARAMS, ctx)#
-
Sets the parameters for a memset node in the given graphExec.
Updates the work represented by hNode in hGraphExec as though
hNode had contained memsetParams at instantiation. hNode must
remain in the graph which was used to instantiate hGraphExec. Changed
edges to and from hNode are ignored.The destination memory in memsetParams must be allocated from the
same contexts as the original destination memory. Both the
instantiation-time memory operand and the memory operand in
memsetParams must be 1-dimensional. Zero-length operations are not
supported.The modifications only affect future launches of hGraphExec. Already
enqueued or running launches of hGraphExec are not affected by this
call. hNode is also not modified by this call.Returns CUDA_ERROR_INVALID_VALUE if the memory operand’s mappings
changed or either the original or new memory operand are
multidimensional.- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The executable graph in which to set the specified node -
hNode (
CUgraphNodeorcudaGraphNode_t) – Memset node from the graph which was used to instantiate graphExec -
memsetParams (
CUDA_MEMSET_NODE_PARAMS) – The updated parameters to set -
ctx (
CUcontext) – Context on which to run the node
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
See also
cuGraphAddMemsetNode,cuGraphMemsetNodeSetParams,cuGraphExecKernelNodeSetParams,cuGraphExecMemcpyNodeSetParams,cuGraphExecHostNodeSetParams,cuGraphExecChildGraphNodeSetParams,cuGraphExecEventRecordNodeSetEvent,cuGraphExecEventWaitNodeSetEvent,cuGraphExecExternalSemaphoresSignalNodeSetParams,cuGraphExecExternalSemaphoresWaitNodeSetParams,cuGraphExecUpdate,cuGraphInstantiate
- cuda.cuda.cuGraphExecHostNodeSetParams(hGraphExec, hNode, CUDA_HOST_NODE_PARAMS nodeParams: CUDA_HOST_NODE_PARAMS)#
-
Sets the parameters for a host node in the given graphExec.
Updates the work represented by hNode in hGraphExec as though
hNode had contained nodeParams at instantiation. hNode must remain
in the graph which was used to instantiate hGraphExec. Changed edges
to and from hNode are ignored.The modifications only affect future launches of hGraphExec. Already
enqueued or running launches of hGraphExec are not affected by this
call. hNode is also not modified by this call.- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The executable graph in which to set the specified node -
hNode (
CUgraphNodeorcudaGraphNode_t) – Host node from the graph which was used to instantiate graphExec -
nodeParams (
CUDA_HOST_NODE_PARAMS) – The updated parameters to set
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
See also
cuGraphAddHostNode,cuGraphHostNodeSetParams,cuGraphExecKernelNodeSetParams,cuGraphExecMemcpyNodeSetParams,cuGraphExecMemsetNodeSetParams,cuGraphExecChildGraphNodeSetParams,cuGraphExecEventRecordNodeSetEvent,cuGraphExecEventWaitNodeSetEvent,cuGraphExecExternalSemaphoresSignalNodeSetParams,cuGraphExecExternalSemaphoresWaitNodeSetParams,cuGraphExecUpdate,cuGraphInstantiate
- cuda.cuda.cuGraphExecChildGraphNodeSetParams(hGraphExec, hNode, childGraph)#
-
Updates node parameters in the child graph node in the given graphExec.
Updates the work represented by hNode in hGraphExec as though the
nodes contained in hNode’s graph had the parameters contained in
childGraph’s nodes at instantiation. hNode must remain in the graph
which was used to instantiate hGraphExec. Changed edges to and from
hNode are ignored.The modifications only affect future launches of hGraphExec. Already
enqueued or running launches of hGraphExec are not affected by this
call. hNode is also not modified by this call.The topology of childGraph, as well as the node insertion order, must
match that of the graph contained in hNode. See
cuGraphExecUpdate()for a list of restrictions on what can
be updated in an instantiated graph. The update is recursive, so child
graph nodes contained within the top level child graph will also be
updated.- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The executable graph in which to set the specified node -
hNode (
CUgraphNodeorcudaGraphNode_t) – Host node from the graph which was used to instantiate graphExec -
childGraph (
CUgraphorcudaGraph_t) – The graph supplying the updated parameters
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
See also
cuGraphAddChildGraphNode,cuGraphChildGraphNodeGetGraph,cuGraphExecKernelNodeSetParams,cuGraphExecMemcpyNodeSetParams,cuGraphExecMemsetNodeSetParams,cuGraphExecHostNodeSetParams,cuGraphExecEventRecordNodeSetEvent,cuGraphExecEventWaitNodeSetEvent,cuGraphExecExternalSemaphoresSignalNodeSetParams,cuGraphExecExternalSemaphoresWaitNodeSetParams,cuGraphExecUpdate,cuGraphInstantiate
- cuda.cuda.cuGraphExecEventRecordNodeSetEvent(hGraphExec, hNode, event)#
-
Sets the event for an event record node in the given graphExec.
Sets the event of an event record node in an executable graph
hGraphExec. The node is identified by the corresponding node hNode
in the non-executable graph, from which the executable graph was
instantiated.The modifications only affect future launches of hGraphExec. Already
enqueued or running launches of hGraphExec are not affected by this
call. hNode is also not modified by this call.- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The executable graph in which to set the specified node -
hNode (
CUgraphNodeorcudaGraphNode_t) – event record node from the graph from which graphExec was
instantiated -
event (
CUeventorcudaEvent_t) – Updated event to use
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
See also
cuGraphAddEventRecordNode,cuGraphEventRecordNodeGetEvent,cuGraphEventWaitNodeSetEvent,cuEventRecordWithFlags,cuStreamWaitEvent,cuGraphExecKernelNodeSetParams,cuGraphExecMemcpyNodeSetParams,cuGraphExecMemsetNodeSetParams,cuGraphExecHostNodeSetParams,cuGraphExecChildGraphNodeSetParams,cuGraphExecEventWaitNodeSetEvent,cuGraphExecExternalSemaphoresSignalNodeSetParams,cuGraphExecExternalSemaphoresWaitNodeSetParams,cuGraphExecUpdate,cuGraphInstantiate
- cuda.cuda.cuGraphExecEventWaitNodeSetEvent(hGraphExec, hNode, event)#
-
Sets the event for an event wait node in the given graphExec.
Sets the event of an event wait node in an executable graph
hGraphExec. The node is identified by the corresponding node hNode
in the non-executable graph, from which the executable graph was
instantiated.The modifications only affect future launches of hGraphExec. Already
enqueued or running launches of hGraphExec are not affected by this
call. hNode is also not modified by this call.- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The executable graph in which to set the specified node -
hNode (
CUgraphNodeorcudaGraphNode_t) – event wait node from the graph from which graphExec was
instantiated -
event (
CUeventorcudaEvent_t) – Updated event to use
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
See also
cuGraphAddEventWaitNode,cuGraphEventWaitNodeGetEvent,cuGraphEventRecordNodeSetEvent,cuEventRecordWithFlags,cuStreamWaitEvent,cuGraphExecKernelNodeSetParams,cuGraphExecMemcpyNodeSetParams,cuGraphExecMemsetNodeSetParams,cuGraphExecHostNodeSetParams,cuGraphExecChildGraphNodeSetParams,cuGraphExecEventRecordNodeSetEvent,cuGraphExecExternalSemaphoresSignalNodeSetParams,cuGraphExecExternalSemaphoresWaitNodeSetParams,cuGraphExecUpdate,cuGraphInstantiate
- cuda.cuda.cuGraphExecExternalSemaphoresSignalNodeSetParams(hGraphExec, hNode, CUDA_EXT_SEM_SIGNAL_NODE_PARAMS nodeParams: CUDA_EXT_SEM_SIGNAL_NODE_PARAMS)#
-
Sets the parameters for an external semaphore signal node in the given graphExec.
Sets the parameters of an external semaphore signal node in an
executable graph hGraphExec. The node is identified by the
corresponding node hNode in the non-executable graph, from which the
executable graph was instantiated.hNode must not have been removed from the original graph.
The modifications only affect future launches of hGraphExec. Already
enqueued or running launches of hGraphExec are not affected by this
call. hNode is also not modified by this call.Changing nodeParams->numExtSems is not supported.
- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The executable graph in which to set the specified node -
hNode (
CUgraphNodeorcudaGraphNode_t) – semaphore signal node from the graph from which graphExec was
instantiated -
nodeParams (
CUDA_EXT_SEM_SIGNAL_NODE_PARAMS) – Updated Parameters to set
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
See also
cuGraphAddExternalSemaphoresSignalNode,cuImportExternalSemaphore,cuSignalExternalSemaphoresAsync,cuWaitExternalSemaphoresAsync,cuGraphExecKernelNodeSetParams,cuGraphExecMemcpyNodeSetParams,cuGraphExecMemsetNodeSetParams,cuGraphExecHostNodeSetParams,cuGraphExecChildGraphNodeSetParams,cuGraphExecEventRecordNodeSetEvent,cuGraphExecEventWaitNodeSetEvent,cuGraphExecExternalSemaphoresWaitNodeSetParams,cuGraphExecUpdate,cuGraphInstantiate
- cuda.cuda.cuGraphExecExternalSemaphoresWaitNodeSetParams(hGraphExec, hNode, CUDA_EXT_SEM_WAIT_NODE_PARAMS nodeParams: CUDA_EXT_SEM_WAIT_NODE_PARAMS)#
-
Sets the parameters for an external semaphore wait node in the given graphExec.
Sets the parameters of an external semaphore wait node in an executable
graph hGraphExec. The node is identified by the corresponding node
hNode in the non-executable graph, from which the executable graph
was instantiated.hNode must not have been removed from the original graph.
The modifications only affect future launches of hGraphExec. Already
enqueued or running launches of hGraphExec are not affected by this
call. hNode is also not modified by this call.Changing nodeParams->numExtSems is not supported.
- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The executable graph in which to set the specified node -
hNode (
CUgraphNodeorcudaGraphNode_t) – semaphore wait node from the graph from which graphExec was
instantiated -
nodeParams (
CUDA_EXT_SEM_WAIT_NODE_PARAMS) – Updated Parameters to set
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
See also
cuGraphAddExternalSemaphoresWaitNode,cuImportExternalSemaphore,cuSignalExternalSemaphoresAsync,cuWaitExternalSemaphoresAsync,cuGraphExecKernelNodeSetParams,cuGraphExecMemcpyNodeSetParams,cuGraphExecMemsetNodeSetParams,cuGraphExecHostNodeSetParams,cuGraphExecChildGraphNodeSetParams,cuGraphExecEventRecordNodeSetEvent,cuGraphExecEventWaitNodeSetEvent,cuGraphExecExternalSemaphoresSignalNodeSetParams,cuGraphExecUpdate,cuGraphInstantiate
- cuda.cuda.cuGraphNodeSetEnabled(hGraphExec, hNode, unsigned int isEnabled)#
-
Enables or disables the specified node in the given graphExec.
Sets hNode to be either enabled or disabled. Disabled nodes are
functionally equivalent to empty nodes until they are reenabled.
Existing node parameters are not affected by disabling/enabling the
node.The node is identified by the corresponding node hNode in the non-
executable graph, from which the executable graph was instantiated.hNode must not have been removed from the original graph.
The modifications only affect future launches of hGraphExec. Already
enqueued or running launches of hGraphExec are not affected by this
call. hNode is also not modified by this call.- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The executable graph in which to set the specified node -
hNode (
CUgraphNodeorcudaGraphNode_t) – Node from the graph from which graphExec was instantiated -
isEnabled (unsigned int) – Node is enabled if != 0, otherwise the node is disabled
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, - Return type:
-
CUresult
Notes
Currently only kernel, memset and memcpy nodes are supported.
- cuda.cuda.cuGraphNodeGetEnabled(hGraphExec, hNode)#
-
Query whether a node in the given graphExec is enabled.
Sets isEnabled to 1 if hNode is enabled, or 0 if hNode is disabled.
The node is identified by the corresponding node hNode in the non-
executable graph, from which the executable graph was instantiated.hNode must not have been removed from the original graph.
- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The executable graph in which to set the specified node -
hNode (
CUgraphNodeorcudaGraphNode_t) – Node from the graph from which graphExec was instantiated
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE, -
isEnabled (unsigned int) – Location to return the enabled status of the node
-
Notes
Currently only kernel, memset and memcpy nodes are supported.
- cuda.cuda.cuGraphUpload(hGraphExec, hStream)#
-
Uploads an executable graph in a stream.
Uploads hGraphExec to the device in hStream without executing it.
Uploads of the same hGraphExec will be serialized. Each upload is
ordered behind both any previous work in hStream and any previous
launches of hGraphExec. Uses memory cached by stream to back the
allocations owned by hGraphExec.- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – Executable graph to upload -
hStream (
CUstreamorcudaStream_t) – Stream in which to upload the graph
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuGraphLaunch(hGraphExec, hStream)#
-
Launches an executable graph in a stream.
Executes hGraphExec in hStream. Only one instance of hGraphExec
may be executing at a time. Each launch is ordered behind both any
previous work in hStream and any previous launches of hGraphExec.
To execute a graph concurrently, it must be instantiated multiple times
into multiple executable graphs.If any allocations created by hGraphExec remain unfreed (from a
previous launch) and hGraphExec was not instantiated with
CUDA_GRAPH_INSTANTIATE_FLAG_AUTO_FREE_ON_LAUNCH, the launch
will fail withCUDA_ERROR_INVALID_VALUE.- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – Executable graph to launch -
hStream (
CUstreamorcudaStream_t) – Stream in which to launch the graph
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuGraphExecDestroy(hGraphExec)#
-
Destroys an executable graph.
Destroys the executable graph specified by hGraphExec, as well as all
of its executable nodes. If the executable graph is in-flight, it will
not be terminated, but rather freed asynchronously on completion.- Parameters:
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – Executable graph to destroy - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuGraphDestroy(hGraph)#
-
Destroys a graph.
Destroys the graph specified by hGraph, as well as all of its nodes.
- Parameters:
-
hGraph (
CUgraphorcudaGraph_t) – Graph to destroy - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuGraphExecUpdate(hGraphExec, hGraph)#
-
Check whether an executable graph can be updated with a graph and perform the update if possible.
Updates the node parameters in the instantiated graph specified by
hGraphExec with the node parameters in a topologically identical
graph specified by hGraph.Limitations:
-
Kernel nodes:
-
The owning context of the function cannot change.
-
A node whose function originally did not use CUDA dynamic
parallelism cannot be updated to a function which uses CDP. -
A cooperative node cannot be updated to a non-cooperative node, and
vice-versa. -
If the graph was instantiated with
CUDA_GRAPH_INSTANTIATE_FLAG_USE_NODE_PRIORITY, the priority
attribute cannot change. Equality is checked on the originally
requested priority values, before they are clamped to the device’s
supported range. -
If hGraphExec was not instantiated for device launch, a node
whose function originally did not use device-side cudaGraphLaunch()
cannot be updated to a function which uses device-side
cudaGraphLaunch() unless the node resides on the same context as
nodes which contained such calls at instantiate-time. If no such
calls were present at instantiation, these updates cannot be
performed at all.
-
-
Memset and memcpy nodes:
-
The CUDA device(s) to which the operand(s) was allocated/mapped
cannot change. -
The source/destination memory must be allocated from the same
contexts as the original source/destination memory. -
Only 1D memsets can be changed.
-
-
Additional memcpy node restrictions:
-
Changing either the source or destination memory type(i.e.
CU_MEMORYTYPE_DEVICE, CU_MEMORYTYPE_ARRAY, etc.) is not supported.
-
-
External semaphore wait nodes and record nodes:
-
Changing the number of semaphores is not supported.
-
Note: The API may add further restrictions in future releases. The
return code should always be checked.cuGraphExecUpdate sets the result member of resultInfo to
CU_GRAPH_EXEC_UPDATE_ERROR_TOPOLOGY_CHANGED under the following
conditions:-
The count of nodes directly in hGraphExec and hGraph differ, in
which case resultInfo->errorNode is set to NULL. -
hGraph has more exit nodes than hGraph, in which case
resultInfo->errorNode is set to one of the exit nodes in hGraph. -
A node in hGraph has a different number of dependencies than the
node from hGraphExec it is paired with, in which case
resultInfo->errorNode is set to the node from hGraph. -
A node in hGraph has a dependency that does not match with the
corresponding dependency of the paired node from hGraphExec.
resultInfo->errorNode will be set to the node from hGraph.
resultInfo->errorFromNode will be set to the mismatched dependency.
The dependencies are paired based on edge order and a dependency does
not match when the nodes are already paired based on other edges
examined in the graph.
cuGraphExecUpdate sets the result member of resultInfo to:
-
CU_GRAPH_EXEC_UPDATE_ERROR if passed an invalid value.
-
CU_GRAPH_EXEC_UPDATE_ERROR_TOPOLOGY_CHANGED if the graph topology
changed -
CU_GRAPH_EXEC_UPDATE_ERROR_NODE_TYPE_CHANGED if the type of a node
changed, in which case hErrorNode_out is set to the node from
hGraph. -
CU_GRAPH_EXEC_UPDATE_ERROR_UNSUPPORTED_FUNCTION_CHANGE if the
function changed in an unsupported way(see note above), in which case
hErrorNode_out is set to the node from hGraph -
CU_GRAPH_EXEC_UPDATE_ERROR_PARAMETERS_CHANGED if any parameters to a
node changed in a way that is not supported, in which case
hErrorNode_out is set to the node from hGraph. -
CU_GRAPH_EXEC_UPDATE_ERROR_ATTRIBUTES_CHANGED if any attributes of a
node changed in a way that is not supported, in which case
hErrorNode_out is set to the node from hGraph. -
CU_GRAPH_EXEC_UPDATE_ERROR_NOT_SUPPORTED if something about a node is
unsupported, like the node’s type or configuration, in which case
hErrorNode_out is set to the node from hGraph
If the update fails for a reason not listed above, the result member of
resultInfo will be set to CU_GRAPH_EXEC_UPDATE_ERROR. If the update
succeeds, the result member will be set to
CU_GRAPH_EXEC_UPDATE_SUCCESS.cuGraphExecUpdate returns CUDA_SUCCESS when the updated was performed
successfully. It returns CUDA_ERROR_GRAPH_EXEC_UPDATE_FAILURE if the
graph update was not performed because it included changes which
violated constraints specific to instantiated graph update.- Parameters:
-
-
hGraphExec (
CUgraphExecorcudaGraphExec_t) – The instantiated graph to be updated -
hGraph (
CUgraphorcudaGraph_t) – The graph containing the updated parameters
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_GRAPH_EXEC_UPDATE_FAILURE, -
resultInfo (
CUgraphExecUpdateResultInfo) – the error info structure
-
See also
cuGraphInstantiate -
- cuda.cuda.cuGraphKernelNodeCopyAttributes(dst, src)#
-
Copies attributes from source node to destination node.
Copies attributes from source node src to destination node dst.
Both node must have the same context.- Parameters:
-
-
dst (
CUgraphNodeorcudaGraphNode_t) – Destination node -
src (
CUgraphNodeorcudaGraphNode_t) – Source node For list of attributes see
CUkernelNodeAttrID
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuGraphKernelNodeGetAttribute(hNode, attr: CUkernelNodeAttrID)#
-
Queries node attribute.
Queries attribute attr from node hNode and stores it in
corresponding member of value_out.- Parameters:
-
-
hNode (
CUgraphNodeorcudaGraphNode_t) – -
attr (
CUkernelNodeAttrID) –
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE -
value_out (
CUkernelNodeAttrValue)
-
- cuda.cuda.cuGraphKernelNodeSetAttribute(hNode, attr: CUkernelNodeAttrID, CUkernelNodeAttrValue value: CUkernelNodeAttrValue)#
-
Sets node attribute.
Sets attribute attr on node hNode from corresponding attribute of
value.- Parameters:
-
-
hNode (
CUgraphNodeorcudaGraphNode_t) – -
attr (
CUkernelNodeAttrID) – -
value (
CUkernelNodeAttrValue) –
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE - Return type:
-
CUresult
- cuda.cuda.cuGraphDebugDotPrint(hGraph, char *path, unsigned int flags)#
-
Write a DOT file describing graph structure.
Using the provided hGraph, write to path a DOT formatted
description of the graph. By default this includes the graph topology,
node types, node id, kernel names and memcpy direction. flags can be
specified to write more detailed information about each node type such
as parameter values, kernel attributes, node and function handles.- Parameters:
-
-
hGraph (
CUgraphorcudaGraph_t) – The graph to create a DOT file from -
path (bytes) – The path to write the DOT file to
-
flags (unsigned int) – Flags from CUgraphDebugDot_flags for specifying which additional
node information to write
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OPERATING_SYSTEM - Return type:
-
CUresult
- cuda.cuda.cuUserObjectCreate(ptr, destroy, unsigned int initialRefcount, unsigned int flags)#
-
Create a user object.
Create a user object with the specified destructor callback and initial
reference count. The initial references are owned by the caller.Destructor callbacks cannot make CUDA API calls and should avoid
blocking behavior, as they are executed by a shared internal thread.
Another thread may be signaled to perform such actions, if it does not
block forward progress of tasks scheduled through CUDA.See CUDA User Objects in the CUDA C++ Programming Guide for more
information on user objects.- Parameters:
-
-
ptr (Any) – The pointer to pass to the destroy function
-
destroy (
CUhostFn) – Callback to free the user object when it is no longer in use -
initialRefcount (unsigned int) – The initial refcount to create the object with, typically 1. The
initial references are owned by the calling thread. -
flags (unsigned int) – Currently it is required to pass
CU_USER_OBJECT_NO_DESTRUCTOR_SYNC, which is the only
defined flag. This indicates that the destroy callback cannot be
waited on by any CUDA API. Users requiring synchronization of the
callback should signal its completion manually.
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE -
object_out (
CUuserObject) – Location to return the user object handle
-
- cuda.cuda.cuUserObjectRetain(object, unsigned int count)#
-
Retain a reference to a user object.
Retains new references to a user object. The new references are owned
by the caller.See CUDA User Objects in the CUDA C++ Programming Guide for more
information on user objects.- Parameters:
-
-
object (
CUuserObject) – The object to retain -
count (unsigned int) – The number of references to retain, typically 1. Must be nonzero
and not larger than INT_MAX.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuUserObjectRelease(object, unsigned int count)#
-
Release a reference to a user object.
Releases user object references owned by the caller. The object’s
destructor is invoked if the reference count reaches zero.It is undefined behavior to release references not owned by the caller,
or to use a user object handle after all references are released.See CUDA User Objects in the CUDA C++ Programming Guide for more
information on user objects.- Parameters:
-
-
object (
CUuserObject) – The object to release -
count (unsigned int) – The number of references to release, typically 1. Must be nonzero
and not larger than INT_MAX.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuGraphRetainUserObject(graph, object, unsigned int count, unsigned int flags)#
-
Retain a reference to a user object from a graph.
Creates or moves user object references that will be owned by a CUDA
graph.See CUDA User Objects in the CUDA C++ Programming Guide for more
information on user objects.- Parameters:
-
-
graph (
CUgraphorcudaGraph_t) – The graph to associate the reference with -
object (
CUuserObject) – The user object to retain a reference for -
count (unsigned int) – The number of references to add to the graph, typically 1. Must be
nonzero and not larger than INT_MAX. -
flags (unsigned int) – The optional flag
CU_GRAPH_USER_OBJECT_MOVEtransfers
references from the calling thread, rather than create new
references. Pass 0 to create new references.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuGraphReleaseUserObject(graph, object, unsigned int count)#
-
Release a user object reference from a graph.
Releases user object references owned by a graph.
See CUDA User Objects in the CUDA C++ Programming Guide for more
information on user objects.- Parameters:
-
-
graph (
CUgraphorcudaGraph_t) – The graph that will release the reference -
object (
CUuserObject) – The user object to release a reference for -
count (unsigned int) – The number of references to release, typically 1. Must be nonzero
and not larger than INT_MAX.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
Occupancy#
This section describes the occupancy calculation functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuOccupancyMaxActiveBlocksPerMultiprocessor(func, int blockSize, size_t dynamicSMemSize)#
-
Returns occupancy of a function.
Returns in *numBlocks the number of the maximum active blocks per
streaming multiprocessor.- Parameters:
-
-
func (
CUfunction) – Kernel for which occupancy is calculated -
blockSize (int) – Block size the kernel is intended to be launched with
-
dynamicSMemSize (size_t) – Per-block dynamic shared memory usage intended, in bytes
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_UNKNOWN -
numBlocks (int) – Returned occupancy
-
- cuda.cuda.cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags(func, int blockSize, size_t dynamicSMemSize, unsigned int flags)#
-
Returns occupancy of a function.
Returns in *numBlocks the number of the maximum active blocks per
streaming multiprocessor.The Flags parameter controls how special cases are handled. The valid
flags are:-
CU_OCCUPANCY_DEFAULT, which maintains the default
behavior ascuOccupancyMaxActiveBlocksPerMultiprocessor; -
CU_OCCUPANCY_DISABLE_CACHING_OVERRIDE, which suppresses
the default behavior on platform where global caching affects
occupancy. On such platforms, if caching is enabled, but per-block SM
resource usage would result in zero occupancy, the occupancy
calculator will calculate the occupancy as if caching is disabled.
SettingCU_OCCUPANCY_DISABLE_CACHING_OVERRIDEmakes the
occupancy calculator to return 0 in such cases. More information can
be found about this feature in the “Unified L1/Texture Cache” section
of the Maxwell tuning guide.
- Parameters:
-
-
func (
CUfunction) – Kernel for which occupancy is calculated -
blockSize (int) – Block size the kernel is intended to be launched with
-
dynamicSMemSize (size_t) – Per-block dynamic shared memory usage intended, in bytes
-
flags (unsigned int) – Requested behavior for the occupancy calculator
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_UNKNOWN -
numBlocks (int) – Returned occupancy
-
-
- cuda.cuda.cuOccupancyMaxPotentialBlockSize(func, blockSizeToDynamicSMemSize, size_t dynamicSMemSize, int blockSizeLimit)#
-
Suggest a launch configuration with reasonable occupancy.
Returns in *blockSize a reasonable block size that can achieve the
maximum occupancy (or, the maximum number of active warps with the
fewest blocks per multiprocessor), and in *minGridSize the minimum
grid size to achieve the maximum occupancy.If blockSizeLimit is 0, the configurator will use the maximum block
size permitted by the device / function instead.If per-block dynamic shared memory allocation is not needed, the user
should leave both blockSizeToDynamicSMemSize and dynamicSMemSize as
0.If per-block dynamic shared memory allocation is needed, then if the
dynamic shared memory size is constant regardless of block size, the
size should be passed through dynamicSMemSize, and
blockSizeToDynamicSMemSize should be NULL.Otherwise, if the per-block dynamic shared memory size varies with
different block sizes, the user needs to provide a unary function
through blockSizeToDynamicSMemSize that computes the dynamic shared
memory needed by func for any given block size. dynamicSMemSize is
ignored. An example signature is:View CUDA Toolkit Documentation for a C++ code example
- Parameters:
-
-
func (
CUfunction) – Kernel for which launch configuration is calculated -
blockSizeToDynamicSMemSize (
CUoccupancyB2DSize) – A function that calculates how much per-block dynamic shared memory
func uses based on the block size -
dynamicSMemSize (size_t) – Dynamic shared memory usage intended, in bytes
-
blockSizeLimit (int) – The maximum block size func is designed to handle
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_UNKNOWN -
minGridSize (int) – Returned minimum grid size needed to achieve the maximum occupancy
-
blockSize (int) – Returned maximum block size that can achieve the maximum occupancy
-
See also
cudaOccupancyMaxPotentialBlockSize
- cuda.cuda.cuOccupancyMaxPotentialBlockSizeWithFlags(func, blockSizeToDynamicSMemSize, size_t dynamicSMemSize, int blockSizeLimit, unsigned int flags)#
-
Suggest a launch configuration with reasonable occupancy.
An extended version of
cuOccupancyMaxPotentialBlockSize. In
addition to arguments passed to
cuOccupancyMaxPotentialBlockSize,
cuOccupancyMaxPotentialBlockSizeWithFlagsalso takes a
Flags parameter.The Flags parameter controls how special cases are handled. The valid
flags are:-
CU_OCCUPANCY_DEFAULT, which maintains the default
behavior ascuOccupancyMaxPotentialBlockSize; -
CU_OCCUPANCY_DISABLE_CACHING_OVERRIDE, which suppresses
the default behavior on platform where global caching affects
occupancy. On such platforms, the launch configurations that produces
maximal occupancy might not support global caching. Setting
CU_OCCUPANCY_DISABLE_CACHING_OVERRIDEguarantees that the
the produced launch configuration is global caching compatible at a
potential cost of occupancy. More information can be found about this
feature in the “Unified L1/Texture Cache” section of the Maxwell
tuning guide.
- Parameters:
-
-
func (
CUfunction) – Kernel for which launch configuration is calculated -
blockSizeToDynamicSMemSize (
CUoccupancyB2DSize) – A function that calculates how much per-block dynamic shared memory
func uses based on the block size -
dynamicSMemSize (size_t) – Dynamic shared memory usage intended, in bytes
-
blockSizeLimit (int) – The maximum block size func is designed to handle
-
flags (unsigned int) – Options
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_UNKNOWN -
minGridSize (int) – Returned minimum grid size needed to achieve the maximum occupancy
-
blockSize (int) – Returned maximum block size that can achieve the maximum occupancy
-
See also
cudaOccupancyMaxPotentialBlockSizeWithFlags -
- cuda.cuda.cuOccupancyAvailableDynamicSMemPerBlock(func, int numBlocks, int blockSize)#
-
Returns dynamic shared memory available per block when launching numBlocks blocks on SM.
Returns in *dynamicSmemSize the maximum size of dynamic shared memory
to allow numBlocks blocks per SM.- Parameters:
-
-
func (
CUfunction) – Kernel function for which occupancy is calculated -
numBlocks (int) – Number of blocks to fit on SM
-
blockSize (int) – Size of the blocks
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_UNKNOWN -
dynamicSmemSize (int) – Returned maximum dynamic shared memory
-
- cuda.cuda.cuOccupancyMaxPotentialClusterSize(func, CUlaunchConfig config: CUlaunchConfig)#
-
Given the kernel function (func) and launch configuration (config), return the maximum cluster size in *clusterSize.
The cluster dimensions in config are ignored. If func has a required
cluster size set (seecudaFuncGetAttributes/
cuFuncGetAttribute),`*clusterSize` will reflect the
required cluster size.By default this function will always return a value that’s portable on
future hardware. A higher value may be returned if the kernel function
allows non-portable cluster sizes.This function will respect the compile time launch bounds.
- Parameters:
-
-
func (
CUfunction) – Kernel function for which maximum cluster size is calculated -
config (
CUlaunchConfig) – Launch configuration for the given kernel function
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_UNKNOWN -
clusterSize (int) – Returned maximum cluster size that can be launched for the given
kernel function and launch configuration
-
- cuda.cuda.cuOccupancyMaxActiveClusters(func, CUlaunchConfig config: CUlaunchConfig)#
-
Given the kernel function (func) and launch configuration (config), return the maximum number of clusters that could co-exist on the target device in *numClusters.
If the function has required cluster size already set (see
cudaFuncGetAttributes/cuFuncGetAttribute),
the cluster size from config must either be unspecified or match the
required size. Without required sizes, the cluster size must be
specified in config, else the function will return an error.Note that various attributes of the kernel function may affect
occupancy calculation. Runtime environment may affect how the hardware
schedules the clusters, so the calculated occupancy is not guaranteed
to be achievable.- Parameters:
-
-
func (
CUfunction) – Kernel function for which maximum number of clusters are calculated -
config (
CUlaunchConfig) – Launch configuration for the given kernel function
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_CLUSTER_SIZE,CUDA_ERROR_UNKNOWN -
numClusters (int) – Returned maximum number of clusters that could co-exist on the
target device
-
Texture Object Management#
This section describes the texture object management functions of the low-level CUDA driver application programming interface. The texture object API is only supported on devices of compute capability 3.0 or higher.
- cuda.cuda.cuTexObjectCreate(CUDA_RESOURCE_DESC pResDesc: CUDA_RESOURCE_DESC, CUDA_TEXTURE_DESC pTexDesc: CUDA_TEXTURE_DESC, CUDA_RESOURCE_VIEW_DESC pResViewDesc: CUDA_RESOURCE_VIEW_DESC)#
-
Creates a texture object.
Creates a texture object and returns it in pTexObject. pResDesc
describes the data to texture from. pTexDesc describes how the data
should be sampled. pResViewDesc is an optional argument that
specifies an alternate format for the data described by pResDesc, and
also describes the subresource region to restrict access to when
texturing. pResViewDesc can only be specified if the type of resource
is a CUDA array or a CUDA mipmapped array.Texture objects are only supported on devices of compute capability 3.0
or higher. Additionally, a texture object is an opaque value, and, as
such, should only be accessed through CUDA API calls.The
CUDA_RESOURCE_DESCstructure is defined as:View CUDA Toolkit Documentation for a C++ code example
where:
-
resTypespecifies the type of resource
to texture from. CUresourceType is defined as: -
View CUDA Toolkit Documentation for a C++ code example
If
resTypeis set to
CU_RESOURCE_TYPE_ARRAY,
CUDA_RESOURCE_DESC::res::array::hArray must be set to a
valid CUDA array handle.If
resTypeis set to
CU_RESOURCE_TYPE_MIPMAPPED_ARRAY,
CUDA_RESOURCE_DESC::res::mipmap::hMipmappedArray must be
set to a valid CUDA mipmapped array handle.If
resTypeis set to
CU_RESOURCE_TYPE_LINEAR,
CUDA_RESOURCE_DESC::res::linear::devPtr must be set to a
valid device pointer, that is aligned to
CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT.
CUDA_RESOURCE_DESC::res::linear::format and
CUDA_RESOURCE_DESC::res::linear::numChannels describe the
format of each component and the number of components per array
element.CUDA_RESOURCE_DESC::res::linear::sizeInBytes
specifies the size of the array in bytes. The total number of elements
in the linear address range cannot exceed
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LINEAR_WIDTH. The
number of elements is computed as (sizeInBytes / (sizeof(format) *
numChannels)).If
resTypeis set to
CU_RESOURCE_TYPE_PITCH2D,
CUDA_RESOURCE_DESC::res::pitch2D::devPtr must be set to a
valid device pointer, that is aligned to
CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT.
CUDA_RESOURCE_DESC::res::pitch2D::format and
CUDA_RESOURCE_DESC::res::pitch2D::numChannels describe the
format of each component and the number of components per array
element.CUDA_RESOURCE_DESC::res::pitch2D::width and
CUDA_RESOURCE_DESC::res::pitch2D::height specify the width
and height of the array in elements, and cannot exceed
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_WIDTHand
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_HEIGHT
respectively.
CUDA_RESOURCE_DESC::res::pitch2D::pitchInBytes specifies
the pitch between two rows in bytes and has to be aligned to
CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT. Pitch cannot
exceedCU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_PITCH.-
flagsmust be set to zero.
The
CUDA_TEXTURE_DESCstruct is defined asView CUDA Toolkit Documentation for a C++ code example
where
-
addressModespecifies the addressing
mode for each dimension of the texture data.
CUaddress_modeis defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
This is ignored if
resTypeis
CU_RESOURCE_TYPE_LINEAR. Also, if the flag,
CU_TRSF_NORMALIZED_COORDINATESis not set, the only
supported address mode isCU_TR_ADDRESS_MODE_CLAMP. -
filterModespecifies the filtering mode
to be used when fetching from the texture. CUfilter_mode is defined
as: -
View CUDA Toolkit Documentation for a C++ code example
-
This is ignored if
resTypeis
CU_RESOURCE_TYPE_LINEAR. -
flagscan be any combination of the
following:-
CU_TRSF_READ_AS_INTEGER, which suppresses the default
behavior of having the texture promote integer data to floating
point data in the range [0, 1]. Note that texture with 32-bit
integer format would not be promoted, regardless of whether or not
this flag is specified. -
CU_TRSF_NORMALIZED_COORDINATES, which suppresses the
default behavior of having the texture coordinates range from [0,
Dim) where Dim is the width or height of the CUDA array. Instead,
the texture coordinates [0, 1.0) reference the entire breadth of
the array dimension; Note that for CUDA mipmapped arrays, this flag
has to be set. -
CU_TRSF_DISABLE_TRILINEAR_OPTIMIZATION, which disables
any trilinear filtering optimizations. Trilinear optimizations
improve texture filtering performance by allowing bilinear
filtering on textures in scenarios where it can closely approximate
the expected results. -
CU_TRSF_SEAMLESS_CUBEMAP, which enables seamless cube
map filtering. This flag can only be specified if the underlying
resource is a CUDA array or a CUDA mipmapped array that was created
with the flagCUDA_ARRAY3D_CUBEMAP. When seamless cube
map filtering is enabled, texture address modes specified by
addressModeare ignored. Instead, if
thefilterModeis set to
CU_TR_FILTER_MODE_POINTthe address mode
CU_TR_ADDRESS_MODE_CLAMPwill be applied for all
dimensions. If thefilterModeis set
toCU_TR_FILTER_MODE_LINEARseamless cube map filtering
will be performed when sampling along the cube face borders.
-
-
maxAnisotropyspecifies the maximum
anisotropy ratio to be used when doing anisotropic filtering. This
value will be clamped to the range [1,16]. -
mipmapFilterModespecifies the filter
mode when the calculated mipmap level lies between two defined mipmap
levels. -
mipmapLevelBiasspecifies the offset to
be applied to the calculated mipmap level. -
minMipmapLevelClampspecifies the lower
end of the mipmap level range to clamp access to. -
maxMipmapLevelClampspecifies the upper
end of the mipmap level range to clamp access to.
The
CUDA_RESOURCE_VIEW_DESCstruct is defined asView CUDA Toolkit Documentation for a C++ code example
where:
-
formatspecifies how the data
contained in the CUDA array or CUDA mipmapped array should be
interpreted. Note that this can incur a change in size of the texture
data. If the resource view format is a block compressed format, then
the underlying CUDA array or CUDA mipmapped array has to have a base
of formatCU_AD_FORMAT_UNSIGNED_INT32. with 2 or 4
channels, depending on the block compressed format. For ex., BC1 and
BC4 require the underlying CUDA array to have a format of
CU_AD_FORMAT_UNSIGNED_INT32with 2 channels. The other BC
formats require the underlying resource to have the same base format
but with 4 channels. -
widthspecifies the new width of
the texture data. If the resource view format is a block compressed
format, this value has to be 4 times the original width of the
resource. For non block compressed formats, this value has to be
equal to that of the original resource. -
heightspecifies the new height
of the texture data. If the resource view format is a block
compressed format, this value has to be 4 times the original height
of the resource. For non block compressed formats, this value has to
be equal to that of the original resource. -
depthspecifies the new depth of
the texture data. This value has to be equal to that of the original
resource. -
firstMipmapLevelspecifies the
most detailed mipmap level. This will be the new mipmap level zero.
For non-mipmapped resources, this value has to be
zero.:py:obj:~.CUDA_TEXTURE_DESC.minMipmapLevelClamp and
maxMipmapLevelClampwill be relative to
this value. For ex., if the firstMipmapLevel is set to 2, and a
minMipmapLevelClamp of 1.2 is specified, then the actual minimum
mipmap level clamp will be 3.2. -
lastMipmapLevelspecifies the
least detailed mipmap level. For non-mipmapped resources, this value
has to be zero. -
firstLayerspecifies the first
layer index for layered textures. This will be the new layer zero.
For non-layered resources, this value has to be zero. -
lastLayerspecifies the last
layer index for layered textures. For non-layered resources, this
value has to be zero.
- Parameters:
-
-
pResDesc (
CUDA_RESOURCE_DESC) – Resource descriptor -
pTexDesc (
CUDA_TEXTURE_DESC) – Texture descriptor -
pResViewDesc (
CUDA_RESOURCE_VIEW_DESC) – Resource view descriptor
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
pTexObject (
CUtexObject) – Texture object to create
-
-
- cuda.cuda.cuTexObjectDestroy(texObject)#
-
Destroys a texture object.
Destroys the texture object specified by texObject.
- Parameters:
-
texObject (
CUtexObject) – Texture object to destroy - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuTexObjectGetResourceDesc(texObject)#
-
Returns a texture object’s resource descriptor.
Returns the resource descriptor for the texture object specified by
texObject.- Parameters:
-
texObject (
CUtexObject) – Texture object - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
pResDesc (
CUDA_RESOURCE_DESC) – Resource descriptor
-
- cuda.cuda.cuTexObjectGetTextureDesc(texObject)#
-
Returns a texture object’s texture descriptor.
Returns the texture descriptor for the texture object specified by
texObject.- Parameters:
-
texObject (
CUtexObject) – Texture object - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
pTexDesc (
CUDA_TEXTURE_DESC) – Texture descriptor
-
- cuda.cuda.cuTexObjectGetResourceViewDesc(texObject)#
-
Returns a texture object’s resource view descriptor.
Returns the resource view descriptor for the texture object specified
by texObject. If no resource view was set for texObject, the
CUDA_ERROR_INVALID_VALUEis returned.- Parameters:
-
texObject (
CUtexObject) – Texture object - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
pResViewDesc (
CUDA_RESOURCE_VIEW_DESC) – Resource view descriptor
-
Surface Object Management#
This section describes the surface object management functions of the low-level CUDA driver application programming interface. The surface object API is only supported on devices of compute capability 3.0 or higher.
- cuda.cuda.cuSurfObjectCreate(CUDA_RESOURCE_DESC pResDesc: CUDA_RESOURCE_DESC)#
-
Creates a surface object.
Creates a surface object and returns it in pSurfObject. pResDesc
describes the data to perform surface load/stores on.
resTypemust be
CU_RESOURCE_TYPE_ARRAYand
CUDA_RESOURCE_DESC::res::array::hArray must be set to a
valid CUDA array handle.flagsmust be
set to zero.Surface objects are only supported on devices of compute capability 3.0
or higher. Additionally, a surface object is an opaque value, and, as
such, should only be accessed through CUDA API calls.- Parameters:
-
pResDesc (
CUDA_RESOURCE_DESC) – Resource descriptor - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
pSurfObject (
CUsurfObject) – Surface object to create
-
- cuda.cuda.cuSurfObjectDestroy(surfObject)#
-
Destroys a surface object.
Destroys the surface object specified by surfObject.
- Parameters:
-
surfObject (
CUsurfObject) – Surface object to destroy - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuSurfObjectGetResourceDesc(surfObject)#
-
Returns a surface object’s resource descriptor.
Returns the resource descriptor for the surface object specified by
surfObject.- Parameters:
-
surfObject (
CUsurfObject) – Surface object - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
pResDesc (
CUDA_RESOURCE_DESC) – Resource descriptor
-
Tensor Core Managment#
This section describes the tensor core management functions of the low-level CUDA driver application programming interface. The tensor core API is only supported on devices of compute capability 9.0 or higher.
- cuda.cuda.cuTensorMapEncodeTiled(tensorDataType: CUtensorMapDataType, tensorRank, globalAddress, globalDim: List[cuuint64_t], globalStrides: List[cuuint64_t], boxDim: List[cuuint32_t], elementStrides: List[cuuint32_t], interleave: CUtensorMapInterleave, swizzle: CUtensorMapSwizzle, l2Promotion: CUtensorMapL2promotion, oobFill: CUtensorMapFloatOOBfill)#
-
Create a tensor map descriptor object representing tiled memory region.
Creates a descriptor for Tensor Memory Access (TMA) object specified by
the parameters describing a tiled region and returns it in tensorMap.Tensor map objects are only supported on devices of compute capability
9.0 or higher. Additionally, a tensor map object is an opaque value,
and, as such, should only be accessed through CUDA API calls.The parameters passed are bound to the following requirements:
-
tensorMap address must be aligned to 64 bytes.
-
tensorDataType has to be an enum from
CUtensorMapDataTypewhich is defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
tensorRank must be non-zero and less than or equal to the maximum
supported dimensionality of 5. If interleave is not
CU_TENSOR_MAP_INTERLEAVE_NONE, then tensorRank must
additionally be greater than or equal to 3. -
globalAddress, which specifies the starting address of the memory
region described, must be 32 byte aligned when interleave is
CU_TENSOR_MAP_INTERLEAVE_32Band 16 byte aligned
otherwise. -
globalDim array, which specifies tensor size of each of the
tensorRank dimensions, must be non-zero and less than or equal to
2^32. -
globalStrides array, which specifies tensor stride of each of the
lower tensorRank — 1 dimensions in bytes, must be a multiple of 16
and less than 2^40. Additionally, the stride must be a multiple of 32
when interleave isCU_TENSOR_MAP_INTERLEAVE_32B. Each
following dimension specified includes previous dimension stride: -
View CUDA Toolkit Documentation for a C++ code example
-
boxDim array, which specifies number of elements to be traversed
along each of the tensorRank dimensions, must be less than or equal
to 8. When interleave isCU_TENSOR_MAP_INTERLEAVE_NONE,
{ boxDim`[0] * elementSizeInBytes( `tensorDataType ) } must be a
multiple of 16 bytes. -
elementStrides array, which specifies the iteration step along each
of the tensorRank dimensions, must be non-zero and less than or
equal to 8. Note that when interleave is
CU_TENSOR_MAP_INTERLEAVE_NONE, the first element of this
array is ignored since TMA doesn’t support the stride for dimension
zero. When all elemets of elementStrides array is one, boxDim
specifies the number of elements to load. However, if the
`elementStrides`[i] is not equal to one, then TMA loads ceil(
`boxDim`[i] / `elementStrides`[i]) number of elements along i-th
dimension. To load N elements along i-th dimension, `boxDim`[i] must
be set to N * `elementStrides`[i]. -
interleave specifies the interleaved layout of type
CUtensorMapInterleave, which is defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
TMA supports interleaved layouts like NC/8HWC8 where C8 utilizes 16
bytes in memory assuming 2 byte per channel or NC/16HWC16 where C16
uses 32 bytes. When interleave is
CU_TENSOR_MAP_INTERLEAVE_NONEand swizzle is not
CU_TENSOR_MAP_SWIZZLE_NONE, the bounding box inner
dimension (computed as boxDim`[0] multiplied by element size derived
from `tensorDataType) must be less than or equal to the swizzle
size.-
CU_TENSOR_MAP_SWIZZLE_32B implies the bounding box inner dimension
will be <= 32. -
CU_TENSOR_MAP_SWIZZLE_64B implies the bounding box inner dimension
will be <= 64. -
CU_TENSOR_MAP_SWIZZLE_128B implies the bounding box inner dimension
will be <= 128.
-
-
swizzle, which specifies the shared memory bank swizzling pattern,
has to be of typeCUtensorMapSwizzlewhich is defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
Data is organized in specific order in global memory; however, it may
not match the order in which data are accessed by application in the
shared memory. This difference in data organization may cause bank
conflicts when shared memory is accessed. In order to avoid this
problem, data can be loaded to shard memory with shuffling across
shared memory banks. Note that it’s expected that when interleave
isCU_TENSOR_MAP_INTERLEAVE_32B, swizzle should be
CU_TENSOR_MAP_SWIZZLE_32Bmode. Other interleave modes
can have any swizzling patterns. -
l2Promotion specifies L2 fetch size which indicates the byte
granurality at which L2 requests is filled from DRAM. It must be of
typeCUtensorMapL2promotion, which is defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
oobFill, which indicates whether zero or a special NaN constant
should be used to fill out-of-bound elements, must be of type
CUtensorMapFloatOOBfillwhich is defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
Note that
CU_TENSOR_MAP_FLOAT_OOB_FILL_NAN_REQUEST_ZERO_FMAcan
only be used when tensorDataType represents a floating data type.
- Parameters:
-
-
tensorDataType (
CUtensorMapDataType) – Tensor data type -
tensorRank (Any) – Dimensionality of tensor
-
globalAddress (Any) – Starting address of memory region described by tensor
-
globalDim (List[
cuuint64_t]) – Array containing tensor size (number of elements) along each of the
tensorRank dimensions -
globalStrides (List[
cuuint64_t]) – Array containing stride size (in bytes) along each of the
tensorRank — 1 dimensions -
boxDim (List[
cuuint32_t]) – Array containing traversal box size (number of elments) along each
of the tensorRank dimensions. Specifies how many elements to be
traversed along each tensor dimension. -
elementStrides (List[
cuuint32_t]) – Array containing traversal stride in each of the tensorRank
dimensions -
interleave (
CUtensorMapInterleave) – Type of interleaved layout the tensor addresses -
swizzle (
CUtensorMapSwizzle) – Bank swizzling pattern inside shared memory -
l2Promotion (
CUtensorMapL2promotion) – L2 promotion size -
oobFill (
CUtensorMapFloatOOBfill) – Indicate whether zero or special NaN constant must be used to fill
out-of-bound elements
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
tensorMap (
CUtensorMap) – Tensor map object to create
-
-
- cuda.cuda.cuTensorMapEncodeIm2col(tensorDataType: CUtensorMapDataType, tensorRank, globalAddress, globalDim: List[cuuint64_t], globalStrides: List[cuuint64_t], pixelBoxLowerCorner: List[int], pixelBoxUpperCorner: List[int], channelsPerPixel, pixelsPerColumn, elementStrides: List[cuuint32_t], interleave: CUtensorMapInterleave, swizzle: CUtensorMapSwizzle, l2Promotion: CUtensorMapL2promotion, oobFill: CUtensorMapFloatOOBfill)#
-
Create a tensor map descriptor object representing im2col memory region.
Creates a descriptor for Tensor Memory Access (TMA) object specified by
the parameters describing a im2col memory layout and returns it in
tensorMap.Tensor map objects are only supported on devices of compute capability
9.0 or higher. Additionally, a tensor map object is an opaque value,
and, as such, should only be accessed through CUDA API calls.The parameters passed are bound to the following requirements:
-
tensorMap address must be aligned to 64 bytes.
-
tensorDataType has to be an enum from
CUtensorMapDataTypewhich is defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
tensorRank must be one of dimensions 3, 4, or 5.
-
globalAddress, which specifies the starting address of the memory
region described, must be 32 byte aligned when interleave is
CU_TENSOR_MAP_INTERLEAVE_32Band 16 byte aligned
otherwise. -
globalDim array, which specifies tensor size of each of the
tensorRank dimensions, must be non-zero and less than or equal to
2^32. -
globalStrides array, which specifies tensor stride of each of the
lower tensorRank — 1 dimensions in bytes, must be a multiple of 16
and less than 2^40. Additionally, the stride must be a multiple of 32
when interleave isCU_TENSOR_MAP_INTERLEAVE_32B. Each
following dimension specified includes previous dimension stride: -
View CUDA Toolkit Documentation for a C++ code example
-
pixelBoxLowerCorner array specifies the coordinate offsets {D, H,
W} of the bounding box from top/left/front corner. The number of
offsets and their precision depends on the tensor dimensionality:-
When tensorRank is 3, one signed offset within range [-32768,
32767] is supported. -
When tensorRank is 4, two signed offsets each within range [-128,
127] are supported. -
When tensorRank is 5, three offsets each within range [-16, 15]
are supported.
-
-
pixelBoxUpperCorner array specifies the coordinate offsets {D, H,
W} of the bounding box from bottom/right/back corner. The number of
offsets and their precision depends on the tensor dimensionality:-
When tensorRank is 3, one signed offset within range [-32768,
32767] is supported. -
When tensorRank is 4, two signed offsets each within range [-128,
127] are supported. -
When tensorRank is 5, three offsets each within range [-16, 15]
are supported. The bounding box specified by pixelBoxLowerCorner
and pixelBoxUpperCorner must have non-zero area.
-
-
channelsPerPixel, which specifies the number of elements which must
be accessed along C dimension, must be less than or equal to 256. -
pixelsPerColumn, which specifies the number of elements that must
be accessed along the {N, D, H, W} dimensions, must be less than or
equal to 1024. -
elementStrides array, which specifies the iteration step along each
of the tensorRank dimensions, must be non-zero and less than or
equal to 8. Note that when interleave is
CU_TENSOR_MAP_INTERLEAVE_NONE, the first element of this
array is ignored since TMA doesn’t support the stride for dimension
zero. When all elemets of elementStrides array is one, boxDim
specifies the number of elements to load. However, if the
`elementStrides`[i] is not equal to one, then TMA loads ceil(
`boxDim`[i] / `elementStrides`[i]) number of elements along i-th
dimension. To load N elements along i-th dimension, `boxDim`[i] must
be set to N * `elementStrides`[i]. -
interleave specifies the interleaved layout of type
CUtensorMapInterleave, which is defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
TMA supports interleaved layouts like NC/8HWC8 where C8 utilizes 16
bytes in memory assuming 2 byte per channel or NC/16HWC16 where C16
uses 32 bytes. When interleave is
CU_TENSOR_MAP_INTERLEAVE_NONEand swizzle is not
CU_TENSOR_MAP_SWIZZLE_NONE, the bounding box inner
dimension (computed as boxDim`[0] multiplied by element size derived
from `tensorDataType) must be less than or equal to the swizzle
size.-
CU_TENSOR_MAP_SWIZZLE_32B implies the bounding box inner dimension
will be <= 32. -
CU_TENSOR_MAP_SWIZZLE_64B implies the bounding box inner dimension
will be <= 64. -
CU_TENSOR_MAP_SWIZZLE_128B implies the bounding box inner dimension
will be <= 128.
-
-
swizzle, which specifies the shared memory bank swizzling pattern,
has to be of typeCUtensorMapSwizzlewhich is defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
Data is organized in specific order in global memory; however, it may
not match the order in which data are accessed by application in the
shared memory. This difference in data organization may cause bank
conflicts when shared memory is accessed. In order to avoid this
problem, data can be loaded to shard memory with shuffling across
shared memory banks. Note that it’s expected that when interleave
isCU_TENSOR_MAP_INTERLEAVE_32B, swizzle should be
CU_TENSOR_MAP_SWIZZLE_32Bmode. Other interleave modes
can have any swizzling patterns. -
l2Promotion specifies L2 fetch size which indicates the byte
granurality at which L2 requests is filled from DRAM. It must be of
typeCUtensorMapL2promotion, which is defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
oobFill, which indicates whether zero or a special NaN constant
should be used to fill out-of-bound elements, must be of type
CUtensorMapFloatOOBfillwhich is defined as: -
View CUDA Toolkit Documentation for a C++ code example
-
Note that
CU_TENSOR_MAP_FLOAT_OOB_FILL_NAN_REQUEST_ZERO_FMAcan
only be used when tensorDataType represents a floating data type.
- Parameters:
-
-
tensorDataType (
CUtensorMapDataType) – Tensor data type -
tensorRank (Any) – Dimensionality of tensor, needs to be at least of dimension 3
-
globalAddress (Any) – Starting address of memory region described by tensor
-
globalDim (List[
cuuint64_t]) – Array containing tensor size (number of elements) along each of the
tensorRank dimensions -
globalStrides (List[
cuuint64_t]) – Array containing stride size (in bytes) along each of the
tensorRank — 1 dimensions -
pixelBoxLowerCorner (List[int]) – Array containing DHW dimentions of lower box corner
-
pixelBoxUpperCorner (List[int]) – Array containing DHW dimentions of upper box corner
-
channelsPerPixel (Any) – Number of channels per pixel
-
pixelsPerColumn (Any) – Number of pixels per column
-
elementStrides (List[
cuuint32_t]) – Array containing traversal stride in each of the tensorRank
dimensions -
interleave (
CUtensorMapInterleave) – Type of interleaved layout the tensor addresses -
swizzle (
CUtensorMapSwizzle) – Bank swizzling pattern inside shared memory -
l2Promotion (
CUtensorMapL2promotion) – L2 promotion size -
oobFill (
CUtensorMapFloatOOBfill) – Indicate whether zero or special NaN constant must be used to fill
out-of-bound elements
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
tensorMap (
CUtensorMap) – Tensor map object to create
-
-
- cuda.cuda.cuTensorMapReplaceAddress(CUtensorMap tensorMap: CUtensorMap, globalAddress)#
-
Modify an existing tensor map descriptor with an updated global address.
Modifies the descriptor for Tensor Memory Access (TMA) object passed in
tensorMap with an updated globalAddress.Tensor map objects are only supported on devices of compute capability
9.0 or higher. Additionally, a tensor map object is an opaque value,
and, as such, should only be accessed through CUDA API calls.- Parameters:
-
-
tensorMap (
CUtensorMap) – Tensor map object to modify -
globalAddress (Any) – Starting address of memory region described by tensor, must follow
previous alignment requirements
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
Peer Context Memory Access#
This section describes the direct peer context memory access functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuDeviceCanAccessPeer(dev, peerDev)#
-
Queries if a device may directly access a peer device’s memory.
Returns in *canAccessPeer a value of 1 if contexts on dev are
capable of directly accessing memory from contexts on peerDev and 0
otherwise. If direct access of peerDev from dev is possible, then
access may be enabled on two specific contexts by calling
cuCtxEnablePeerAccess().- Parameters:
-
-
dev (
CUdevice) – Device from which allocations on peerDev are to be directly
accessed. -
peerDev (
CUdevice) – Device on which the allocations to be directly accessed by dev
reside.
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_DEVICE -
canAccessPeer (int) – Returned access capability
-
- cuda.cuda.cuCtxEnablePeerAccess(peerContext, unsigned int Flags)#
-
Enables direct access to memory allocations in a peer context.
If both the current context and peerContext are on devices which
support unified addressing (as may be queried using
CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING) and same major
compute capability, then on success all allocations from peerContext
will immediately be accessible by the current context. See
Unified Addressingfor additional details.Note that access granted by this call is unidirectional and that in
order to access memory from the current context in peerContext, a
separate symmetric call tocuCtxEnablePeerAccess()is
required.Note that there are both device-wide and system-wide limitations per
system configuration, as noted in the CUDA Programming Guide under the
section “Peer-to-Peer Memory Access”.Returns
CUDA_ERROR_PEER_ACCESS_UNSUPPORTEDif
cuDeviceCanAccessPeer()indicates that the
CUdeviceof the current context cannot directly access
memory from theCUdeviceof peerContext.Returns
CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLEDif direct
access of peerContext from the current context has already been
enabled.Returns
CUDA_ERROR_TOO_MANY_PEERSif direct peer access is
not possible because hardware resources required for peer access have
been exhausted.Returns
CUDA_ERROR_INVALID_CONTEXTif there is no current
context, peerContext is not a valid context, or if the current
context is peerContext.Returns
CUDA_ERROR_INVALID_VALUEif Flags is not 0.- Parameters:
-
-
peerContext (
CUcontext) – Peer context to enable direct access to from the current context -
Flags (unsigned int) – Reserved for future use and must be set to 0
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED,CUDA_ERROR_TOO_MANY_PEERS,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_PEER_ACCESS_UNSUPPORTED,CUDA_ERROR_INVALID_VALUE - Return type:
-
CUresult
- cuda.cuda.cuCtxDisablePeerAccess(peerContext)#
-
Disables direct access to memory allocations in a peer context and unregisters any registered allocations.
Returns
CUDA_ERROR_PEER_ACCESS_NOT_ENABLEDif direct peer
access has not yet been enabled from peerContext to the current
context.Returns
CUDA_ERROR_INVALID_CONTEXTif there is no current
context, or if peerContext is not a valid context.- Parameters:
-
peerContext (
CUcontext) – Peer context to disable direct access to - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_PEER_ACCESS_NOT_ENABLED,CUDA_ERROR_INVALID_CONTEXT, - Return type:
-
CUresult
- cuda.cuda.cuDeviceGetP2PAttribute(attrib: CUdevice_P2PAttribute, srcDevice, dstDevice)#
-
Queries attributes of the link between two devices.
Returns in *value the value of the requested attribute attrib of
the link between srcDevice and dstDevice. The supported attributes
are:-
CU_DEVICE_P2P_ATTRIBUTE_PERFORMANCE_RANK: A relative
value indicating the performance of the link between two devices. -
CU_DEVICE_P2P_ATTRIBUTE_ACCESS_SUPPORTEDP2P: 1 if P2P
Access is enable. -
CU_DEVICE_P2P_ATTRIBUTE_NATIVE_ATOMIC_SUPPORTED: 1 if
Atomic operations over the link are supported. -
CU_DEVICE_P2P_ATTRIBUTE_CUDA_ARRAY_ACCESS_SUPPORTED: 1 if
cudaArray can be accessed over the link.
Returns
CUDA_ERROR_INVALID_DEVICEif srcDevice or
dstDevice are not valid or if they represent the same device.Returns
CUDA_ERROR_INVALID_VALUEif attrib is not valid
or if value is a null pointer.- Parameters:
-
-
attrib (
CUdevice_P2PAttribute) – The requested attribute of the link between srcDevice and
dstDevice. -
srcDevice (
CUdevice) – The source device of the target link. -
dstDevice (
CUdevice) – The destination device of the target link.
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_DEVICE,CUDA_ERROR_INVALID_VALUE -
value (int) – Returned value of the requested attribute
-
-
Graphics Interoperability#
This section describes the graphics interoperability functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuGraphicsUnregisterResource(resource)#
-
Unregisters a graphics resource for access by CUDA.
Unregisters the graphics resource resource so it is not accessible by
CUDA unless registered again.If resource is invalid then
CUDA_ERROR_INVALID_HANDLEis
returned.- Parameters:
-
resource (
CUgraphicsResource) – Resource to unregister - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_UNKNOWN - Return type:
-
CUresult
- cuda.cuda.cuGraphicsSubResourceGetMappedArray(resource, unsigned int arrayIndex, unsigned int mipLevel)#
-
Get an array through which to access a subresource of a mapped graphics resource.
Returns in *pArray an array through which the subresource of the
mapped graphics resource resource which corresponds to array index
arrayIndex and mipmap level mipLevel may be accessed. The value set
in *pArray may change every time that resource is mapped.If resource is not a texture then it cannot be accessed via an array
andCUDA_ERROR_NOT_MAPPED_AS_ARRAYis returned. If
arrayIndex is not a valid array index for resource then
CUDA_ERROR_INVALID_VALUEis returned. If mipLevel is not
a valid mipmap level for resource then
CUDA_ERROR_INVALID_VALUEis returned. If resource is not
mapped thenCUDA_ERROR_NOT_MAPPEDis returned.- Parameters:
-
-
resource (
CUgraphicsResource) – Mapped resource to access -
arrayIndex (unsigned int) – Array index for array textures or cubemap face index as defined by
CUarray_cubemap_facefor cubemap textures for the
subresource to access -
mipLevel (unsigned int) – Mipmap level for the subresource to access
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_MAPPED,CUDA_ERROR_NOT_MAPPED_AS_ARRAY -
pArray (
CUarray) – Returned array through which a subresource of resource may be
accessed
-
- cuda.cuda.cuGraphicsResourceGetMappedMipmappedArray(resource)#
-
Get a mipmapped array through which to access a mapped graphics resource.
Returns in *pMipmappedArray a mipmapped array through which the
mapped graphics resource resource. The value set in
*pMipmappedArray may change every time that resource is mapped.If resource is not a texture then it cannot be accessed via a
mipmapped array andCUDA_ERROR_NOT_MAPPED_AS_ARRAYis
returned. If resource is not mapped then
CUDA_ERROR_NOT_MAPPEDis returned.- Parameters:
-
resource (
CUgraphicsResource) – Mapped resource to access - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_MAPPED,CUDA_ERROR_NOT_MAPPED_AS_ARRAY -
pMipmappedArray (
CUmipmappedArray) – Returned mipmapped array through which resource may be accessed
-
- cuda.cuda.cuGraphicsResourceGetMappedPointer(resource)#
-
Get a device pointer through which to access a mapped graphics resource.
Returns in *pDevPtr a pointer through which the mapped graphics
resource resource may be accessed. Returns in pSize the size of the
memory in bytes which may be accessed from that pointer. The value set
in pPointer may change every time that resource is mapped.If resource is not a buffer then it cannot be accessed via a pointer
andCUDA_ERROR_NOT_MAPPED_AS_POINTERis returned. If
resource is not mapped thenCUDA_ERROR_NOT_MAPPEDis
returned.- Parameters:
-
resource (
CUgraphicsResource) – None - Returns:
-
-
CUresult
-
pDevPtr (
CUdeviceptr) – None -
pSize (int) – None
-
- cuda.cuda.cuGraphicsResourceSetMapFlags(resource, unsigned int flags)#
-
Set usage flags for mapping a graphics resource.
Set flags for mapping the graphics resource resource.
Changes to flags will take effect the next time resource is mapped.
The flags argument may be any of the following:-
CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE: Specifies no hints
about how this resource will be used. It is therefore assumed that
this resource will be read from and written to by CUDA kernels. This
is the default value. -
CU_GRAPHICS_MAP_RESOURCE_FLAGS_READONLY: Specifies that
CUDA kernels which access this resource will not write to this
resource. -
CU_GRAPHICS_MAP_RESOURCE_FLAGS_WRITEDISCARD: Specifies
that CUDA kernels which access this resource will not read from this
resource and will write over the entire contents of the resource, so
none of the data previously stored in the resource will be preserved.
If resource is presently mapped for access by CUDA then
CUDA_ERROR_ALREADY_MAPPEDis returned. If flags is not
one of the above values thenCUDA_ERROR_INVALID_VALUEis
returned.- Parameters:
-
-
resource (
CUgraphicsResource) – Registered resource to set flags for -
flags (unsigned int) – Parameters for resource mapping
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_ALREADY_MAPPED - Return type:
-
CUresult
-
- cuda.cuda.cuGraphicsMapResources(unsigned int count, resources, hStream)#
-
Map graphics resources for access by CUDA.
Maps the count graphics resources in resources for access by CUDA.
The resources in resources may be accessed by CUDA until they are
unmapped. The graphics API from which resources were registered
should not access any resources while they are mapped by CUDA. If an
application does so, the results are undefined.This function provides the synchronization guarantee that any graphics
calls issued beforecuGraphicsMapResources()will complete
before any subsequent CUDA work issued in stream begins.If resources includes any duplicate entries then
CUDA_ERROR_INVALID_HANDLEis returned. If any of
resources are presently mapped for access by CUDA then
CUDA_ERROR_ALREADY_MAPPEDis returned.- Parameters:
-
-
count (unsigned int) – Number of resources to map
-
resources (
CUgraphicsResource) – Resources to map for CUDA usage -
hStream (
CUstreamorcudaStream_t) – Stream with which to synchronize
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_ALREADY_MAPPED,CUDA_ERROR_UNKNOWN - Return type:
-
CUresult
- cuda.cuda.cuGraphicsUnmapResources(unsigned int count, resources, hStream)#
-
Unmap graphics resources.
Unmaps the count graphics resources in resources.
Once unmapped, the resources in resources may not be accessed by CUDA
until they are mapped again.This function provides the synchronization guarantee that any CUDA work
issued in stream beforecuGraphicsUnmapResources()will
complete before any subsequently issued graphics work begins.If resources includes any duplicate entries then
CUDA_ERROR_INVALID_HANDLEis returned. If any of
resources are not presently mapped for access by CUDA then
CUDA_ERROR_NOT_MAPPEDis returned.- Parameters:
-
-
count (unsigned int) – Number of resources to unmap
-
resources (
CUgraphicsResource) – Resources to unmap -
hStream (
CUstreamorcudaStream_t) – Stream with which to synchronize
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_NOT_MAPPED,CUDA_ERROR_UNKNOWN - Return type:
-
CUresult
Driver Entry Point Access#
This section describes the driver entry point access functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuGetProcAddress(char *symbol, int cudaVersion, flags)#
-
Returns the requested driver API function pointer.
Returns in **pfn the address of the CUDA driver function for the
requested CUDA version and flags.The CUDA version is specified as (1000 * major + 10 * minor), so CUDA
11.2 should be specified as 11020. For a requested driver symbol, if
the specified CUDA version is greater than or equal to the CUDA version
in which the driver symbol was introduced, this API will return the
function pointer to the corresponding versioned function.The pointer returned by the API should be cast to a function pointer
matching the requested driver function’s definition in the API header
file. The function pointer typedef can be picked up from the
corresponding typedefs header file. For example, cudaTypedefs.h
consists of function pointer typedefs for driver APIs defined in
h.The API will return
CUDA_SUCCESSand set the returned pfn
to NULL if the requested driver function is not supported on the
platform, no ABI compatible driver function exists for the specified
cudaVersion or if the driver symbol is invalid.It will also set the optional symbolStatus to one of the values in
CUdriverProcAddressQueryResultwith the following meanings:-
CU_GET_PROC_ADDRESS_SUCCESS— The requested symbol was
succesfully found based on input arguments and pfn is valid -
CU_GET_PROC_ADDRESS_SYMBOL_NOT_FOUND— The requested
symbol was not found -
CU_GET_PROC_ADDRESS_VERSION_NOT_SUFFICIENT— The
requested symbol was found but is not supported by cudaVersion
specified
The requested flags can be:
-
CU_GET_PROC_ADDRESS_DEFAULT: This is the default mode.
This is equivalent to
CU_GET_PROC_ADDRESS_PER_THREAD_DEFAULT_STREAMif the code
is compiled with –default-stream per-thread compilation flag or the
macro CUDA_API_PER_THREAD_DEFAULT_STREAM is defined;
CU_GET_PROC_ADDRESS_LEGACY_STREAMotherwise. -
CU_GET_PROC_ADDRESS_LEGACY_STREAM: This will enable the
search for all driver symbols that match the requested driver symbol
name except the corresponding per-thread versions. -
CU_GET_PROC_ADDRESS_PER_THREAD_DEFAULT_STREAM: This will
enable the search for all driver symbols that match the requested
driver symbol name including the per-thread versions. If a per-thread
version is not found, the API will return the legacy version of the
driver function.
- Parameters:
-
-
symbol (bytes) – The base name of the driver API function to look for. As an
example, for the driver APIcuMemAlloc_v2, symbol
would be cuMemAlloc and cudaVersion would be the ABI compatible
CUDA version for the _v2 variant. -
cudaVersion (int) – The CUDA version to look for the requested driver symbol
-
flags (Any) – Flags to specify search options.
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_NOT_SUPPORTED -
pfn (Any) – Location to return the function pointer to the requested driver
function -
symbolStatus (
CUdriverProcAddressQueryResult) – Optional location to store the status of the search for symbol
based on cudaVersion. See
CUdriverProcAddressQueryResultfor possible values.
-
-
EGL Interoperability#
This section describes the EGL interoperability functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuGraphicsEGLRegisterImage(image, unsigned int flags)#
-
Registers an EGL image.
Registers the EGLImageKHR specified by image for access by CUDA. A
handle to the registered object is returned as pCudaResource.
Additional Mapping/Unmapping is not required for the registered
resource andcuGraphicsResourceGetMappedEglFramecan be
directly called on the pCudaResource.The application will be responsible for synchronizing access to shared
objects. The application must ensure that any pending operation which
access the objects have completed before passing control to CUDA. This
may be accomplished by issuing and waiting for glFinish command on all
GLcontexts (for OpenGL and likewise for other APIs). The application
will be also responsible for ensuring that any pending operation on the
registered CUDA resource has completed prior to executing subsequent
commands in other APIs accesing the same memory objects. This can be
accomplished by calling cuCtxSynchronize or cuEventSynchronize
(preferably).The surface’s intended usage is specified using flags, as follows:
-
CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE: Specifies no hints
about how this resource will be used. It is therefore assumed that
this resource will be read from and written to by CUDA. This is the
default value. -
CU_GRAPHICS_MAP_RESOURCE_FLAGS_READ_ONLY: Specifies that
CUDA will not write to this resource. -
CU_GRAPHICS_MAP_RESOURCE_FLAGS_WRITE_DISCARD: Specifies
that CUDA will not read from this resource and will write over the
entire contents of the resource, so none of the data previously
stored in the resource will be preserved.
The EGLImageKHR is an object which can be used to create EGLImage
target resource. It is defined as a void pointer. typedef void*
EGLImageKHR- Parameters:
-
-
image (
EGLImageKHR) – An EGLImageKHR image which can be used to create target resource. -
flags (unsigned int) – Map flags
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_ALREADY_MAPPED,CUDA_ERROR_INVALID_CONTEXT, -
pCudaResource (
CUgraphicsResource) – Pointer to the returned object handle
-
-
- cuda.cuda.cuEGLStreamConsumerConnect(stream)#
-
Connect CUDA to EGLStream as a consumer.
Connect CUDA as a consumer to EGLStreamKHR specified by stream.
The EGLStreamKHR is an EGL object that transfers a sequence of image
frames from one API to another.- Parameters:
-
stream (
EGLStreamKHR) – EGLStreamKHR handle - Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_CONTEXT, -
conn (
CUeglStreamConnection) – Pointer to the returned connection handle
-
- cuda.cuda.cuEGLStreamConsumerConnectWithFlags(stream, unsigned int flags)#
-
Connect CUDA to EGLStream as a consumer with given flags.
Connect CUDA as a consumer to EGLStreamKHR specified by stream with
specified flags defined by CUeglResourceLocationFlags.The flags specify whether the consumer wants to access frames from
system memory or video memory. Default is
CU_EGL_RESOURCE_LOCATION_VIDMEM.- Parameters:
-
-
stream (
EGLStreamKHR) – EGLStreamKHR handle -
flags (unsigned int) – Flags denote intended location — system or video.
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_CONTEXT, -
conn (
CUeglStreamConnection) – Pointer to the returned connection handle
-
- cuda.cuda.cuEGLStreamConsumerDisconnect(conn)#
-
Disconnect CUDA as a consumer to EGLStream .
Disconnect CUDA as a consumer to EGLStreamKHR.
- Parameters:
-
conn (
CUeglStreamConnection) – Conection to disconnect. - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_CONTEXT, - Return type:
-
CUresult
- cuda.cuda.cuEGLStreamConsumerAcquireFrame(conn, pCudaResource, pStream, unsigned int timeout)#
-
Acquire an image frame from the EGLStream with CUDA as a consumer.
Acquire an image frame from EGLStreamKHR. This API can also acquire an
old frame presented by the producer unless explicitly disabled by
setting EGL_SUPPORT_REUSE_NV flag to EGL_FALSE during stream
initialization. By default, EGLStream is created with this flag set to
EGL_TRUE.cuGraphicsResourceGetMappedEglFramecan be called
on pCudaResource to getCUeglFrame.- Parameters:
-
-
conn (
CUeglStreamConnection) – Connection on which to acquire -
pCudaResource (
CUgraphicsResource) – CUDA resource on which the stream frame will be mapped for use. -
pStream (
CUstream) – CUDA stream for synchronization and any data migrations implied by
CUeglResourceLocationFlags. -
timeout (unsigned int) – Desired timeout in usec for a new frame to be acquired. If set as
CUDA_EGL_INFINITE_TIMEOUT, acquire waits infinitely.
After timeout occurs CUDA consumer tries to acquire an old frame if
available and EGL_SUPPORT_REUSE_NV flag is set.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_LAUNCH_TIMEOUT, - Return type:
-
CUresult
- cuda.cuda.cuEGLStreamConsumerReleaseFrame(conn, pCudaResource, pStream)#
-
Releases the last frame acquired from the EGLStream.
Release the acquired image frame specified by pCudaResource to
EGLStreamKHR. If EGL_SUPPORT_REUSE_NV flag is set to EGL_TRUE, at the
time of EGL creation this API doesn’t release the last frame acquired
on the EGLStream. By default, EGLStream is created with this flag set
to EGL_TRUE.- Parameters:
-
-
conn (
CUeglStreamConnection) – Connection on which to release -
pCudaResource (
CUgraphicsResource) – CUDA resource whose corresponding frame is to be released -
pStream (
CUstream) – CUDA stream on which release will be done.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE, - Return type:
-
CUresult
- cuda.cuda.cuEGLStreamProducerConnect(stream, width, height)#
-
Connect CUDA to EGLStream as a producer.
Connect CUDA as a producer to EGLStreamKHR specified by stream.
The EGLStreamKHR is an EGL object that transfers a sequence of image
frames from one API to another.- Parameters:
-
-
stream (
EGLStreamKHR) – EGLStreamKHR handle -
width (
EGLint) – width of the image to be submitted to the stream -
height (
EGLint) – height of the image to be submitted to the stream
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_CONTEXT, -
conn (
CUeglStreamConnection) – Pointer to the returned connection handle
-
- cuda.cuda.cuEGLStreamProducerDisconnect(conn)#
-
Disconnect CUDA as a producer to EGLStream .
Disconnect CUDA as a producer to EGLStreamKHR.
- Parameters:
-
conn (
CUeglStreamConnection) – Conection to disconnect. - Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_INVALID_CONTEXT, - Return type:
-
CUresult
- cuda.cuda.cuEGLStreamProducerPresentFrame(conn, CUeglFrame eglframe: CUeglFrame, pStream)#
-
Present a CUDA eglFrame to the EGLStream with CUDA as a producer.
When a frame is presented by the producer, it gets associated with the
EGLStream and thus it is illegal to free the frame before the producer
is disconnected. If a frame is freed and reused it may lead to
undefined behavior.If producer and consumer are on different GPUs (iGPU and dGPU) then
frametypeCU_EGL_FRAME_TYPE_ARRAYis not supported.
CU_EGL_FRAME_TYPE_PITCHcan be used for such cross-device
applications.The
CUeglFrameis defined as:View CUDA Toolkit Documentation for a C++ code example
For
CUeglFrameof typeCU_EGL_FRAME_TYPE_PITCH,
the application may present sub-region of a memory allocation. In that
case, the pitched pointer will specify the start address of the sub-
region in the allocation and correspondingCUeglFrame
fields will specify the dimensions of the sub-region.- Parameters:
-
-
conn (
CUeglStreamConnection) – Connection on which to present the CUDA array -
eglframe (
CUeglFrame) – CUDA Eglstream Proucer Frame handle to be sent to the consumer over
EglStream. -
pStream (
CUstream) – CUDA stream on which to present the frame.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE, - Return type:
-
CUresult
- cuda.cuda.cuEGLStreamProducerReturnFrame(conn, CUeglFrame eglframe: CUeglFrame, pStream)#
-
Return the CUDA eglFrame to the EGLStream released by the consumer.
This API can potentially return CUDA_ERROR_LAUNCH_TIMEOUT if the
consumer has not returned a frame to EGL stream. If timeout is returned
the application can retry.- Parameters:
-
-
conn (
CUeglStreamConnection) – Connection on which to return -
eglframe (
CUeglFrame) – CUDA Eglstream Proucer Frame handle returned from the consumer over
EglStream. -
pStream (
CUstream) – CUDA stream on which to return the frame.
-
- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_LAUNCH_TIMEOUT - Return type:
-
CUresult
- cuda.cuda.cuGraphicsResourceGetMappedEglFrame(resource, unsigned int index, unsigned int mipLevel)#
-
Get an eglFrame through which to access a registered EGL graphics resource.
Returns in *eglFrame an eglFrame pointer through which the registered
graphics resource resource may be accessed. This API can only be
called for registered EGL graphics resources.The
CUeglFrameis defined as:View CUDA Toolkit Documentation for a C++ code example
If resource is not registered then
CUDA_ERROR_NOT_MAPPED
is returned.- Parameters:
-
-
resource (
CUgraphicsResource) – None -
index (unsigned int) – None
-
mipLevel (unsigned int) – None
-
- Returns:
-
-
CUresult
-
eglFrame (
CUeglFrame) – None
-
- cuda.cuda.cuEventCreateFromEGLSync(eglSync, unsigned int flags)#
-
Creates an event from EGLSync object.
Creates an event *phEvent from an EGLSyncKHR eglSync with the flags
specified via flags. Valid flags include:-
CU_EVENT_DEFAULT: Default event creation flag. -
CU_EVENT_BLOCKING_SYNC: Specifies that the created event
should use blocking synchronization. A CPU thread that uses
cuEventSynchronize()to wait on an event created with
this flag will block until the event has actually been completed.
Once the eglSync gets destroyed,
cuEventDestroyis the
only API that can be invoked on the event.cuEventRecordand TimingData are not supported for events
created from EGLSync.The EGLSyncKHR is an opaque handle to an EGL sync object. typedef void*
EGLSyncKHR- Parameters:
-
-
eglSync (
EGLSyncKHR) – Opaque handle to EGLSync object -
flags (unsigned int) – Event creation flags
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY -
phEvent (
CUevent) – Returns newly created event
-
-
OpenGL Interoperability#
This section describes the OpenGL interoperability functions of the low-level CUDA driver application programming interface. Note that mapping of OpenGL resources is performed with the graphics API agnostic, resource mapping interface described in Graphics Interoperability.
- class cuda.cuda.CUGLDeviceList(value)#
-
CUDA devices corresponding to an OpenGL device
- CU_GL_DEVICE_LIST_ALL = 1#
-
The CUDA devices for all GPUs used by the current OpenGL context
- CU_GL_DEVICE_LIST_CURRENT_FRAME = 2#
-
The CUDA devices for the GPUs used by the current OpenGL context in its currently rendering frame
- CU_GL_DEVICE_LIST_NEXT_FRAME = 3#
-
The CUDA devices for the GPUs to be used by the current OpenGL context in the next frame
- cuda.cuda.cuGraphicsGLRegisterBuffer(buffer, unsigned int Flags)#
-
Registers an OpenGL buffer object.
Registers the buffer object specified by buffer for access by CUDA. A
handle to the registered object is returned as pCudaResource. The
register flags Flags specify the intended usage, as follows:-
CU_GRAPHICS_REGISTER_FLAGS_NONE: Specifies no hints about
how this resource will be used. It is therefore assumed that this
resource will be read from and written to by CUDA. This is the
default value. -
CU_GRAPHICS_REGISTER_FLAGS_READ_ONLY: Specifies that CUDA
will not write to this resource. -
CU_GRAPHICS_REGISTER_FLAGS_WRITE_DISCARD: Specifies that
CUDA will not read from this resource and will write over the entire
contents of the resource, so none of the data previously stored in
the resource will be preserved.
- Parameters:
-
-
buffer (
GLuint) – name of buffer object to be registered -
Flags (unsigned int) – Register flags
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_ALREADY_MAPPED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_OPERATING_SYSTEM -
pCudaResource (
CUgraphicsResource) – Pointer to the returned object handle
-
-
- cuda.cuda.cuGraphicsGLRegisterImage(image, target, unsigned int Flags)#
-
Register an OpenGL texture or renderbuffer object.
Registers the texture or renderbuffer object specified by image for
access by CUDA. A handle to the registered object is returned as
pCudaResource.target must match the type of the object, and must be one of
GL_TEXTURE_2D,GL_TEXTURE_RECTANGLE,
GL_TEXTURE_CUBE_MAP,GL_TEXTURE_3D,
GL_TEXTURE_2D_ARRAY, orGL_RENDERBUFFER.The register flags Flags specify the intended usage, as follows:
-
CU_GRAPHICS_REGISTER_FLAGS_NONE: Specifies no hints about
how this resource will be used. It is therefore assumed that this
resource will be read from and written to by CUDA. This is the
default value. -
CU_GRAPHICS_REGISTER_FLAGS_READ_ONLY: Specifies that CUDA
will not write to this resource. -
CU_GRAPHICS_REGISTER_FLAGS_WRITE_DISCARD: Specifies that
CUDA will not read from this resource and will write over the entire
contents of the resource, so none of the data previously stored in
the resource will be preserved. -
CU_GRAPHICS_REGISTER_FLAGS_SURFACE_LDST: Specifies that
CUDA will bind this resource to a surface reference. -
CU_GRAPHICS_REGISTER_FLAGS_TEXTURE_GATHER: Specifies that
CUDA will perform texture gather operations on this resource.
The following image formats are supported. For brevity’s sake, the list
is abbreviated. For ex., {GL_R, GL_RG} X {8, 16} would expand to the
following 4 formats {GL_R8, GL_R16, GL_RG8, GL_RG16} :-
GL_RED, GL_RG, GL_RGBA, GL_LUMINANCE, GL_ALPHA, GL_LUMINANCE_ALPHA,
GL_INTENSITY -
{GL_R, GL_RG, GL_RGBA} X {8, 16, 16F, 32F, 8UI, 16UI, 32UI, 8I, 16I,
32I} -
{GL_LUMINANCE, GL_ALPHA, GL_LUMINANCE_ALPHA, GL_INTENSITY} X {8, 16,
16F_ARB, 32F_ARB, 8UI_EXT, 16UI_EXT, 32UI_EXT, 8I_EXT, 16I_EXT,
32I_EXT}
The following image classes are currently disallowed:
-
Textures with borders
-
Multisampled renderbuffers
- Parameters:
-
-
image (
GLuint) – name of texture or renderbuffer object to be registered -
target (
GLenum) – Identifies the type of object specified by image -
Flags (unsigned int) – Register flags
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_ALREADY_MAPPED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_OPERATING_SYSTEM -
pCudaResource (
CUgraphicsResource) – Pointer to the returned object handle
-
-
- cuda.cuda.cuGLGetDevices(unsigned int cudaDeviceCount, deviceList: CUGLDeviceList)#
-
Gets the CUDA devices associated with the current OpenGL context.
Returns in *pCudaDeviceCount the number of CUDA-compatible devices
corresponding to the current OpenGL context. Also returns in
*pCudaDevices at most cudaDeviceCount of the CUDA-compatible devices
corresponding to the current OpenGL context. If any of the GPUs being
used by the current OpenGL context are not CUDA capable then the call
will return CUDA_ERROR_NO_DEVICE.The deviceList argument may be any of the following:
CU_GL_DEVICE_LIST_ALL: Query all devices used by the current OpenGL
context. CU_GL_DEVICE_LIST_CURRENT_FRAME: Query the devices used by the
current OpenGL context to render the current frame (in SLI).
CU_GL_DEVICE_LIST_NEXT_FRAME: Query the devices used by the current
OpenGL context to render the next frame (in SLI). Note that this is a
prediction, it can’t be guaranteed that this is correct in all cases.- Parameters:
-
-
cudaDeviceCount (unsigned int) – The size of the output device array pCudaDevices.
-
deviceList (CUGLDeviceList) – The set of devices to return.
-
- Returns:
-
-
CUresult – CUDA_SUCCESS
CUDA_ERROR_NO_DEVICE
CUDA_ERROR_INVALID_VALUE
CUDA_ERROR_INVALID_CONTEXT
CUDA_ERROR_INVALID_GRAPHICS_CONTEXT -
pCudaDeviceCount (unsigned int) – Returned number of CUDA devices.
-
pCudaDevices (List[CUdevice]) – Returned CUDA devices.
-
Notes
This function is not supported on Mac OS X.
Profiler Control#
This section describes the profiler control functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuProfilerStart()#
-
Enable profiling.
Enables profile collection by the active profiling tool for the current
context. If profiling is already enabled, then
cuProfilerStart()has no effect.cuProfilerStart and cuProfilerStop APIs are used to programmatically
control the profiling granularity by allowing profiling to be done only
on selective pieces of code.- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_CONTEXT - Return type:
-
CUresult
- cuda.cuda.cuProfilerStop()#
-
Disable profiling.
Disables profile collection by the active profiling tool for the
current context. If profiling is already disabled, then
cuProfilerStop()has no effect.cuProfilerStart and cuProfilerStop APIs are used to programmatically
control the profiling granularity by allowing profiling to be done only
on selective pieces of code.- Returns:
-
CUDA_SUCCESS,CUDA_ERROR_INVALID_CONTEXT - Return type:
-
CUresult
VDPAU Interoperability#
This section describes the VDPAU interoperability functions of the low-level CUDA driver application programming interface.
- cuda.cuda.cuVDPAUGetDevice(vdpDevice, vdpGetProcAddress)#
-
Gets the CUDA device associated with a VDPAU device.
Returns in *pDevice the CUDA device associated with a vdpDevice, if
applicable.- Parameters:
-
-
vdpDevice (
VdpDevice) – A VdpDevice handle -
vdpGetProcAddress (
VdpGetProcAddress) – VDPAU’s VdpGetProcAddress function pointer
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE -
pDevice (
CUdevice) – Device associated with vdpDevice
-
- cuda.cuda.cuVDPAUCtxCreate(unsigned int flags, device, vdpDevice, vdpGetProcAddress)#
-
Create a CUDA context for interoperability with VDPAU.
Creates a new CUDA context, initializes VDPAU interoperability, and
associates the CUDA context with the calling thread. It must be called
before performing any other VDPAU interoperability operations. It may
fail if the needed VDPAU driver facilities are not available. For usage
of the flags parameter, seecuCtxCreate().- Parameters:
-
-
flags (unsigned int) – Options for CUDA context creation
-
device (
CUdevice) – Device on which to create the context -
vdpDevice (
VdpDevice) – The VdpDevice to interop with -
vdpGetProcAddress (
VdpGetProcAddress) – VDPAU’s VdpGetProcAddress function pointer
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_DEINITIALIZED,CUDA_ERROR_NOT_INITIALIZED,CUDA_ERROR_INVALID_CONTEXT,CUDA_ERROR_INVALID_VALUE,CUDA_ERROR_OUT_OF_MEMORY -
pCtx (
CUcontext) – Returned CUDA context
-
- cuda.cuda.cuGraphicsVDPAURegisterVideoSurface(vdpSurface, unsigned int flags)#
-
Registers a VDPAU VdpVideoSurface object.
Registers the VdpVideoSurface specified by vdpSurface for access by
CUDA. A handle to the registered object is returned as pCudaResource.
The surface’s intended usage is specified using flags, as follows:-
CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE: Specifies no hints
about how this resource will be used. It is therefore assumed that
this resource will be read from and written to by CUDA. This is the
default value. -
CU_GRAPHICS_MAP_RESOURCE_FLAGS_READ_ONLY: Specifies that
CUDA will not write to this resource. -
CU_GRAPHICS_MAP_RESOURCE_FLAGS_WRITE_DISCARD: Specifies
that CUDA will not read from this resource and will write over the
entire contents of the resource, so none of the data previously
stored in the resource will be preserved.
The VdpVideoSurface is presented as an array of subresources that may
be accessed using pointers returned by
cuGraphicsSubResourceGetMappedArray. The exact number of
valid arrayIndex values depends on the VDPAU surface format. The
mapping is shown in the table below. mipLevel must be 0.- Parameters:
-
-
vdpSurface (
VdpVideoSurface) – The VdpVideoSurface to be registered -
flags (unsigned int) – Map flags
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_ALREADY_MAPPED,CUDA_ERROR_INVALID_CONTEXT, -
pCudaResource (
CUgraphicsResource) – Pointer to the returned object handle
-
-
- cuda.cuda.cuGraphicsVDPAURegisterOutputSurface(vdpSurface, unsigned int flags)#
-
Registers a VDPAU VdpOutputSurface object.
Registers the VdpOutputSurface specified by vdpSurface for access by
CUDA. A handle to the registered object is returned as pCudaResource.
The surface’s intended usage is specified using flags, as follows:-
CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE: Specifies no hints
about how this resource will be used. It is therefore assumed that
this resource will be read from and written to by CUDA. This is the
default value. -
CU_GRAPHICS_MAP_RESOURCE_FLAGS_READ_ONLY: Specifies that
CUDA will not write to this resource. -
CU_GRAPHICS_MAP_RESOURCE_FLAGS_WRITE_DISCARD: Specifies
that CUDA will not read from this resource and will write over the
entire contents of the resource, so none of the data previously
stored in the resource will be preserved.
The VdpOutputSurface is presented as an array of subresources that may
be accessed using pointers returned by
cuGraphicsSubResourceGetMappedArray. The exact number of
valid arrayIndex values depends on the VDPAU surface format. The
mapping is shown in the table below. mipLevel must be 0.- Parameters:
-
-
vdpSurface (
VdpOutputSurface) – The VdpOutputSurface to be registered -
flags (unsigned int) – Map flags
-
- Returns:
-
-
CUresult –
CUDA_SUCCESS,CUDA_ERROR_INVALID_HANDLE,CUDA_ERROR_ALREADY_MAPPED,CUDA_ERROR_INVALID_CONTEXT, -
pCudaResource (
CUgraphicsResource) – Pointer to the returned object handle
-
-
