Для несмещенных оценок систематическая ошибка равна 0

Работа по теме: Статистические выводы. Оценки и проверка гипоте. Глава: 3.1 Точечные оценки и их свойства. ВУЗ: СибГТУ.

Методы исследований в менеджменте.
Статистические выводы. Оценки и проверка
гипотез

Лекция № 3.
Статистические выводы: оценки и проверка

гипотез

3.1 Точечные оценки
и их свойства

3.2 Свойства
выборочных оценок

3.3 Интервальные
оценки

3.4
Проверка гипотез: основные понятия

3.5
Критерии проверки. Критическая область

Статистические
выводы –
это
заключения о генеральной совокупности
(т. е. о законе распределения исследуемой
СВ и его параметрах либо о наличии и
силе связи между исследуемыми переменными)
на основе выборки, случайно отобранной
из гене­ральной совокупности.

При
исследовании различных параметров
генеральной совокупности на основе
выборки возможно лишь получение оценок
этих параметров. Эти оценки строятся
на основе ограни­ченного набора
данных, что влечет за собой вероятность
по­грешности. Заметим, что значения
оценок могут изменяться от выборки к
выборке. Процесс нахождения оценок по
опреде­ленному правилу (формуле) будем
называть оцениванием. Цель любого
оценивания – получение наиболее точного
значения оцениваемой характеристики.

Можно
выделить два типа оценивания: оценивание
вида распределения и оценивание
параметров распределения. В ка­честве
оценки вида распределения (в силу закона
больших чи­сел) можно взять выборочное
распределение, подсчитав часто­ты
попадания рассматриваемой СВ в заданные
подынтервалы интервального статистического
ряда. Процедура оценивания всегда
однотипна. На основе выборки с помощью
соответствую­щей формулы рассчитывается
оценка исследуемой характери­стики.
В качестве оценок параметров распределения
генераль­ной совокупности берутся
их выборочные оценки. При этом различают
два вида оценок — точечные и интервальные.

После
определения оценок обычно встает вопрос
об их качестве и статистической
значимости. С другой стороны, часто до
определения оценок выдвигаются
предположения о значениях исследуемых
параметров. Анализ соответствия
результа­тов выборки выдвигаемым
предположениям и определение статистической
значимости полученных выводов обычно
осу­ществляются по схеме статистической
проверки гипотез, что также требует
рассмотрения.

Пусть
оценивается некоторый параметр

наблюдаемой СВ Х
генеральной
совокупности. Пусть из генеральной
совокупности извлечена выборка объема
п:
х
1,
х
2,
х
n,
по
которой может быть найдена оценка

параметра

.
Например, для нормального закона
распределения с плотностью вероятности

параметрами
являются математическое ожидание т
и
среднее квадратическое отклонение σ.

Точечной
оценкой

параметра называется числовое зна­чение
этого параметра, полученное по выборке
объема п.

Оценка

является функцией от выборки, т. е.

=

(х1,
х
2,
х
n).
Так как выборка носит случайный характер,
то оценка

является СВ, принимающей различные
значения для различных выборок. Любую
оценку

(х1,
х
2,
х
n)
называют статистикой
или
статисти­ческой
оценкой
параметра

.

Число
ε такое, что

называется точностью оценки

Естественно стремление получить по
возможности наиболее точную оценку при
данном объеме выборки.

Приведем свойства,
выполнимость которых желательна для
того, чтобы оценка была признана
удовлетворительной.

В силу
случайности точечной оценки

она может рассмат­риваться как СВ со
своими числовыми характеристиками —
математическим ожиданием

и
дисперсией

.
Чем бли­же

к
истинному значению

и чем меньше

,
тем луч­ше будет оценка (при прочих
равных условиях). Таким обра­зом,
качество оценок характеризуется
следующими основными свойствами:
несмещенность, эффективность и
состоятельность.

Оценка

называется несмещенной
оценкой
параметра

,
если ее математическое ожидание равно
оцениваемому пара­метру:

=

.

Хотя
каждая отдельная оценка лишь в редких
случаях сов­падает с соответствующей
характеристикой генеральной сово­купности,
при «аккуратном» оценивании многократное
осуще­ствление выборок одного объема
п
обеспечивает
совпадение среднего значения оценки
по всем выборкам с истинным значе­нием
оцениваемого параметра.

Разность

называется смещением
или
система­тической
ошибкой
оценивания.
Для несмещенных оценок сис­тематическая
ошибка равна нулю.

Свойство
несмещенности оценки является важнейшим,
но не единственным. Зачастую существует
несколько возможных оценок одного и
того же параметра. Какая из них лучше?
Оче­видно, выбор будет сделан в пользу
той из них, вероятность сов­падения
которой с истинным значением оцениваемого
парамет­ра выше. Оценка должна иметь
такую плотность вероятности, которая
наиболее «сжата» вокруг истинного
значения оцени­ваемого параметра.
Нетрудно заметить, что в этом случае
она будет иметь наименьшую среди других
оценок дисперсию.

Оценка

называется эффективной
оценкой
параметра

,
если ее дисперсия

меньше
дисперсии любой другой альтернативной
оценки при фиксированном объеме выборки
п,
т.е.

=


.
На рисунке 3.1 приведена схема, наглядно
демонстрирующая преимущество эффективной
оценки

по сравнению с неэффективной оценкой

параметра

.

Каждая
отдельная эффективная оценка не
гарантирует того, что она дает более
точное значение исследуемого параметра,
чем менее эффективная. Однако вероятность
такого исхода превышает 0,5.

Оценка
называется асимптотически
эффективной,
если
с увеличением объема выборки ее дисперсия
стремится к нулю, т.е.


при

(индекс
n
в оценке


применяется
для подчеркивания объема выборки).

Рисунок 3.1
Рисунок 3.2

Оценка

называется состоятельной
оценкой
параметра

,
если

сходится по вероятности к

при

,
т. е. для любого


при


.
Другими словами, состоятельной называется
такая оценка, которая дает истинное
значение при достаточно большом объеме
выборки вне зависимости от значений
входящих в нее конкретных наблю­дений.

Схема
возможного улучшения точности
(несмещенности) состоятельной оценки
приведена на рисунке 3.2.

В
большинстве случаев несмещенная оценка
является и состоятельной. С другой
стороны, состоятельные оценки (возможно,
не являющиеся несмещенными при малых
объемах выборок) с увеличением объема
выборки будут приближаться и лежать
все «плотнее» к истинному значению
(рисунок 3.2). Это указывает на асимптотическую
несмещенность состоятельной оценки.
Поэтому при невозможности получения
несмещенной оценки целесообразно найти
хотя бы состоятельную оценку.

Справедливо
следующее утверждение: если

и

при

,
то


состоятельная
оценка параметра

.

Оценки,
являющиеся линейными функциями от
выборочных наблюдений, называются
линейными.

Очень
важную роль в эконометрике играют так
называемые наилучшие
линейные несмещенные оценки,
или
коротко BLUE-оценки
(Best
Linear
Unbiased
Estimators).
Такие оценки, являясь линейными и
несмещенными, имеют наименьшую дисперсию
среди всех возможных оценок данного
класса.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

 План:

1.      Задачи математической статистики.

2.      Виды выборок.

3.      Способы отбора.

4.      Статистическое распределение выборки.

5.      Эмпирическая функция распределения.

6.      Полигон и гистограмма.

7.      Числовые характеристики вариационного ряда.

8.      Статистические оценки параметров
распределения.

9.      Интервальные оценки параметров распределения.

1.     
Задачи и методы математической статистики

Математическая статистика— это раздел математики, посвященный методам
сбора, анализа и обработки результатов статистических данных наблюдений для
научных и практических целей.

Пусть требуется
изучить совокупность однородных объектов относительно некоторого качественного
или количественного признака, характеризующего эти объекты. Например, если
имеется партия деталей, то качественным признаком может служить стандартность детали,
а количественным- контролируемый размер детали.

Иногда проводят
сплошное исследование, т.е. обследуют каждый объект относительно нужного
признака. На практике сплошное обследование применяется редко. Например, если
совокупность содержит очень большое число объектов, то провести сплошное
обследование физически невозможно. Если обследование объекта связано с его
уничтожением или требует больших материальных затрат, то проводить сплошное
обследование не имеет смысла. В таких случаях случайно отбирают из всей
совокупности ограниченное число объектов (выборочную совокупность) и подвергают
их изучению.

Основная задача
математической статистики заключается в исследовании всей совокупности по
выборочным данным в зависимости от поставленной цели, т.е. изучение
вероятностных свойств совокупности: закона распределения, числовых
характеристик и т.д. для принятия управленческих решений в условиях
неопределенности.

2.     
Виды выборок

Генеральная совокупность – это совокупность объектов, из которой производится выборка.

Выборочная совокупность (выборка) – это совокупность случайно отобранных
объектов.

Объем совокупности
это число объектов этой совокупности. Объем генеральной совокупности
обозначается
N,
выборочной –
n.

Пример:

Если из 1000
деталей отобрано для обследования 100 деталей, то объем генеральной
совокупности
N =
1000, а объем выборки
n =
100.

При  составлении выборки можно поступить двумя
способами: после того, как объект отобран и над ним произведено наблюдение, он
может быть возвращен либо не возвращен в генеральную совокупность. Т.о. выборки
делятся на повторные и бесповторные.

Повторной называют выборку, при которой
отобранный объект (перед отбором следующего) возвращается в генеральную
совокупность.

Бесповторной называют выборку, при которой отобранный
объект в генеральную совокупность не возвращается.

На практике обычно
пользуются бесповторным случайным отбором.

Для того, чтобы по
данным выборки можно было достаточно уверенно судить об интересующем признаке
генеральной совокупности, необходимо, чтобы объекты выборки правильно его
представляли. Выборка должна правильно представлять пропорции генеральной
совокупности. Выборка должна быть репрезентативной (представительной).

В силу закона больших чисел можно утверждать,
что выборка будет репрезентативной, если ее осуществлять случайно.

Если объем
генеральной совокупности достаточно велик, а выборка составляет лишь
незначительную часть этой совокупности, то различие между повторной и
бесповторной выборками стирается; в предельном случае, когда рассматривается
бесконечная генеральная совокупность, а выборка имеет конечный объем, это
различие исчезает.

Пример:

В американском журнале
«Литературное обозрение» с помощью статистических  методов было проведено исследование прогнозов
относительно исхода предстоящих выборов президента США в 1936 году.
Претендентами на этот пост были Ф.Д. Рузвельт и А. М. Ландон. В качестве
источника для генеральной совокупности исследуемых американцев были взяты
справочники телефонных абонентов. Из них случайным образом были выбраны 4
миллиона адресов., по которым редакция журнала разослала открытки с просьбой
высказать свое отношение к кандидатам на пост президента. Обработав результаты
опроса, журнал опубликовал социологический прогноз о том, что на предстоящих
выборах с большим перевесом победит Ландон. И … ошибся: победу одержал
Рузвельт.
Этот пример можно рассматривать, как пример нерепрезентативной выборки. Дело в
том, что в США в первой половине двадцатого века телефоны имела лишь зажиточная
часть населения, которые поддерживали взгляды Ландона.

3.     
Способы отбора

На практике
применяются различные способы отбора, которые можно разделить на 2 вида:

1. Отбор не требует
расчленения генеральной совокупности на части (а) простой случайный
бесповторный
; б) простой случайный повторный).

2. Отбор, при
котором генеральная совокупность разбивается на части. (а) типичный отбор;
б) механический отбор; в) серийный отбор).

Простым случайным
называют такой отбор, при котором объекты извлекаются по одному из всей
генеральной совокупности (случайно).

Типичным называют отбор, при котором объекты
отбираются не из всей генеральной совокупности, а из каждой ее «типичной»
части. Например, если деталь изготавливают на нескольких станках, то отбор
производят не из всей совокупности деталей, произведенных всеми станками, а из
продукции каждого станка в отдельности. Таким отбором пользуются тогда, когда
обследуемый признак заметно колеблется в различных «типичных» частях
генеральной совокупности.

Механическим называют отбор, при котором
генеральную совокупность «механически» делят на столько групп, сколько объектов
должно войти в выборку, а из каждой группы отбирают один объект. Например, если
нужно отобрать 20 % изготовленных станком деталей, то отбирают каждую 5-ую
деталь; если требуется отобрать 5 % деталей- каждую 20-ую и т.д. Иногда такой
отбор может не обеспечивать репрезентативность выборки (если отбирают каждый
20-ый обтачиваемый валик, причем сразу же после отбора производится замена
резца, то отобранными окажутся все валики, обточенные затупленными резцами).

Серийным называют отбор, при котором объекты
отбирают из генеральной совокупности не по одному, а «сериями», которые
подвергают сплошному обследованию. Например, если изделия изготавливаются
большой группой станков-автоматов, то подвергают сплошному обследованию
продукцию только нескольких станков.

На практике часто
применяют комбинированный отбор, при котором сочетаются указанные выше способы.

4.     
Статистическое распределение выборки

Пусть из генеральной совокупности извлечена выборка, причем значение x1–наблюдалось
 раз,
x2-n2 

раз,…  xk — nk
раз. n =
n1+n2+…+nk– объем
выборки. Наблюдаемые значения

 называются вариантами, а
последовательность вариант, записанных в возрастающем порядке- вариационным
рядом
. Числа наблюдений  

 называются
частотами (абсолютными частотами), а их отношения к объему выборки  

относительными частотами или статистическими вероятностями.

Если количество
вариант велико или выборка производится из непрерывной генеральной
совокупности, то вариационный ряд составляется не по отдельным точечным
значениям, а по интервалам значений генеральной совокупности. Такой
вариационный ряд называется интервальным.
Длины интервалов при этом должны быть равны.

Статистическим
распределением выборки

называется перечень вариант и соответствующих им частот или относительных
частот.

Статистическое
распределение можно задать также в виде последовательности интервалов и
соответствующих им частот (суммы частот, попавших в этот интервал значений)

Точечный
вариационный ряд частот может быть представлен таблицей:


xi

x1

x2


xk

ni

n1

n2


nk

Аналогично можно
представить точечный вариационный ряд относительных частот.

Причем:

Пример:

Число букв в
некотором тексте Х оказалось равным 1000. Первой встретилась  буква «я», второй- буква «и», третьей- буква
«а», четвертой- «ю». Затем шли буквы 
«о», «е», «у», «э», «ы».

Выпишем места,
которые они занимают в алфавите, соответственно имеем: 33, 10, 1, 32, 16, 6,
21, 31, 29.

После упорядочения
этих чисел по возрастанию получаем вариационный ряд: 1, 6, 10, 16, 21, 29, 31,
32, 33.

Частоты появления
букв в тексте: «а» — 75, «е» -87, «и»- 75, «о»- 110, «у»- 25, «ы»- 8, «э»- 3,
«ю»- 7, «я»- 22.

Составим точечный
вариационный ряд частот:

Пример:

Задано
распределение частот выборки объема
n
= 20.

Составьте точечный
вариационный ряд относительных частот.

Решение:

Найдем
относительные частоты:


xi

2

6

12


wi

0,15

0,5

0,35

При построении интервального
распределения существуют правила  выбора
числа интервалов или величины каждого интервала. Критерием здесь служит
оптимальное соотношение: при увеличении числа интервалов улучшается репрезентативность,
но увеличивается объем данных и время на их обработку. Разность
xmax — xmin между наибольшим и наименьшим значениями
вариант называют размахом выборки.

Для подсчета числа
интервалов
k
обычно применяют эмпирическую формулу Стреджесса (подразумевая округление до
ближайшего удобного целого):
k
= 1 + 3.322
lg n.

Соответственно,
величину каждого интервала
h
можно вычислить по формуле

:

5.                     
Эмпирическая
функция распределения

Рассмотрим некоторую
выборку из генеральной совокупности. Пусть известно статистическое
распределение частот количественного признака Х. Введем обозначения: nx

– число наблюдений, при которых
наблюдалось значение признака, меньшее х;
n – общее число наблюдений (объем
выборки). Относительная частота события Х<х равна   

nx/n. Если х изменяется, то изменяется и относительная частота, т.е.
относительная частота
nx/n
есть функция от х. Т.к. она находится эмпирическим путем, то она называется
эмпирической.

Эмпирической функцией распределения
(функцией распределения выборки)
называют функцию  
 ,
определяющую для каждого х относительную частоту события Х<х.

где
число вариант, меньших х,

n— объем выборки.

В отличие от эмпирической функции
распределения выборки, функцию распределения F(x)
генеральной совокупности называют теоретической функцией распределения.

Различие между эмпирической и
теоретической функциями распределения состоит в том, что теоретическая функция F(x) определяет вероятность события Х<x , а эмпирическая
функция 
F*(x) -относительную
частоту этого же события. Из теоремы Бернулли следует, что относительная
частота события Х<х , т.е
F*(x) стремится
по вероятности к вероятности F(x) этого события. Т.е.при
большом n   F*(x)
и
F(x) мало отличаются друг от друга.

Т.о. целесообразно использовать
эмпирическую функцию распределения выборки для приближенного представления
теоретической (интегральной) функции распределения генеральной совокупности.



F*(x)
обладает всеми свойствами
F(x).

1. Значения  
F*(x) 

  принадлежат
интервалу [0; 1].

2.
F*(x) 

— неубывающая
функция.

3. Если
– наименьшая варианта, то  

F*(x)= 0, при х 
< x1

; если xk
– наибольшая варианта, то 
F*(x)= 1, при х
> xk
.

Т.е. 
F*(x)  служит для
оценки F(x).

Если выборка задана вариационным рядом, то эмпирическая
функция имеет вид:

График эмпирической функции называется кумулятой.

Пример:

Постройте эмпирическую функцию по данному распределению
выборки.

Решение:

Объем выборки n = 12 + 18 +30 = 60. Наименьшая
варианта 2, т.е.
при х <
2. Событие X<6,
( x1= 2) наблюдалось 12 раз, т.е.
F*(x)=12/60=0,2 при 2 < x <
6. Событие Х<10, ( 

x1=2,
x2= 6) наблюдалось 12 + 18 = 30 раз, т.е.  F*(x)=30/60=0,5 

при 6 < x <
10. Т.к. х=10 наибольшая варианта, то F*(x) = 1 
при х>10. Искомая эмпирическая функция имеет вид: 

Кумулята:

Кумулята дает возможность
понимать графически представленную информацию, например, ответить на вопросы:
«Определите число наблюдений, при которых значение признака было меньше 6 или
не меньше 6. F*(6)=0,2

» Тогда число наблюдений, при которых
значение наблюдаемого признака было меньше 6 равно 0,2*
n = 0,2*60 = 12. Число наблюдений, при
которых значение наблюдаемого признака было не меньше 6 равно (1-0,2)*
n = 0,8*60 = 48.

Если задан интервальный вариационный
ряд, то для составления эмпирической функции распределения находят середины
интервалов и по ним получают эмпирическую функцию распределения аналогично
точечному вариационному ряду.

6.      Полигон и гистограмма

       Для наглядности строят различные графики
статистического распределения: полином и гистограммы

Полигон
частот-
это ломаная, отрезки которой соединяют точки (
x1
;n1
), (
x2
;n2
),…, (
xk
; nk
), где
 – варианты,
 
соответствующие им частоты.

Полигон
относительных частот-
это ломаная, отрезки которой соединяют точки (
x1
;w1
), (x2
;w2
),…, (
xk
;wk
), где  
xi–варианты,
wi
соответствующие им относительные частоты.

Пример:

Постройте полином относительных
частот по данному распределению выборки:


  Решение:

В случае
непрерывного признака целесообразно строить гистограмму, для чего интервал, в
котором заключены все наблюдаемые значения признака, разбивают на несколько
частичных интервалов длиной h
и находят для каждого частичного интервала ni – сумму частот вариант,
попавших в i-ый
интервал. (Например, при измерении роста человека или веса, мы имеем дело с
непрерывным признаком).

Гистограмма
частот-
это ступенчатая фигура, состоящая из прямоугольников, основаниями
которых служат частичные интервалы длиною h, а высоты равны отношению
      (плотность
частот).

Площадь i-го частичного
прямоугольника равна— сумме частот вариант i— го интервала, т.е. площадь
гистограммы частот равна сумме всех частот, т.е. объему выборки.

Пример:

Даны результаты изменения напряжения
(в вольтах) в электросети. Составьте вариационный ряд, постройте полигон и
гистограмму частот, если значения напряжения следующие: 227, 215, 230, 232,
223, 220, 228, 222, 221, 226, 226, 215, 218, 220, 216, 220, 225, 212, 217, 220.

Решение:

Составим вариационный ряд. Имеем n = 20, xmin=212
, xmax=232
.

Применим формулу
Стреджесса для подсчета числа интервалов.

.

Интервальный вариационный ряд
частот имеет вид:


Плотность частот

212-216

3

0,75

216-220

3

0,75

220-224

7

1,75

224-228

4

1

228-232

3

0,75

Построим гистограмму частот:

Построим полигон частот, найдя предварительно середины
интервалов:

Гистограммой относительных
частот
называют ступенчатую фигуру, состоящую из прямоугольников ,
основаниями которых  служат частичные
интервалы длиною h, а
высоты равны отношению  wi/h 

(плотность
относительной частоты).

Площадь i-го частичного прямоугольника равна  
  — относительной частоте вариант, попавших в i— ый интервал. Т.е. площадь
гистограммы относительных частот равна сумме всех относительных частот, т.е.
единице.

7.                     
Числовые
характеристики вариационного ряда

Рассмотрим основные характеристики генеральной и выборочной
совокупностей.

Генеральным средним  
называется среднее
арифметическое значений признака генеральной совокупности. 

Для различных значений x1, x2
, x3
, …, xn
признака
генеральной совокупности объема N
имеем:

Если
значения признака имеют соответствующие частоты N1
+N2
+…+Nk
=N,
то

Выборочным средним  называется среднее арифметическое значений
признака выборочной совокупности.

Для различных значений x1, x2
, x3, …, xn 
признака выборочной
совокупности объема n
имеем:

Если
значения признака имеют соответствующие частоты n1+n2+…+nk
= n,
то

Пример:

Вычислите выборочное среднее для выборки :
x1= 51,12;
x2= 51,07; 

x3= 52,95; x4
=52,93; 

x5= 51,1;x6
= 52,98; x7
= 52,29; x8
= 51,23; x9
= 51,07; x10
= 51,04.

Решение:

Генеральной дисперсией называется среднее арифметическое квадратов отклонений
значений признака Х генеральной совокупности от генерального среднего .

Для различных значений x1, x2, x3, …, xN 
признака
генеральной совокупности объема N
имеем:

Если
значения признака имеют соответствующие частоты
N1+N2+…+Nk
=N,
то

Генеральным среднеквадратическим отклонением (стандартом)
называют квадратный корень из генеральной дисперсии

Выборочной дисперсией    называется среднее
арифметическое квадратов отклонений наблюдаемых значений признака от среднего
значения.

Для различных значений
x1, x2, x3, …, xn
признака выборочной
совокупности объема n
имеем:

Если
значения признака имеют соответствующие частоты n1+n2+…+nk
= n,
то

Выборочным среднеквадратическим
отклонением (стандартом)
называется квадратный корень из выборочной
дисперсии.

Пример:

Выборочная совокупность задана таблицей распределения. Найдите
выборочную дисперсию.

Решение:

Теорема: Дисперсия
равна разности среднего квадратов значений признака и квадрата общего среднего.

Пример:

Найдите дисперсию по данному распределению.

Решение:

8.      Статистические оценки параметров распределения

Пусть генеральная совокупность исследуется по некоторой
выборке. При этом можно получить лишь приближенное значение неизвестного
параметра Q, который
служит его оценкой. Очевидно, что оценки могут изменяться от одной выборки к
другой.

Статистической
оценкой
Q* неизвестного параметра
теоретического распределения называется функция f, зависящая от наблюдаемых значений
выборки. Задачей статистического оценивания неизвестных параметров по выборке
заключается в построении такой функции от имеющихся данных статистических
наблюдений, которая давала бы наиболее точные приближенные значения реальных,
не известных исследователю, значений этих параметров.

Статистические оценки делятся на
точечные и интервальные, в зависимости от способа их предоставления (числом или
интервалом).

Точечной
называют статистическую оценку
параметра Q теоретического распределения определяемую одним значением
параметра Q*=f(x1, x2, …, xn), где
x1, x2, …, xn — результаты эмпирических наблюдений над
количественным признаком Х некоторой выборки.

Такие оценки параметров, полученные по
разным выборкам, чаще всего отличаются друг от друга. Абсолютная разность /Q*-Q/ называют ошибкой выборки (оценивания).

Для того, чтобы статистические оценки
давали достоверные результаты об оцениваемых параметрах, необходимо, чтобы они
были несмещенными, эффективными и состоятельными.

Точечная
оценка
, математическое ожидание которой равно (не равно) оцениваемому
параметру, называется несмещенной
(смещенной)
. М(Q*)=Q.

Разность М(Q*)-Q называют смещением или
систематической ошибкой
. Для несмещенных оценок систематическая ошибка
равна 0.

Эффективной
называют такую статистическую оценку
Q*, которая при
заданном объеме выборки n
имеет наименьшую возможную дисперсию: D[Q*]
min
(
n=const). Эффективная оценка
имеет наименьший разброс по сравнению с другими несмещенными и состоятельными
оценками.

Состоятельной
называют такую статистическую оценку
Q*,
которая при
n
стремится по вероятности к оцениваемому
параметру
Q,
т.е. при увеличении объема выборки
n
оценка стремится по вероятности к истинному значению параметра
Q.

Требование состоятельности
согласуется с законом больших числе: чем больше исходной информации об
исследуемом объекте, тем точнее результат. Если объем выборки мал, то точечная
оценка параметра может привести к серьезным ошибкам.

Любую выборку (объема n) можно рассматривать
как упорядоченный набор
x1, x2, …, xn независимых
одинаково распределенных случайных величин.

Выборочные средние для
различных выборок объема
n из одной и той же генеральной
совокупности будут различны. Т. е. выборочное среднее можно рассматривать как
случайную величину, а значит, можно говорить о распределении выборочного
среднего и его числовых характеристиках.

Выборочное среднее
удовлетворяет всем накладываемым к статистическим оценкам требованиям, т.е.
дает несмещенную, эффективную и состоятельную оценку генерального среднего.

Можно доказать, что. Таким образом, выборочная дисперсия
является смещенной оценкой генеральной дисперсии, давая ее заниженное значение.
Т. е. при небольшом объеме выборки она будет давать систематическую ошибку. Для
несмещенной, состоятельной оценки достаточно взять величину

, которую называют исправленной
дисперсией. Т. е.

  На практике для оценки генеральной дисперсии применяют исправленную
дисперсию при
n
< 30. В остальных случаях (n>30) отклонение
 от

 малозаметно. Поэтому при больших значениях n
ошибкой смещения можно пренебречь.

Можно
так же доказать,  что относительная
частота

ni / n является
несмещенной и состоятельной оценкой вероятности
P(X=xi). Эмпирическая функция распределения F*(x) является несмещенной
и состоятельной оценкой теоретической функции распределения
F(x)=P(X<x).

Пример:

Найдите
несмещенные оценки математического ожидания 
и дисперсии по таблице выборки.

Решение:

Объем выборки n=20.

Несмещенной оценкой математического
ожидания является выборочное среднее.

Для вычисления несмещенной оценки
дисперсии сначала найдем выборочную дисперсию:

  Теперь найдем
несмещенную оценку:

9.                     
Интервальные
оценки параметров распределения

Интервальной называется статистическая
оценка, определяемая двумя числовыми значениями- концами исследуемого
интервала.

Число> 0, при котором |QQ*|<
, характеризует точность интервальной
оценки.

Доверительным
называется интервал

, который с заданной вероятностью  покрывает неизвестное значение параметра Q. Дополнение
доверительного интервала до множества всех возможных значений параметра
Q называется критической областью. Если критическая
область расположена только с одной стороны от доверительного интервала, то
доверительный интервал называется односторонним:
левосторонним
, если критическая область существует только слева, и правосторонним- если только справа. В
противном случае, доверительный интервал называется двусторонним.

Надежностью,
или доверительной вероятностью,
оценки Q (с помощью Q*) называют вероятность,
с которой выполняется следующее неравенство: |
QQ*|<

.

Чаще всего доверительную вероятность
задают заранее (0,95; 0,99; 0,999) и на нее накладывают требование быть близкой
к единице.

Вероятность
 называют вероятностью
ошибки, или уровнем значимости.

Пусть |QQ*|<

, тогда


. Это означает, что с вероятностью
 можно утверждать, что истинное значение
параметра
Q
принадлежит интервалу
. Чем меньше величина отклонения
, тем точнее оценка.

Границы (концы) доверительного интервала
называют доверительными границами, или
критическими границами.

Значения границ доверительного интервала
зависят от закона распределения параметра
Q*.

Величину отклонения
равную половине ширины доверительного
интервала, называют точностью оценки.

Методы построения доверительных
интервалов впервые были разработаны американским статистом Ю. Нейманом.
Точность оценки

, доверительная вероятность  
и
объем выборки
n связаны между собой. Поэтому, зная
конкретные значения двух величин, всегда можно вычислить третью.

Нахождение
доверительного интервала для оценки математического ожидания нормального
распределения, если известно среднеквадратическое отклонение.

Пусть произведена выборка из генеральной
совокупности, подчиненной закону нормального распределения. Пусть известно
генеральное среднеквадратическое отклонение

, но неизвестно математическое ожидание
теоретического распределения
a
(
).

Справедлива следующая формула:

Т.е.
по заданному значению отклонения

 можно найти, с какой вероятностью неизвестное
генеральное среднее принадлежит интервалу
. И наоборот. Из формулы видно, что при
возрастании объема выборки и фиксированной величине доверительной вероятности
величина


уменьшается, т.е. точность оценки увеличивается. С увеличением надежности
(доверительной вероятности), величина

 
-увеличивается,
т.е. точность оценки уменьшается.

Пример:

В результате испытаний
были получены следующие значения -25, 34, -20, 10, 21. Известно, что они
подчиняются закону нормального распределения с среднеквадратическим отклонением
2. Найдите оценку а* для математического ожидания а. Постройте для него 90%-ый
доверительный интервал.

Решение:

Найдем несмещенную
оценку  

Тогда

Доверительный интервал
для а имеет вид: 4 – 1,47<
a
< 4+ 1,47 или 2,53 <
a
< 5, 47

Нахождение
доверительного интервала для оценки математического ожидания нормального
распределения, если неизвестно среднеквадратическое отклонение.

Пусть известно, что генеральная
совокупность подчинена закону нормального распределения, где неизвестны а и

. Точность доверительного интервала,
покрывающего с надежностью  

 истинное значение параметра а,  в данном случае вычисляется по формуле:

, где n— объем выборки,
,— коэффициент Стьюдента (его следует
находить по заданным значениям
n и
 из
таблицы «Критические точки распределения Стьюдента»).

Пример:

В результате испытаний были получены
следующие значения -35, -32, -26, -35, -30, -17. Известно, что они подчиняются
закону нормального распределения. Найдите доверительный интервал для
математического ожидания а генеральной совокупности с доверительной вероятностью
0,9.

Решение:

Найдем несмещенную оценку
.

Найдем
 
.

Далее найдем  
.

Тогда

Доверительный интервал примет вида (-29,2
— 5,62; -29,2 + 5,62) или (-34,82; -23,58).

Нахождение
доверительного интерла для дисперсии и среднеквадратического отклонения
нормального распределения

Пусть из некоторой генеральной
совокупности значений, распределенной по нормальному закону, взята случайная
выборка объема
n <
30, для которой вычислены выборочные
дисперсии: смещенная

 и
исправленная s2

. Тогда для нахождения интервальных
оценок с заданной надежностью

  для генеральной дисперсии D генерального
среднеквадратического отклонения

 используются следующие формулы.

или   
,
 

Значения
— находят с помощью таблицы значений
критических точек
распределения
Пирсона.

Доверительный интервал для дисперсии
находится из этих неравенств путем возведения всех частей неравенства в
квадрат.

Пример:

Было проверено качество 15 болтов.
Предполагая, что ошибка при их изготовлении подчинена нормальному закону
распределения, причем выборочное среднеквадратическое отклонение

равно 5 мм, определить с надежностью доверительный интервал для неизвестного
параметра

.

Решение:

Т. к. n = 15 <30, то воспользуемся формулой
.

Найдем пограничные значения вероятности
для
.

Тогда:

Границы интервала представим в виде  двойного неравенства:

Концы двустороннего доверительного
интервала для дисперсии можно определить и без выполнения арифметических
действий по заданному уровню доверия и объему выборки с помощью соответствующей
таблицы (Границы доверительных интервалов для дисперсии в зависимости от числа
степеней свободы и надежности). Для этого полученные из таблицы концы интервала
умножают на исправленную дисперсию s2

.

Пример: 

Решим предыдущую задачу другим способом.

 Решение:

Найдем исправленную
дисперсию:

По таблице «Границы
доверительных интервалов для дисперсии в зависимости от числа степеней свободы
и надежности» найдем границы доверительного интервала для дисперсии при
k=14 и

: нижняя граница 0,513 и верхняя 2,354.

Умножим полученные
границы на

s2 и
извлечем корень (т.к. нам нужен доверительный интервал не для дисперсии, а для
среднеквадратического отклонения).

Как видно из примеров,
величина доверительного интервала зависит от способа его построения и дает
близкие между собой, но неодинаковые результаты.

При выборках достаточно
большого объема (
n>30)
границы доверительного интервала для генерального среднеквадратического
отклонения можно определить по формуле:

Существует и другой
способ определения границы доверительного интервала для дисперсии, в основе
которого лежит выбор интервала, симметричного относительно

:

Причем
 
некоторое число, которое табулировано и приводится в соответствующей справочной
таблице.

Если 1- q<1, то формула имеет
вид: 

Пример:

Решим предыдущую задачу третьим способом.

 Решение:

Ранее было найдено s
= 5,17. q(0,95;
15) = 0,46 – находим по таблице.

Тогда:

Содержание:

Интервальные оценки параметров распределения. Непрерывное и дискретное распределения признаков:

В материалах сегодняшней лекции мы рассмотрим интервальные оценки параметров распределения, а именно непрерывное и дискретное распределения признаков генеральной и выборочной совокупности.

Статистические ряды и их геометрическое изображение дают представление о распределении наблюдаемой случайной величины X по данным выборки. Во многих задачах вид распределения случайной величины X известен, необходимо получить приближённое значение неизвестных параметров этого распределения: m, Интервальные оценки параметров распределения - определение и вычисление с примерами решения

ПустьИнтервальные оценки параметров распределения - определение и вычисление с примерами решения

Точечной оценкой Интервальные оценки параметров распределения - определение и вычисление с примерами решения неизвестного параметра Интервальные оценки параметров распределения - определение и вычисление с примерами решенияназывается приближённое значение этого параметра, полученное по выборке.

Очевидно, что Интервальные оценки параметров распределения - определение и вычисление с примерами решения зависит от элементов выборки Интервальные оценки параметров распределения - определение и вычисление с примерами решения. Будем считать, что Интервальные оценки параметров распределения - определение и вычисление с примерами решения — случайная величина и является функциейИнтервальные оценки параметров распределения - определение и вычисление с примерами решения системы случайных величин, одной из реализации которой является данная выборка.

Точечная оценка Интервальные оценки параметров распределения - определение и вычисление с примерами решения должна удовлетворять свойствам:

1. Состоятельность. Оценка Интервальные оценки параметров распределения - определение и вычисление с примерами решения параметра Интервальные оценки параметров распределения - определение и вычисление с примерами решенияназывается
состоятельной, если Интервальные оценки параметров распределения - определение и вычисление с примерами решения приИнтервальные оценки параметров распределения - определение и вычисление с примерами решения

Состоятельность оценки можно установить с помощью теоремы: если Интервальные оценки параметров распределения - определение и вычисление с примерами решения, то Интервальные оценки параметров распределения - определение и вычисление с примерами решения — состоятельная оценка.

2.    Несмещённость. Оценка Интервальные оценки параметров распределения - определение и вычисление с примерами решения параметра Интервальные оценки параметров распределения - определение и вычисление с примерами решения называется несмещённой, если Интервальные оценки параметров распределения - определение и вычисление с примерами решения. Для несмещённых оценок систематическая ошибка оценивания равна нулю.

Для оценки параметра Интервальные оценки параметров распределения - определение и вычисление с примерами решения может быть предложено несколько несмещённых оценок. Мерой точности Интервальные оценки параметров распределения - определение и вычисление с примерами решения считают её дисперсию Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Отсюда вытекает третье свойство.

3.    Эффективность. Несмещённая оценка Интервальные оценки параметров распределения - определение и вычисление с примерами решения параметраИнтервальные оценки параметров распределения - определение и вычисление с примерами решения называется эффективной, если она имеет наименьшую дисперсию по сравнению с другими несмещёнными оценками этого параметра.

Запишем точечные оценки числовых характеристик случайной величины X.

1. Точечная оценка Интервальные оценки параметров распределения - определение и вычисление с примерами решения математического ожидания (выборочного среднего) Интервальные оценки параметров распределения - определение и вычисление с примерами решения находится по формуле

Интервальные оценки параметров распределения - определение и вычисление с примерами решенияИнтервальные оценки параметров распределения - определение и вычисление с примерами решения
Проверим свойства оценки:

а) состоятельность следует из теоремы Чебышева:Интервальные оценки параметров распределения - определение и вычисление с примерами решения приИнтервальные оценки параметров распределения - определение и вычисление с примерами решения
б) несмещённость:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

в)эффективность:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

так как Интервальные оценки параметров распределения - определение и вычисление с примерами решения

2.    Точечная оценкаИнтервальные оценки параметров распределения - определение и вычисление с примерами решения дисперсии Интервальные оценки параметров распределения - определение и вычисление с примерами решения находится по формуле
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
она обладает свойствами:    состоятельность, несмещённость,

эффективность.

3.    Точечная оценкаИнтервальные оценки параметров распределения - определение и вычисление с примерами решения среднеквадратического отклонения равна
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
 

Интервальные оценки

При статистической обработке результатов наблюдений необходимо знать не только точечную оценку Интервальные оценки параметров распределения - определение и вычисление с примерами решенияпараметра Интервальные оценки параметров распределения - определение и вычисление с примерами решения но и уметь оценить точность этой оценки

Характеристики вариационного ряда

В материалах сегодняшней лекции мы рассмотрим характеристики вариационного ряда.

Вариационные ряды

Установление закономерностей, которым подчиняются массовые случайные явления, основано на изучении статистических данных — сведений о том, какие значения принял в результате наблюдений интересующий исследователя признак.

Пример:

Исследователь, интересующийся тарифным разрядом рабочих механического цеха, в результате опроса 100 рабочих получил следующие сведения:
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Здесь признаком является тарифный разряд, а полученные о нём сведения образуют статистические данные. Для изучения данных прежде всего необходимо их сгруппировать. Расположим наблюдавшиеся значения признака в порядке возрастания. Эта операция называется ранжированием статистических данных. В результате получим следующий ряд, который называется ранжированным:
(1, 1, 1, 1) — 4 раза; (2, 2, 2, 2, 2, 2) — 6 раз; (3, 3, …, 3) — 12 раз; (4, 4, …, 4) —

16 раз; (5, 5, …, 5) — 44 раза; (6, 6, …, 6) — 18 раз.
Из ранжированного ряда следует, что признак (тарифный разряд) принял шесть различных значений: первый, второй и т.д. до шестого разряда.

В дальнейшем различные значения признака условимся называть вариантами, а под варьированием — понимать изменение значений признака. Если признак по своей сущности таков, что различные его значения не могут отличаться друг от друга меньше чем на некоторую конечную величину, то говорят, что это дискретно варьирующий признак.

Тарифный разряд — дискретно варьирующий признак: его различные значения не могут отличаться друг от друга меньше, чем на единицу. В примере этот признак принял 6 различных значений — 6 вариантов: вариант 1 повторился 4 раза, вариант 2-6 раз и т.д. Число, показывающее. сколько раз встречается вариант л* в ряде наблюдений, называется частотой варианта Интервальные оценки параметров распределения - определение и вычисление с примерами решения Ранжированный ряд представим в виде табл. 1.

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Вместо частоты варианта x можно рассматривать её отношение к общему числу наблюдений n, которое называется частостью варианта х и обозначается Интервальные оценки параметров распределения - определение и вычисление с примерами решения Так как общее число наблюдений равно сумме частот всех вариантов Интервальные оценки параметров распределения - определение и вычисление с примерами решения то справедлива следующая цепочка равенств: Интервальные оценки параметров распределения - определение и вычисление с примерами решенияИнтервальные оценки параметров распределения - определение и вычисление с примерами решения

Таблица, позволяющая судить о распределении частот (или частостей) между вариантами, называется дискретным вариационным рядом.

В примере 1 была поставлена задача изучить результаты наблюдений. Если просмотр первичных данных не позволил составить представление о варьировании значений признака, то, рассматривая вариационный, ряд, можно сделать следующие выводы: тарифный разряд колеблется от 1-го до 6-го; наиболее часто встречается 5-й тарифный разряд; с ростом тарифного разряда (до 5-го разряда) растёт число рабочих, имеющих соответствующий разряд.

Наряду с понятием частоты используют понятие накопленной частоты, которую обозначают Интервальные оценки параметров распределения - определение и вычисление с примерами решения Накопленная частота показывает, во скольких наблюдениях признак принял значения, меньшие заданного значения х. Отношение накопленной частоты к общему числу наблюдений называют накопленной частостью и обозначаютИнтервальные оценки параметров распределения - определение и вычисление с примерами решения Очевидно, что Интервальные оценки параметров распределения - определение и вычисление с примерами решения

В дискретном вариационном ряду накопленные частоты (частости) вычисляются для каждого варианта и являются результатом последовательного суммирования частот (частостей). Накопленные частоты (частости) для вариационного ряда, заданного в табл. 1, вычислены в табл. 2.Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Например, варианту 1 соответствует накопленная частота, равная нулю, так как среди опрошенных рабочих не было таких, у которых тарифный разряд был бы меньше 1-го; варианту 5 соответствует накопленная частота 38, так как было 4+6+12+16 рабочих с тарифным разрядом, меньшим 5-го, накопленная частость для этого варианта равна 0,38 (38: 100); если тарифный разряд выше 6-го, то ему соответствует накопленная частота 100, так как тарифный разряд всех опрошенных рабочих не выше 6-го.

Пример:

Исследователь, изучающий выработку на одного рабочего-станочника механического цеха в отчётном году в процентах к предыдущему году, получил следующие данные (в целых процентах) по 117 рабочим:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

В этом примере признаком является выработка в отчётном году в процентах к предыдущему. Очевидно, что значения, принимаемые этим признаком, могут отличаться одно от другого на сколь угодно малую величину, т. е. признак может принять любое значение в некотором числовом интервале (только для упрощения дальнейших расчетов полученные данные округлены до целых процентов). Такой признак называют непрерывно варьирующим. По приведенным данным трудно выявить характерные черты варьирования значений признака. Построение дискретного вариационного ряда также не даст желаемых результатов (слишком велико число различных наблюдавшихся значений признака). Для получения ясной картины объединим в группы рабочих, у которых величина выработки колеблется, например, в пределах 10%. Сгруппированные данные представим в табл. 3.
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

В табл. 3 частоты m показывают, во скольких наблюдениях признак принял значения, принадлежащие тому или иному интервалу. Такую частоту называют интервальной, а отношение её к общему числу наблюдений — интервальной частостью w. Таблицу, позволяющую судить о распределении частот (или частостей) между интервалами варьирования значений    признака, называют интервальным вариационным рядом.

Интервальный вариационный ряд, представленный в табл. 3, позволяет выявить закономерности распределения рабочих по интервалам выработки. В табл. 3 для верхних границ интервалов приведены накопленные    частоты (частости)    (они получены последовательным суммированием интервальных частот (частостей), начиная с частоты (частости) первого интервала). Например, для верхней границы третьего интервала, равной 110, накопленная частота равна 69; так как 8+15+46 рабочих имели выработку меньше 110%, накопленная частость равна 69/117.

Интервальный вариационный ряд строят по данным наблюдений за непрерывно    варьирующим признаком, а также за дискретно варьирующим, если велико число наблюдавшихся вариантов. Дискретный вариационный ряд строят только для дискретно варьирующего признака.

Иногда интервальный вариационный ряд условно заменяют дискретным. Тогда серединное значение интервала принимают за вариант х, а соответствующую интервальную частоту — за Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Построение интервального вариационного ряда

Для построения интервального вариационного ряда необходимо определить величину интервала, установить полную шкалу интервалов, в соответствии с ней сгруппировать результаты наблюдений. В примере 2 при выборе величины интервала учитывались требования наибольшего удобства отсчётов. Интервал был принят равным 10% и оказался удачным. Построенный интервальный ряд позволил выявить закономерности варьирования значений признака. Для определения оптимального интервала h, т.е. такого, при котором построенный интервальный ряд не был бы слишком громоздким и в то же время позволял выявить характерные черты рассматриваемого явления, можно использовать формулу Стэрджеса
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

где Интервальные оценки параметров распределения - определение и вычисление с примерами решения— соответственно максимальный и минимальный варианты. Если h — дробное число, то за величину интервала следует взять либо ближайшее целое число, либо ближайшую несложную дробь.

За начало первого интервала рекомендуется принимать величину 

Интервальные оценки параметров распределения - определение и вычисление с примерами решения начало второго интервала совпадает с концом первого и равно

Интервальные оценки параметров распределения - определение и вычисление с примерами решения начало третьего интервала совпадает с концом второго и равно Интервальные оценки параметров распределения - определение и вычисление с примерами решения Построение интервалов продолжают до тех пор, пока начало следующего по порядку интервала не будет больше Интервальные оценки параметров распределения - определение и вычисление с примерами решения

После установления шкалы интервалов следует сгруппировать результаты наблюдений. Границы последовательных интервалов записывают в столбец слева, а затем, просматривая статистические данные в том порядке, в каком они были получены, проставляют чёрточки справа от соответствующего интервала. В интервал включается данные, большие или равные нижней границе интервала и меньшие верхней границы. Целесообразно каждые пятое и шестое наблюдения отмечать диагональными черточками, пересекающими квадрат из четырёх предшествующих. Общее количество чёрточек, проставленных против какого-либо интервала, определяет его частоту.

Графическое изображение вариационных рядов

Графическое изображение вариационного ряда позволяет представить в наглядной форме закономерности варьирования значений признака. Наиболее    широко используются    следующие    виды графического изображения вариационных рядов: полигон, гистограмма, кумулятивная
кривая.

Полигон, как правило, служит для изображения дискретного вариационного ряда. Для его построения в прямоугольной системе координат наносят точки с координатами Интервальные оценки параметров распределения - определение и вычисление с примерами решения где x — вариант, а Интервальные оценки параметров распределения - определение и вычисление с примерами решения — соответствующая ему частота. Иногда вместо точек Интервальные оценки параметров распределения - определение и вычисление с примерами решения строят точки (х; Интервальные оценки параметров распределения - определение и вычисление с примерами решения. Затем эти точки соединяют последовательно отрезками. Крайние левую и правую точки соединяют соответственно с точками, изображающими ближайший снизу к наименьшему и ближайший сверху к наибольшему варианты. Полученная ломаная линия называется полигоном.

Гистограмма служит для изображения только интервального вариационного ряда. Для её построения в прямоугольной системе координат по оси абсцисс откладывают отрезки, изображающие интервалы варьирования, и на этих отрезках, как на основании, строят прямоугольники с высотами, равными частотам (или частостям) соответствующего интервала. В результате получают ступенчатую фигуру, состоящую из прямоугольников, которую и называют гистограммой.

Если по оси абсцисс выбрать такой масштаб, чтобы ширина интервала была равна единице, и считать, что по оси ординат единица масштаба соответствует одному наблюдению, то площадь гистограммы равна общему числу наблюдений, если по оси ординат откладывались частоты, и эта площадь равна единице, если откладывались частости.

Иногда интервальный ряд изображают с помощью полигона. В этом случае интервалы заменяют их серединными значениями и к ним относят интервальные частоты. Для полученного дискретного ряда строят полигон.

Кумулятивная кривая (кривая накопленных частот или накопленных частостей) строится следующим образом. Если вариационный ряд дискретный, то в прямоугольной системе координат строят точки с координатами Интервальные оценки параметров распределения - определение и вычисление с примерами решениягде х — вариант, Интервальные оценки параметров распределения - определение и вычисление с примерами решения— соответствующая накопленная частота. Иногда вместо точекИнтервальные оценки параметров распределения - определение и вычисление с примерами решения строят точки Интервальные оценки параметров распределения - определение и вычисление с примерами решения Полученные точки соединяют отрезками.

Если вариационный ряд интервальный, то по оси абсцисс откладывают интервалы. Верхним границам интервалов соответствуют накопленные частоты (или накопленные частости); нижней границе первого интервала — накопленная частота, равная нулю. Построив кумулятивную кривую, можно приблизительно установить число наблюдений (или их долю в общем количестве наблюдений), в которых признак принял значения, меньшие заданного.

Построение вариационного ряда — первый шаг к осмысливанию ряда наблюдений. Однако на практике этого недостаточно, особенно когда необходимо сравнить два ряда или более. Сравнению подлежат только так называемые однотипные вариационные ряды, т. е. ряды, которые построены по результатам обработки сходных статистических данных. Например, можно сравнивать распределения рабочих по возрасту на двух заводах или распределения времени простоев станков одного вида. Однотипные вариационные ряды обычно имеют похожую форму при графическом изображении, однако могут отличаться друг от друга, а именно: иметь различные значения признака, вокруг которых концентрируются наблюдения (меры этой качественной особенности называется средними величинами); различаться рассеянием наблюдений вокруг средних величин (меры этой особенности получили название показателей вариации).

Средние величины и показатели вариации позволяют судить о характерных особенностях вариационного ряда и называются статистическими характеристиками. К статистическим характеристикам относятся также показатели, характеризующие различия в скошенности полигонов и различия в их островершинности.

Средние величины

Средние величины являются как бы «представителями» всего ряда наблюдений, поскольку вокруг них концентрируются наблюдавшиеся значения признака. Заметим, что только для качественно однородных наблюдений имеет смысл вычислять средние величины.

Различают несколько видов средних величин: средняя арифметическая, средняя геометрическая, средняя гармоническая, средняя квадратическая, средняя кубическая и т.д. При выборе вида средней величины необходимо прежде всего ответить на вопрос: какое свойство ряда мы хотим представить средней величиной или, иначе говоря, какая цель преследуется при вычислении средней? Это свойство, получившее название определяющего, и определяет вид средней. Понятие определяющего свойства впервые введено советским статистиком А. Я. Боярским.

Наиболее распространенной средней величиной является средняя арифметическая. Пусть Интервальные оценки параметров распределения - определение и вычисление с примерами решения— данные наблюдений; Интервальные оценки параметров распределения - определение и вычисление с примерами решения — средняя арифметическая. Свойство, определяющее среднюю арифметическую, формулируется следующим образом:    сумма результатов наблюдений должна остаться неизменной, если каждое из них заменить средней арифметической, т.е.
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Так как Интервальные оценки параметров распределения - определение и вычисление с примерами решенияОтсюда получаем следующую формулу для
вычисления средней арифметической по данным наблюдений:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Если по наблюдениям построен вариационный ряд, то средняя арифметическая
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
где x- — вариант, если ряд дискретный, и центр интервала, если ряд интервальный;Интервальные оценки параметров распределения - определение и вычисление с примерами решения — соответствующая частота.

ЧастотыИнтервальные оценки параметров распределения - определение и вычисление с примерами решения в формуле (4) называют весами, а операцию умножения x на Интервальные оценки параметров распределения - определение и вычисление с примерами решения — операцией взвешивания. Среднюю арифметическую, вычисленную по формуле (4), называют взвешенной в отличие от средней арифметической, вычисленной по формуле (3).

Очевидно, что если по данным наблюдений построен дискретный вариационный ряд, то формулы (3) и (4) дают одинаковые значения средней арифметической. Если же по наблюдениям построен интервальный ряд, то средние арифметические, вычисленные по формулам

(3) и (4), могут не совпадать, так как в формуле (4) значения признака внутри каждого интервала принимаются равными центрам интервалов. Ошибка, возникающая в результате такой замены, вообще говоря, очень мала, если наблюдения, распределены равномерно вдоль каждого интервала, а не скапливаются к одноименным границам интервалов (т.е. либо все к нижним границам, либо все к верхним границам).

Среднюю арифметическую для вариационного ряда можно вычислять по формуле
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
которая является следствием формулы (4). Действительно,

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Свойство, определяющее среднюю арифметическую, сводилось к требованию неизменности суммы наблюдений при замене каждого из них средней арифметической. При решении практических задач может оказаться необходимым вычислить такую среднюю Интервальные оценки параметров распределения - определение и вычисление с примерами решения при замене которой каждого наблюдения, осталась бы неизменной сумма q-x степеней наблюдений, т.е. чтобы
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
где q — положительное или отрицательное число. Среднюю Интервальные оценки параметров распределения - определение и вычисление с примерами решения называют степенной средней q-го порядка. Из определяющего свойства (6) получим следующую формулу для вычисления Интервальные оценки параметров распределения - определение и вычисление с примерами решения по данным наблюдений:
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Сравнивая формулы (7) и (3), можно сделать вывод, что степенная средняя первого порядка есть не что иное, как средняя арифметическая, т.е.

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

При q=-l из формулы (7) получаем выражение для средней гармонической, при q=2 — для среднеквадратической, при q=3 — для средней кубической и т.д.

Средней геометрической Интервальные оценки параметров распределения - определение и вычисление с примерами решенияназывают корень n-й степени из произведения наблюдений    Интервальные оценки параметров распределения - определение и вычисление с примерами решенияМожно доказать, что средняя геометрическая является предельным случаем степенной средней q-го порядка при q=0, т.е.

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Рассмотрим основные свойства средней арифметической.

1°. Сумма отклонений результатов наблюдений от средней арифметической равна нулю.

Доказательство. Исходя из определяющего свойства (2) средней арифметической, получаем

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Если по результатам наблюдений построен вариационный ряд и средняя арифметическая взвешенная, то свойство 1° формулируется так: сумма произведений отклонений вариантов от средней арифметической на соответствующие частоты равна нулю. Действительно, на основании формулы (4) получаемИнтервальные оценки параметров распределения - определение и вычисление с примерами решения

или

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

2°. Если все результаты наблюдений уменьшить (увеличить) на одно и то же число, то средняя арифметическая уменьшится (увеличится) на то же число. (Доказательство свойств 2° и 3° проведём в предположении, что по результатам наблюдений построен вариационный ряд и средняя арифметическая — взвешенная).

Доказательство. Очевидно, что при уменьшении вариантов на одно и то же число с соответствующие им частоты останутся прежними. Поэтому взвешенная средняя арифметическая для изменённого вариационного ряда такова:
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Аналогично можно показать, что Интервальные оценки параметров распределения - определение и вычисление с примерами решенияЭто свойство позволяет среднюю арифметическую вычислять не по данным вариантам, а по уменьшенным (увеличенным) на одно и то же число с. Если среднюю арифметическую, вычисленную для измененного ряда, увеличить (уменьшить) на число с, то получим среднюю арифметическую для первоначального вариационного ряда.

3°. Если все результаты наблюдений уменьшить (увеличить) в одно и то же число раз, то средняя арифметическая уменьшится (увеличится) во столько же раз.

Доказательство. Очевидно, что при уменьшении вариантов в k раз их частоты останутся прежними. Поэтому средняя арифметическая для изменённого ряда

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Аналогично можно доказать, чтоИнтервальные оценки параметров распределения - определение и вычисление с примерами решенияРассмотренное свойство позволяет среднюю арифметическую вычислять не по данным вариантам, а по уменьшенным (увеличенным) в одно и то же число k раз. Если среднюю арифметическую, вычисленную для изменённого ряда, увеличить

(уменьшить) в k раз, то получим среднюю арифметическую для первоначального вариационного ряда.

4°. Если ряд наблюдений состоит из двух групп наблюдений, то средняя арифметическая всего ряда равна взвешенной средней арифметической групповых средних, причём весами являются объёмы групп.

Пусть Интервальные оценки параметров распределения - определение и вычисление с примерами решения число наблюдений соответственно в 1-й и 2-й группах; Интервальные оценки параметров распределения - определение и вычисление с примерами решения

средняя арифметическая для всего ряда Интервальные оценки параметров распределения - определение и вычисление с примерами решения наблюдений; Интервальные оценки параметров распределения - определение и вычисление с примерами решения— средние арифметические соответственно для 1-й и 2-й групп наблюдений. Требуется доказать, что
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Доказательство.    Исходя    из определяющего свойству средней арифметической, имеем:    произведение Интервальные оценки параметров распределения - определение и вычисление с примерами решения равно сумме (/?! +/;2) наблюдавшихся значений признака; Интервальные оценки параметров распределения - определение и вычисление с примерами решения равно суммеИнтервальные оценки параметров распределения - определение и вычисление с примерами решениянаблюдавшихся значений, образующих первую группу: Интервальные оценки параметров распределения - определение и вычисление с примерами решенияравно сумме Интервальные оценки параметров распределения - определение и вычисление с примерами решения наблюдавшихся значений, образующих вторую группу.

Следовательно,
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Следствие. Если ряд наблюдений состоит из k групп наблюдений, то средняя арифметическая всего ряда Интервальные оценки параметров распределения - определение и вычисление с примерами решения равна взвешенной средней арифметической групповых средних Интервальные оценки параметров распределения - определение и вычисление с примерами решения причём весами являются объёмы групп Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

5°. Средняя арифметическая для сумм (разностей) взаимно соответствующих значений признака двух рядов наблюдений с одинаковым числом наблюдений равна сумме (разности) средних арифметических этих рядов.

Пусть Интервальные оценки параметров распределения - определение и вычисление с примерами решения— один ряд наблюдений, Интервальные оценки параметров распределения - определение и вычисление с примерами решения — его средняя арифметическая; Интервальные оценки параметров распределения - определение и вычисление с примерами решения— другой ряд наблюдений,Интервальные оценки параметров распределения - определение и вычисление с примерами решения — его средняя арифметическая Интервальные оценки параметров распределения - определение и вычисление с примерами решения—    ряд сумм соответствующих наблюдений, Интервальные оценки параметров распределения - определение и вычисление с примерами решения— его средняя арифметическая. Требуется доказать, что Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Доказательство. Имеем

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Аналогично можно показать, что Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Следствие. Средняя арифметическая алгебраической суммы соответствующих значений признака нескольких рядов наблюдений с одинаковым числом наблюдений равна алгебраической сумме средних арифметических этих рядов.

Вычисление средней арифметической вариационного ряда непосредственно по формуле (4) приводит к громоздким расчётам, если числовые значения вариантов и соответствующие им частоты велики. Поэтому часто используют следующий способ, основанный на свойствах 3° и 2° средней арифметической: среднюю вычисляют не по первоначальным вариантам л-, а по уменьшенным на не которое число с, а затем разделённым на некоторое число k т.е. для вариантов Интервальные оценки параметров распределения - определение и вычисление с примерами решения Зная среднюю арифметическую Интервальные оценки параметров распределения - определение и вычисление с примерами решения для измененного ряда, легко вычислить среднюю арифметическую для первоначального ряда:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Действительно, принимая во внимание свойства 3° и 2° средней арифметической, получаем

Интервальные оценки параметров распределения - определение и вычисление с примерами решения откуда    следует,    что

Интервальные оценки параметров распределения - определение и вычисление с примерами решенияОчевидно, что от выбора числовых значений с и к зависит, насколько простым будет вычисление средней арифметической для измененного ряда. Значения с и k обычно выбирают так, чтобы новые варианты Интервальные оценки параметров распределения - определение и вычисление с примерами решения были небольшими целыми числами. Если ряд дискретный, то в качестве с берётся вариант, занимающий серединное положение в вариационном ряду (если таких вариантов два, то за k принимается тот, которому соответствует большая частота); за k принимают наибольший общий делитель вариантов (х-с). Если ряд интервальный, то его заменяют дискретным; тогда с — центр серединного интервала (если таких интервала два, то берётся тот, которому соответствует большая частота); за к принимают длину интервала h

Медиана и мода

Наряду со средними величинами в качестве описательных характеристик вариационного ряда применяют медиану и моду.

Медианой Интервальные оценки параметров распределения - определение и вычисление с примерами решения называют значение признака, приходящееся на середину ранжированного ряда наблюдений.

Пусть проведено нечётное число наблюдений, т.е. n=2q—1, и результаты наблюдений проранжированы и выписаны в следующий ряд:

Интервальные оценки параметров распределения - определение и вычисление с примерами решенияЗдесь Интервальные оценки параметров распределения - определение и вычисление с примерами решения значение признака, занявшее i-е порядковое место в ранжированном ряду. На середину ряда приходится значение Интервальные оценки параметров распределения - определение и вычисление с примерами решенияСледовательно,

Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Если проведено чётное число наблюдений, т.е. n=2q, то на середину ранжированного ряда Интервальные оценки параметров распределения - определение и вычисление с примерами решения приходятся значения Интервальные оценки параметров распределения - определение и вычисление с примерами решенияи

Интервальные оценки параметров распределения - определение и вычисление с примерами решения В этом случае за медиану принимают среднюю арифметическую значений Интервальные оценки параметров распределения - определение и вычисление с примерами решения

, т.е.

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Покажем на примерах на практическом занятии, как определяется медиана дискретного и интервального вариационных рядов.

В общем случае медиана для интервального вариационного ряда определяется по формуле

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

или по следующей формуле, полученной из формулы (9) в результате деления числителя и знаменателя входящей в неё дроби на n:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

гдеИнтервальные оценки параметров распределения - определение и вычисление с примерами решения — начало медианного интервала, т.е. такого, которому соответствует первая из накопленных частот (накопленных частостей), равная или большая половине всех наблюдений (>0,5); Интервальные оценки параметров распределения - определение и вычисление с примерами решения—частота (частость), накопленная к началу медианного интервала; Интервальные оценки параметров распределения - определение и вычисление с примерами решения—частота (частость) медианного интервала.

Модой Интервальные оценки параметров распределения - определение и вычисление с примерами решения называют такое значение признака, которое наблюдалось наибольшее число раз. Нахождение моды для дискретного вариационного ряда не требует каких-либо вычислений, так как ею является вариант, которому соответствует наибольшая частота.

В случае интервального вариационного ряда мода вычисляется по следующей формуле (вывод формулы можно найти в кн.: Венецкий И. Г Кильдишев Г. С. Теория вероятностей и математическая статистика. М., 1975.):

Интервальные оценки параметров распределения - определение и вычисление с примерами решенияИнтервальные оценки параметров распределения - определение и вычисление с примерами решения

или по тождественной формуле:
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
где Интервальные оценки параметров распределения - определение и вычисление с примерами решения — начало модального интервала, т.е. такого, которому соответствует наибольшая частота (частость); Интервальные оценки параметров распределения - определение и вычисление с примерами решения — частота (частость) модального интервала; Интервальные оценки параметров распределения - определение и вычисление с примерами решения— частота (частость) интервала, предшествующего модальному; Интервальные оценки параметров распределения - определение и вычисление с примерами решения— частота (частость) интервала, следующего за модальным.

Моду используют в случаях, когда нужно ответить на вопрос, какой товар имеет наибольший спрос, каковы преобладающие в данный момент уровни производительности труда, себестоимости и т. д. Модальная производительность, себестоимость и т.д. помогают вскрыть ресурсы, имеющиеся в экономике.

Показатели вариации

Средние величины, характеризуя вариационный ряд числом, не отражают изменчивости наблюдавшихся значений признака, т.е. вариацию. Простейшим показателем вариации является вариационный размах Интервальные оценки параметров распределения - определение и вычисление с примерами решения равный разности между наибольшим и наименьшим вариантами, т.е.
Интервальные оценки параметров распределения - определение и вычисление с примерами решения(13)
Вариационный размах — приближённый показатель вариации, так как почти не зависит от изменения вариантов, а крайние варианты, которые используются для его вычисления, как правило, ненадёжны.

Более содержательными являются меры рассеяния наблюдений вокруг средних величин. Средняя арифметическая является основным видом средних, поэтому ограничимся рассмотрением мер рассеяния наблюдений вокруг средней арифметической.

Сумма отклонений результатов наблюдений Интервальные оценки параметров распределения - определение и вычисление с примерами решенияот средней арифметическойИнтервальные оценки параметров распределения - определение и вычисление с примерами решенияне может характеризовать вариацию наблюдений около средней арифметической. В силу свойства 1° эта сумма равна нулю. Берут или абсолютные величины, или квадраты разностей Интервальные оценки параметров распределения - определение и вычисление с примерами решения. В результате получают различные показатели вариации.

Средним линейным отклонением (d) называют среднюю арифметическую абсолютных величин отклонений результатов наблюдений от их средней ар и ф метической:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Эмпирической дисперсией Интервальные оценки параметров распределения - определение и вычисление с примерами решения называют среднюю арифметическую квадратов отклонений результатов наблюдений от их средней ар и ф м ети ч ес ко й:
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Если по результатам наблюдений построен вариационный ряд, то эмпирическая дисперсияИнтервальные оценки параметров распределения - определение и вычисление с примерами решения

Вместо эмпирической дисперсии в качестве меры рассеяния наблюдений вокруг средней арифметической часто используют эмпирическое среднеквадратическое отклонение, равное арифметическому значению корня квадратного из дисперсии и имеющее ту же размерность, что и значения признака.

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

где x — вариант (если ряд дискретный) и центр интервала (если ряд интервальный); Интервальные оценки параметров распределения - определение и вычисление с примерами решения — соответствующая частота (частость); Интервальные оценки параметров распределения - определение и вычисление с примерами решения— средняя арифметическая.

Для краткости величину Интервальные оценки параметров распределения - определение и вычисление с примерами решениячасто будем называть просто дисперсией, не употребляя термина «эмпирическая». Однако при этом всегда следует помнить, что в этом случае дисперсия вычислена по результатам наблюдений на основании опытных данных, т.е. является эмпирической. Аналогичное замечание относится и к величине s.

Приведем свойство минимальности эмпирической дисперсии:Интервальные оценки параметров распределения - определение и вычисление с примерами решения меньше взвешенной средней арифметической квадратов отклонений вариантов от любой постоянной величины, отличной от средней арифметической, т.е.
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
если Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Доказательство. Найдём экстремум функции Интервальные оценки параметров распределения - определение и вычисление с примерами решения. Для

этого решим уравнение Интервальные оценки параметров распределения - определение и вычисление с примерами решения Имеем:
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Так как Интервальные оценки параметров распределения - определение и вычисление с примерами решениято функция f(a) имеет в точке Интервальные оценки параметров распределения - определение и вычисление с примерами решения минимум.
Можно показать, что среднее линейное отклонение не обладает свойством минимальности. Поэтому наиболее употребительными мерами рассеяния
 

Для вариационного ряда среднеквадратическое отклонение наблюдений вокруг средней арифметической являются эмпирическая дисперсия и эмпирическое среднеквадратическое отклонение.

Итальянский статистик Коррадо Джинни предложил в качестве показателя вариации использовать величину Интервальные оценки параметров распределения - определение и вычисление с примерами решения гдеИнтервальные оценки параметров распределения - определение и вычисление с примерами решения— ряд наблюдений. Особенность этого показателя состоит в том, что он зависит только от разностей между наблюдениями и измеряет как бы «внутреннюю изменчивость» значений признака, а не их рассеяние вокруг какой-либо точки. Можно показать, чтоИнтервальные оценки параметров распределения - определение и вычисление с примерами решенияявлясь мерой рассеяния значений признака вокруг средней арифметической, характеризует также и внутреннюю их изменчивость.

Свойства эмпирической дисперсии

Рассмотрим основные свойства эмпирической дисперсии, знание которых позволит упростить её вычисление.

1 °. Дисперсия постоянной величины равна нулю.

Доказательство этого свойства очевидно вытекает из того, что дисперсия является показателем рассеяния наблюдений вокруг средней арифметической, а средняя арифметическая постоянной равна этой постоянной.

2°. Если все результаты наблюдений уменьшить (увеличить) на одно и то же число с, то дисперсия не изменится.

Доказательство свойств 2° и 3° проведём в предположении, что по результатам наблюдений построен вариационный ряд.

Доказательство. Если все варианты уменьшить на число с, то в соответствии со свойством 2° средней арифметической средняя для измененного вариационного ряда равна Интервальные оценки параметров распределения - определение и вычисление с примерами решения следовательно, его дисперсия

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

,т.е. совпадает с дисперсией первоначального вариационного ряда. Аналогично можно показать, чтоИнтервальные оценки параметров распределения - определение и вычисление с примерами решения

Доказанное свойство позволяет вычислять дисперсию не по данным вариантам, а по уменьшенным, (увеличенным) на одно и то же число с, так как дисперсия, вычисленная для измененного ряда, равна первоначальной.

3°. Если все результаты наблюдений уменьшить (увеличить) в одно и то же число k раз, то дисперсия уменьшится (увеличится) в Интервальные оценки параметров распределения - определение и вычисление с примерами решения раз.

Доказательство. Если все варианты уменьшить в k раз, то, согласно свойству 3 средней арифметической, средняя для измененного вариационного ряда равна Интервальные оценки параметров распределения - определение и вычисление с примерами решения следовательно, его дисперсия

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Аналогично можно показать, что Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Это свойство позволяет эмпирическую дисперсию вычислять не по данным вариантам, а по уменьшенным (увеличенным) в одно и то же число k раз. Если дисперсию, вычисленную для измененного ряда, увеличить (уменьшить) в Интервальные оценки параметров распределения - определение и вычисление с примерами решения раз, то получим дисперсию для первоначального вариационного ряда.

Следствие. Если все варианты уменьшить (увеличить) в k раз, то среднеквадратическое отклонение уменьшится (увеличится) в число раз, равное k.

Следствие очевидно вытекает из определения среднеквадратического
отклонения.

Прежде чем рассматривать следующее свойство дисперсии, докажем теорему.

Теорема. Эмпирическая дисперсия равна разности между средней
арифметической    квадратов наблюдений и    квадратом    средней
арифметической,    т.е.        
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Доказательство    проведём для случая    взвешенных    средних    арифметических, т.е.Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Доказательство. Тождественно преобразуя выражения для дисперсии, имеем
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
 

4°, Если ряд наблюдений состоит из двух групп наблюдений, то дисперсия всего ряда равна сумме средней арифметической групповых дисперсий и средней арифметической квадратов отклонений групповых средних от средней всего ряда, причем ‘ при вычислении средних арифметических весами являются объемы групп.

Пусть Интервальные оценки параметров распределения - определение и вычисление с примерами решения — число наблюдений соответственно в 1-й и 2-й группах; Интервальные оценки параметров распределения - определение и вычисление с примерами решения— средние арифметические для 1-й и 2-й групп наблюдений;Интервальные оценки параметров распределения - определение и вычисление с примерами решения — дисперсии для 1-й и 2-й групп наблюдений; Интервальные оценки параметров распределения - определение и вычисление с примерами решения— средняя арифметическая и дисперсия для всего ряда Интервальные оценки параметров распределения - определение и вычисление с примерами решения наблюдений. Требуется доказать, что

Интервальные оценки параметров распределения - определение и вычисление с примерами решенияДоказательство.

ПустьИнтервальные оценки параметров распределения - определение и вычисление с примерами решения— ряд наблюдавшихся значений признака, причем к первой группе относятся наблюдения Интервальные оценки параметров распределения - определение и вычисление с примерами решения , а ко второй — наблюдения Интервальные оценки параметров распределения - определение и вычисление с примерами решенияОбозначим символом i порядковый номер наблюдения, попавшего в 1-ю группу, а через j — порядковый номер наблюдения, попавшего во 2-ю группу. На основании теоремы о дисперсии имеемИнтервальные оценки параметров распределения - определение и вычисление с примерами решенияСледовательно, первое слагаемое имеет видИнтервальные оценки параметров распределения - определение и вычисление с примерами решения

В соответствии со свойством 4° средней арифметической можно записать Интервальные оценки параметров распределения - определение и вычисление с примерами решенияУчитывая последнее равенство, преобразуем второе слагаемое:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Используя найденные выражения для слагаемых, получаем
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Свойство 4° можно обобщить на случай, когда ряд наблюдений состоит из любого количества Интервальные оценки параметров распределения - определение и вычисление с примерами решения групп наблюдений. Введём понятия межгрупповой и внутригрупповой дисперсий.

Если ряд наблюдений состоит из k групп наблюдений, то межгрупповой дисперсией Интервальные оценки параметров распределения - определение и вычисление с примерами решения называют среднюю арифметическую квадратов отклонений групповых средних Интервальные оценки параметров распределения - определение и вычисление с примерами решения от средней всего ряда наблюдений Интервальные оценки параметров распределения - определение и вычисление с примерами решения причём весами являются объёмы группИнтервальные оценки параметров распределения - определение и вычисление с примерами решеният.е.
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Средней групповых дисперсий или внутригрупповой дисперсией Интервальные оценки параметров распределения - определение и вычисление с примерами решения называют среднюю арифметическую групповых дисперсийИнтервальные оценки параметров распределения - определение и вычисление с примерами решения причём весами являются объёмы групп Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Следствие (свойства 4°). Если ряд наблюдений состоит из k групп наблюдений, то дисперсия всего ряда s2 равна сумме внутригрупповой и межгрупповой дисперсий, т.е. Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Вычисление дисперсии вариационного ряда непосредственно по формуле (16) приводит к громоздким расчётам, если числовые значения вариантов и соответствующие им частоты велики. Поэтому часто дисперсию вычисляют не по первоначальным вариантам х, а по вариантам Интервальные оценки параметров распределения - определение и вычисление с примерами решения Зная Интервальные оценки параметров распределения - определение и вычисление с примерами решения (дисперсию для измененного ряда), легко вычислить дисперсию Интервальные оценки параметров распределения - определение и вычисление с примерами решениядля первоначального ряда:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Действительно, принимая во внимание свойства 3° и 2° дисперсии, получаем
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
откуда следует, что Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Требования к с  и k предъявляют те же, что и в упрощенном способе вычисления средней арифметической.
 

Эмпирические центральные и начальные моменты

Средняя арифметическая и дисперсия вариационного ряда являются частными случаями более общего понятия о моментах вариационного ряда.

Эмпирическим начальным моментомИнтервальные оценки параметров распределения - определение и вычисление с примерами решения порядка q называют взвешенную среднюю арифметическую q-x степеней вариантов, т.е.

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Эмпирический начальный момент нулевого порядка
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Эмпирический начальный момент первого порядкаИнтервальные оценки параметров распределения - определение и вычисление с примерами решения
Эмпирический начальный момент второго порядка Интервальные оценки параметров распределения - определение и вычисление с примерами решения и т.д.
Эмпирическим центральным моментом Интервальные оценки параметров распределения - определение и вычисление с примерами решения порядка q называют взвешенную среднюю арифметическую q-x степеней отклонений вариантов от их средней арифметической, т.е.

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Эмпирический центральный момент нулевого порядка

Интервальные оценки параметров распределения - определение и вычисление с примерами решения Эмпирический центральный момент первого порядка Интервальные оценки параметров распределения - определение и вычисление с примерами решения (в силу свойства 1° средней арифметической).

Эмпирический центральный момент второго порядка

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

В дальнейшем для краткости величинуИнтервальные оценки параметров распределения - определение и вычисление с примерами решения часто будем называть просто центральным моментом (начальным моментом), не употребляя термин «эмлирический».

Используя формулу бинома Ньютона, разложим в ряд выражение для центрального момента q-го порядка:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

В проведенных тождественных преобразованиях использованы свойства 5° и 3° средней арифметической; Интервальные оценки параметров распределения - определение и вычисление с примерами решения — число сочетаний из q элементов по р элементов Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Итак, центральный момент q-го порядка выражается через начальные моменты следующим образом:
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Полагая q = 0, 1, 2,…, можно получить выражения центральных моментов различных порядков через начальные моменты:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

 и т.д.

Заметим, что формула (23) для центрального момента второго порядка, как и следовало ожидать, аналогична формуле (18) для дисперсии.

Рассмотрим свойства центральных моментов, которые позволят значительно упростить их вычисление.

1°. Если все варианты уменьшить (увеличить) на одно и то же число с, то центральный момент q-го порядка не изменится.

Доказательство. Если все варианты уменьшить на число с, то средняя арифметическая для измененного ряда равна Интервальные оценки параметров распределения - определение и вычисление с примерами решения поэтому центральный момент q-го порядка
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Аналогично можно показать, что Интервальные оценки параметров распределения - определение и вычисление с примерами решения

2°. Если все варианты уменьшить (увеличить) в одно и то же число k раз, то центральный момент q-го порядка уменьшится (увеличится) в Интервальные оценки параметров распределения - определение и вычисление с примерами решения раз. Доказательство. Если все варианты уменьшить в одно и то же число k раз,

то средняя арифметическая для измененного вариационного ряда равна Интервальные оценки параметров распределения - определение и вычисление с примерами решения

поэтому центральный момент q-го порядка
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Аналогично можно показать, что Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Для облегчения расчётов центральные моменты вычисляют не по первоначальным вариантам х, а по вариантамИнтервальные оценки параметров распределения - определение и вычисление с примерами решения ЗнаяИнтервальные оценки параметров распределения - определение и вычисление с примерами решения (центральный момент q-го порядка для измененного ряда), легко вычислить центральный момент q-го порядка для первоначального ряда:
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

внимание свойства центрального момента, получаем

Интервальные оценки параметров распределения - определение и вычисление с примерами решения
откуда следует, чтоИнтервальные оценки параметров распределения - определение и вычисление с примерами решения

Эмпирические асимметрия и эксцесс

Эмпирическим коэффициентом асимметрии Интервальные оценки параметров распределения - определение и вычисление с примерами решения называют отношение центрального момента третьего порядка к кубу среднеквадратического отклонения:
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Если полигон вариационного ряда скошен, т.е. одна из его ветвей, начиная от вершины, зримо длиннее другой, то такой ряд называют асимметричным. Из формулы (27) следует, что если в вариационном ряду преобладают варианты, меньшие Интервальные оценки параметров распределения - определение и вычисление с примерами решения то эмпирический коэффициент асимметрии отрицателен; говорят, что в этом случае имеет место левосторонняя асимметрия. Если же в вариационном ряду преобладают варианты, большие Интервальные оценки параметров распределения - определение и вычисление с примерами решения то эмпирический коэффициент асимметрии положителен; в этом случае имеет место правосторонняя асимметрия. При левосторонней асимметрии левая ветвь полигона длиннее правой. При правосторонней, более длинной является правая ветвь.

Эмпирическим эксцессом или коэффициентом крутости Интервальные оценки параметров распределения - определение и вычисление с примерами решения называют уменьшенное на 3 единицы отношение центрального момента четвертого порядка к четвертой степени среднеквадратического отклонения:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения
За стандартное значение эксцесса принимают нуль-эксцесс так называемой нормальной кривой (см. рис. 1).

Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Кривые, у которых эксцесс отрицательный, по сравнению с нормальной менее крутые, имеют, более плоскую вершину и называются «плосковершинными» Кривые с положительным эксцессом более крутые по сравнению с нормальной кривой, имеют более острую вершину и называются «островершинными».

Интервальные оценки параметров распределений

Доверительный интервал, доверительная вероятность:

Точечная оценка неизвестного параметра Интервальные оценки параметров распределения - определение и вычисление с примерами решения, найденная по выборке объема Интервальные оценки параметров распределения - определение и вычисление с примерами решения из генеральной совокупности, не позволяет непосредственно узнать ошибку, которая получается, когда вместо точного значения неизвестного параметра Интервальные оценки параметров распределения - определение и вычисление с примерами решения принимается некоторое его приближение (оценка) Интервальные оценки параметров распределения - определение и вычисление с примерами решения Поэтому чаще пользуются интервальной оценкой, основанной на определении некоторого интервала, накрывающего неизвестное значение параметра Интервальные оценки параметров распределения - определение и вычисление с примерами решения с определенной вероятностью. На рис. 10.1 изображен интервал длиной Интервальные оценки параметров распределения - определение и вычисление с примерами решения, внутри которого в любом месте может находиться неизвестное значение параметра Интервальные оценки параметров распределения - определение и вычисление с примерами решения.

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Чем меньше разность Интервальные оценки параметров распределения - определение и вычисление с примерами решения тем лучше качество оценки. И если записать Интервальные оценки параметров распределения - определение и вычисление с примерами решения то Интервальные оценки параметров распределения - определение и вычисление с примерами решения будет характеризовать точность оценки.
 

Доверительной вероятностью оценки называется вероятность Интервальные оценки параметров распределения - определение и вычисление с примерами решениявыполнения неравенства Интервальные оценки параметров распределения - определение и вычисление с примерами решения . Доверительную вероятность р обычно задают заранее: 0,9; 0,95; 0,9973. И доверительная вероятность показы­вает, что с вероятностью р параметр Интервальные оценки параметров распределения - определение и вычисление с примерами решения будет накрываться данным интервалом

Интервальные оценки параметров распределения - определение и вычисление с примерами решения   или

Интервальные оценки параметров распределения - определение и вычисление с примерами решения                       (10.1)

Из  (10.1) видно, что неизвестный параметр Интервальные оценки параметров распределения - определение и вычисление с примерами решения находится внутри интервала Интервальные оценки параметров распределения - определение и вычисление с примерами решения
 

Доверительным интервалом называется интервалИнтервальные оценки параметров распределения - определение и вычисление с примерами решения накрывающий неизвестный параметр 0 с заданной доверительной вероятностью Интервальные оценки параметров распределения - определение и вычисление с примерами решения 

Длина его (см. рис. 10.1) Интервальные оценки параметров распределения - определение и вычисление с примерами решения. Параметр Интервальные оценки параметров распределения - определение и вычисление с примерами решения -уровень значимости.

Доверительный интервал для математического ожидания случайной величины X при известной дисперсии

Доверительный интервал для математического ожидания случайной величины X при известной дисперсии (или Интервальные оценки параметров распределения - определение и вычисление с примерами решения)

Пусть эксперимент Е описывается нормальной случайной величиной X.
Плотность распределения Интервальные оценки параметров распределения - определение и вычисление с примерами решения. Предположим, что известна дисперсия Интервальные оценки параметров распределения - определение и вычисление с примерами решения — неизвестна. Тогда точечную оценку математического ожидания можно получить из выборки объемом Интервальные оценки параметров распределения - определение и вычисление с примерами решения — и она определится так:Интервальные оценки параметров распределения - определение и вычисление с примерами решения Рассматривая выборку Интервальные оценки параметров распределения - определение и вычисление с примерами решения как Интервальные оценки параметров распределения - определение и вычисление с примерами решения независимых случайных величин, имеющих одно и тоже нормальное распределение, определим числовые характеристики Интервальные оценки параметров распределения - определение и вычисление с примерами решения

 Интервальные оценки параметров распределения - определение и вычисление с примерами решения

откуда получим

Интервальные оценки параметров распределения - определение и вычисление с примерами решения       (10.2)

Для определения доверительного интервала рассмотрим разность между оценкой и параметром: Интервальные оценки параметров распределения - определение и вычисление с примерами решения Нормируем ее (сделаем безразмерной), т. е. разделим на Интервальные оценки параметров распределения - определение и вычисление с примерами решения и обозначим как случайную величину U:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения    (10.3)

Покажем, что случайная величина U имеет нормированный нормальный закон распределения. Найдем ее числовые характеристики:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Таким образом Интервальные оценки параметров распределения - определение и вычисление с примерами решения— это значит, что U имеет нормированное нормальное распределение, график которого изображен на рис. 10.2.

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Зная плотность распределения случайной величины U, легко найти вероятность попадания случайной величины U в интервалИнтервальные оценки параметров распределения - определение и вычисление с примерами решения (см. рис. 10.2):

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Левая часть этого уравнения представляет собой доверительную вероятность Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Тогда из (10.4) и (10.5) следует уравнение
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Решая уравнение (10.6), по таблицам функции Лапласа для заданной доверительной вероятности Интервальные оценки параметров распределения - определение и вычисление с примерами решения можно найти границы доверительного интервала для U, т. е. квантили Интервальные оценки параметров распределения - определение и вычисление с примерами решения . Считая, что квантили Интервальные оценки параметров распределения - определение и вычисление с примерами решения известны, преобразуем правую часть уравнения (10.5), подставляя в нее (10.3):

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Считая, что Интервальные оценки параметров распределения - определение и вычисление с примерами решения— известна, из (10.7) следует, что доверительный интер­вал Интервальные оценки параметров распределения - определение и вычисление с примерами решения накрывает неизвестное математическое ожидание Интервальные оценки параметров распределения - определение и вычисление с примерами решения с заданной доверительной вероятностью Интервальные оценки параметров распределения - определение и вычисление с примерами решения Точность оценки ма­тематического ожидания или длина доверительного интервала

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Замечания по формуле (10.8):

  1. при увеличении объема выборки Интервальные оценки параметров распределения - определение и вычисление с примерами решения из (10.8) видим, что е уменьшается, значит, уменьшается длина доверительного интервала, а точность оценки увеличивается;
  2. увеличение доверительной вероятности Интервальные оценки параметров распределения - определение и вычисление с примерами решения приводит к увеличению длины доверительного интервала (см. рис. 10.2, где квантили Интервальные оценки параметров распределения - определение и вычисление с примерами решения увеличиваются), т. е. е увеличивается, а точность оценки падает;
  3. если задать точность е и доверительную вероятность Интервальные оценки параметров распределения - определение и вычисление с примерами решения , то можно найти объем выборки, который обеспечит заданную точность:Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Пример №1

Сколько конденсаторов одного номинала надо измерить, чтобы с вероят­ностью 0,95 можно было утверждать, что мы с точностью 1 % определили их среднее значение — математическое ожидание.
Обозначим Интервальные оценки параметров распределения - определение и вычисление с примерами решения по таблицам функции Лапласа найдем квантиль для заданной доверительной вероятности 0,95: Интервальные оценки параметров распределения - определение и вычисление с примерами решения = 1,96. Для проведения расчетов положим Интервальные оценки параметров распределения - определение и вычисление с примерами решения Подставляя эти значения в (10.9), получим
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Доверительный интервал для математического ожидания нормальной случайной величины X при НЕизвестной дисперсии

Доверительный интервал для математического ожидания нормальной случайной величины X при неизвестной дисперсии или Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Пусть эксперимент описывается случайной величиной X с нормальным распределением с неизвестными параметрами Интервальные оценки параметров распределения - определение и вычисление с примерами решения Для определения точечных оценок этих параметров из генеральной совокупности извлечена выборка Интервальные оценки параметров распределения - определение и вычисление с примерами решения объемом Интервальные оценки параметров распределения - определение и вычисление с примерами решения. Тогда точечные оценки этих параметров определяются так:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Здесь использовали для оценки дисперсии Интервальные оценки параметров распределения - определение и вычисление с примерами решения — модифицированную выборочную дисперсию, несмещенную оценку. Для построения доверительного интервала рассмотрим разность между оценкой и параметром: Интервальные оценки параметров распределения - определение и вычисление с примерами решения . Нормиру­ем ее, т. е. разделим на Интервальные оценки параметров распределения - определение и вычисление с примерами решения и обозначим результат как случайную величину t. Ранее мы показали, что Интервальные оценки параметров распределения - определение и вычисление с примерами решения но т. к. здесь Интервальные оценки параметров распределения - определение и вычисление с примерами решения неизвестна, возьмем ее оценку Интервальные оценки параметров распределения - определение и вычисление с примерами решения и тогда Интервальные оценки параметров распределения - определение и вычисление с примерами решения . Тогда случайная величина t принимает вид

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Умножим числитель и знаменатель в (10.10) на Интервальные оценки параметров распределения - определение и вычисление с примерами решения

 Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Здесь X — нормированная нормальная случайная величина, знаменатель — распределение Интервальные оценки параметров распределения - определение и вычисление с примерами решенияс Интервальные оценки параметров распределения - определение и вычисление с примерами решения степенями свободы. Поэтому, согласно определению (см. раздел 9.3, формула (9.5)), можно утверждать, что случайные величины Интервальные оценки параметров распределения - определение и вычисление с примерами решения определяемые по формулам (10.10) и (10.11), имеют закон распределения Стьюдента с Интервальные оценки параметров распределения - определение и вычисление с примерами решения степенями свободы.
Зная закон распределения случайной величины t и задавая доверительную вероятность Интервальные оценки параметров распределения - определение и вычисление с примерами решения, можно найти вероятность попадания ее в интервал Интервальные оценки параметров распределения - определение и вычисление с примерами решенияИнтервальные оценки параметров распределения - определение и вычисление с примерами решения(рис. 10.3).

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Из таблиц распределений Стьюдента по заданной доверительной вероятности Интервальные оценки параметров распределения - определение и вычисление с примерами решения и числу степеней свободы Интервальные оценки параметров распределения - определение и вычисление с примерами решениянаходим квантили Интервальные оценки параметров распределения - определение и вычисление с примерами решения удовлетворяющие условию
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Подставляя в (10.13) вместо t равенство (10.10), получаем
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Разрешим неравенство в левой части формулы (10.14) относительно Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Отсюда непосредственно следует, что доверительный интервал  Интервальные оценки параметров распределения - определение и вычисление с примерами решения накрывает неизвестный параметр Интервальные оценки параметров распределения - определение и вычисление с примерами решения — (математическое ожидание) с доверительной вероятностью Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервал (10.15) несколько шире интервала (10.7), определенного для той же выборки и той же доверительной вероятности. Зато в (10.15) используется меньшая априорная информация — Интервальные оценки параметров распределения - определение и вычисление с примерами решения знать не надо.

Можно обозначить ширину доверительного интервала или точность через Интервальные оценки параметров распределения - определение и вычисление с примерами решения , и из (10.15) следует
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Все замечания, сделанные по формуле (10.8), справедливы и для формулы (10.16).
 

Пример №2

Даны результаты четырех измерений напряжения сети (значения приве­дены в Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Считаем, что X — напряжение сети — является нормальной случайной величиной. Построить доверительный интервал с вероятностью 0,95 для истинного напряжения сети — Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Найдем точечную оценку Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Из таблиц распределения Стьюдента для Интервальные оценки параметров распределения - определение и вычисление с примерами решенияИнтервальные оценки параметров распределения - определение и вычисление с примерами решения— число степеней свободы; находим квантиль Интервальные оценки параметров распределения - определение и вычисление с примерами решения Вычислим модифицированную выборочную дисперсию Интервальные оценки параметров распределения - определение и вычисление с примерами решения

 Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Тогда Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Полученные значения подставим в формулу (10.16):

Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Найдем левую и правую границы доверительного интервала для Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Таким образом, истинное напряжение сети с вероятностью 0,95 накрывается доверительным интервалом Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Найдем минимальное число измерений, чтобы с вероятностью 0,95 точ­ ность определения истинного напряжения сети не превышала 0,5 В, т. е. Интервальные оценки параметров распределения - определение и вычисление с примерами решения Из (10.16) имеем
Интервальные оценки параметров распределения - определение и вычисление с примерами решения измерения.
 

Видим, что число измерений Интервальные оценки параметров распределения - определение и вычисление с примерами решения велико. Следует отметить, что значение квантиля Интервальные оценки параметров распределения - определение и вычисление с примерами решения зависит от Интервальные оценки параметров распределения - определение и вычисление с примерами решения и при увеличении Интервальные оценки параметров распределения - определение и вычисление с примерами решения будет убывать. При больших Интервальные оценки параметров распределения - определение и вычисление с примерами решения значение квантиля стремится к постоянной величине и равно Интервальные оценки параметров распределения - определение и вычисление с примерами решения. Тогда после коррекции значения квантиля вычисляем по формуле (10.16) скорректированное значение Интервальные оценки параметров распределения - определение и вычисление с примерами решения :

Интервальные оценки параметров распределения - определение и вычисление с примерами решения измерения.

Доверительный интервал для дисперсии или ст нормальной случайной величины X

Рассмотрим вероятностный эксперимент с нормальной моделью, где параметры Интервальные оценки параметров распределения - определение и вычисление с примерами решения неизвестны. Предположим, что по выборке Интервальные оценки параметров распределения - определение и вычисление с примерами решения найдены точечные оценки этих параметров:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Составим вспомогательную случайную величину
Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Эта случайная величина имеет распределение Интервальные оценки параметров распределения - определение и вычисление с примерами решения степенями свободы. Покажем это, подставив в (10.17) выражение для Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Это и есть распределение хи-квадрат с Интервальные оценки параметров распределения - определение и вычисление с примерами решения степенью свободы. На рис. 10.4 приведен график этого распределения.

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Зная закон распределения случайной величины У, определим вероятность того, что случайная величина Интервальные оценки параметров распределения - определение и вычисление с примерами решения попадет в интервал Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Здесь Интервальные оценки параметров распределения - определение и вычисление с примерами решения плотность распределения Интервальные оценки параметров распределения - определение и вычисление с примерами решения с Интервальные оценки параметров распределения - определение и вычисление с примерами решения степенями свободы. Из рис. 10.4 видно, что кривая для плотности распределения Интервальные оценки параметров распределения - определение и вычисление с примерами решения несимметрична относительно центра распределения, поэтому границы доверительного интервала или квантили Интервальные оценки параметров распределения - определение и вычисление с примерами решения для данной вероятности Интервальные оценки параметров распределения - определение и вычисление с примерами решения не определяются однозначно. Чтобы избежать неопределенности будем их находить из условия

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Это означает, что площади заштрихованных фигур равны. Задавая доверительную вероятность Интервальные оценки параметров распределения - определение и вычисление с примерами решения по таблицам распределения Интервальные оценки параметров распределения - определение и вычисление с примерами решения для числа сте­пеней свободы Интервальные оценки параметров распределения - определение и вычисление с примерами решения используя условия (10.19), находим квантили Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Считая Интервальные оценки параметров распределения - определение и вычисление с примерами решения и р известными, перепишем (10.18) в следующем виде:
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Подставим в (10.20) значение Интервальные оценки параметров распределения - определение и вычисление с примерами решения, определяемое формулой (10.17):
Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Решаем неравенство в левой части (10.21) относительно Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

 Из (10.22) записываем доверительный интервал дляИнтервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Для среднего квадратического отклонения Интервальные оценки параметров распределения - определение и вычисление с примерами решения доверительный интервал имеет следующий вид:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Можно ввести коэффициенты Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Тогда доверительный интервал для о определится следующим обра­зом:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Коэффициенты Интервальные оценки параметров распределения - определение и вычисление с примерами решения , соответствующие доверительной вероятности Интервальные оценки параметров распределения - определение и вычисление с примерами решения и числу степеней свободы Интервальные оценки параметров распределения - определение и вычисление с примерами решения, находятся по таблицам распределения Интервальные оценки параметров распределения - определение и вычисление с примерами решения.
 

Пример №3

В предыдущем разделе (10.3) приведен пример для измеренных значений напряжения сети. Продолжим и найдем доверительный интервал для среднего квадратического отклонения Интервальные оценки параметров распределения - определение и вычисление с примерами решения .

Найдена точечная оценка для Интервальные оценки параметров распределения - определение и вычисление с примерами решения Задавая доверительную ве­роятность Интервальные оценки параметров распределения - определение и вычисление с примерами решения , зная число степеней свободы Интервальные оценки параметров распределения - определение и вычисление с примерами решения, по таблицам распределения Интервальные оценки параметров распределения - определение и вычисление с примерами решения , используя (10.23), находим коэффициенты Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Тогда нижняя граница для Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Верхняя граница для Интервальные оценки параметров распределения - определение и вычисление с примерами решения
И окончательно: Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Пример №4

Случайная величина Интервальные оценки параметров распределения - определение и вычисление с примерами решения имеет нормальное распределение с известным средним квадратическим отклонением Интервальные оценки параметров распределения - определение и вычисление с примерами решения Найти доверительный интервал для оценки неизвестного математического ожидания Интервальные оценки параметров распределения - определение и вычисление с примерами решения с надежностью Интервальные оценки параметров распределения - определение и вычисление с примерами решения если по данным выборки объемом Интервальные оценки параметров распределения - определение и вычисление с примерами решениявычислено Интервальные оценки параметров распределения - определение и вычисление с примерами решения
Решение. Определим значение Интервальные оценки параметров распределения - определение и вычисление с примерами решения  по табл. П2:

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Точность оценки Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Подставим в неравенство (4.1):  

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Смысл полученного результата: если произведено достаточно большое число выборок по 36 в  каждой,  то 95 % из  них  определяют  такие  доверительные 
интервалы, в которых Интервальные оценки параметров распределения - определение и вычисление с примерами решения заключено, и лишь в 5 % случаев оно может выйти за границы доверительного интервала.

Пример №5

Для исследования нормального распределения Интервальные оценки параметров распределения - определение и вычисление с примерами решения извлечена выборка (табл. 4.1).

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Найти с надежностью Интервальные оценки параметров распределения - определение и вычисление с примерами решения доверительные интервалы для математического ожидания и среднего квадратического отклонения исследуемой СВ.

Решение. Найдем несмещенные оценки для математического ожидания и дисперсии, используя метод произведений (табл. 4.2).

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Контроль: Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

По табл. П3 по данным Интервальные оценки параметров распределения - определение и вычисление с примерами решения находим Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Для определения доверительного интервала для математического ожидания используем неравенство (4.2):

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

Таким образом, интервал (50, 547; 51, 453) накрывает точку Интервальные оценки параметров распределения - определение и вычисление с примерами решения с вероятностью 0,95.

Для определения доверительного интервала для среднего квадратического отклонения используем неравенство (4.3). По табл. П4 по заданным Интервальные оценки параметров распределения - определение и вычисление с примерами решения находим Интервальные оценки параметров распределения - определение и вычисление с примерами решенияИнтервальные оценки параметров распределения - определение и вычисление с примерами решения

Интервальные оценки параметров распределения - определение и вычисление с примерами решения

С вероятностью 0,95 неизвестное значение Интервальные оценки параметров распределения - определение и вычисление с примерами решения накрывается интервалом (2,004; 2,651).

  • Алгебра событий — определение и вычисление
  • Свойства вероятности
  • Многомерные случайные величины
  • Случайные события — определение и вычисление
  • Основные законы распределения дискретных случайных величин
  • Непрерывные случайные величины
  • Закон больших чисел
  • Генеральная и выборочная совокупности

Понравилась статья? Поделить с друзьями:

Читайте также:

  • Для него был установлен неограниченный лимит ошибка лексическая
  • Дискорд как изменить название комнаты
  • Для меня слово чиновник звучит неприязненно ошибка
  • Дискорд выдает ошибку при установке installation has failed
  • Дискорд выдает ошибку a javascript error occurred in the main process

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии