Как изменить режим шины pci express

Здравствуйте, уважаемые читатели блога Help начинающему пользователю компьютера . Сегодня мы рассмотрим опции БИОС, которые позволяют произвести настройку шины PCI Express 16х. GFX0 Slot Power Limit, Watt Опция устанавливает максимальный лимит потребляемой мощности (Вт) для карт расширения шины PCI Express х16. Значения опции: 25; 50; 75. Данная опция может встретиться также под следующими названиями: GFX1 …

На чтение 4 мин. Просмотров 11.7k. Опубликовано 02.11.2011

Здравствуйте, уважаемые читатели блога Help начинающему пользователю компьютера . Сегодня мы рассмотрим опции БИОС, которые позволяют произвести настройку шины PCI Express 16х.

GFX0 Slot Power Limit, Watt

Опция устанавливает максимальный лимит потребляемой мощности (Вт) для карт расширения шины PCI Express х16.

Значения опции:

25; 50; 75.

Данная опция может встретиться также под следующими названиями:

GFX1 Slot Power Limit, Watt

Slot Power

Link Latency

Опция управляет величиной задержки в канале PCI Express x16.

Значения опции:

Auto – автоматическое определение величины задержки;

Normal – оптимальная величина задержки;

Slow – увеличенная задержка в канале PCI Express x16.

Link Stability Algorithm

Опция позволяет включить/отключить проверку шины PCI Express 16x.

Значения опции:

Enabled – использовать;

Disabled – не использовать;

Link Width GFX1

Установка количества линий шины PCI Express 16х для первого порта.

Значения опции:

X16; X8; X4.

Данная опция может встретиться также под следующими названиями:

GFX0 Link Width

Link Width GFX2

Установка количества линий шины PCI Express 16х для второго порта.

Значения опции:

X16; X8; X4.

NB PCIE Frequency (MHz)

Установка рабочей частоты для линий PCI Express северного моста.

Значения опции:

100MHz-131MHz.

Данная опция может встретиться также под следующими названиями:

PCI Express bus (NB)

PCIE GFX Core Payload Size

Установка размера (байт) буфера записи для шины PCI Express х16 в режиме прямого доступа к DMA памяти видеоадаптера.

Значения опции:

6 Bytes; 32 Bytes; 64 Bytes.

PCIe x16_1, MHz

Установка рабочей частоты для первого слота шины PCI Express x16.

Значения опции:

Auto – автоматическое определение рабочей частоты;

100MHz-200MHz.

Данная опция может встретиться также под следующими названиями:

PCIe Bus, Slot 1, MHz

PCIEX16_1 Frequency (MHz)

PCIe x16_2, MHz

Установка рабочей частоты для второго слота шины PCI Express x16.

Значения опции:

Auto – автоматическое определение рабочей частоты;

100MHz-200MHz.

Данная опция может встретиться также под следующими названиями:

PCIe Bus, Slot 2, MHz

PCIEX16_2 Frequency (MHz)

PCIe x16_3, MHz

Установка рабочей частоты для третьего слота шины PCI Express x16.

Значения опции:

Auto – автоматическое определение рабочей частоты;

100MHz-200MHz.

Данная опция может встретиться также под следующими названиями:

PCIEX16_3 Frequency (MHz)

PCIEX16_2 Mode

Установка лимита линий шины PCI Express 16х для второго порта.

Значения опции:

Auto – значение по умолчанию (как правило максимально возможное количество линий);

x4 Mode – второй слот шины PCI Express 16х будет использовать только 4 линии;

x2 Mode – второй слот шины PCI Express 16х будет использовать только 2 линии.

Данная опция может встретиться также под следующими названиями:

PCIEx16_2 Force

PCIEX16_2/PCIEX1_1 Force

Second PCI-E Slot Mode

PCIE x16 Link Retrain

Определение типа платы (видеокарта или обычная карта расширения), которая вставлена в слот PCI Express 16x.

Значения опции:

Enabled – автоматическое определение типа платы во время загрузки ПК;

Disabled – не производить определение;

GFX Card – в слот PCI Express 16x установлена видеокарта.

PEG Data Scrambling

Использование режима перестановки данных для шины PCI Express x16.

Значения опции:

Enabled – использовать режим;

Disabled – не использовать режим перестановки данных для шины PCI Express x16;

Auto – использование опции на усмотрение системы.

PEG Force x1

С помощью данной опции можно выбрать, какой в каком режиме (х1 или х16) будет работать порт PCI Express x16.

Значения опции:

Enabled – порт PCI Express х16 работает в режиме х16;

Disabled – порт PCI Express х16 работает в режиме х1.

Данная опция может встретиться также под следующими названиями:

PEG Allow > x1

PEG Buffer Length

Определяет величину буфера для графической карты с интерфейсом PCI Express.

PEG Link Mode

Опция позволяет ускорить работу  видеокарты (разогнать), установленной в слот PCI Express x16.

Значения опции:

Autoавтоматическое определение значений частот;

Slow работа видеокарты на номинальных частотах;

Normalнаименьшая степень разгона видеокарты;

Fastсредняя степень разгона видеокарты;

Fasterмаксимально допустимый разгонвидеокарты;

Данная опция может встретиться также под следующими названиями:

LinkBoost

LinkBoost Function

NVIDIA GPU Ex

PCIE Dynamic Overclocking

Robust Graphics Booster

PEG Port

С помощью данной опции можно включить/отключить использование графического порта PCI Express x16.

Значения опции:

Enabled (или On) – разрешить использование графического порта PCI Express x16;

Disabled (или Off) – запретить использование графического порта PCI Express x16.

SB PCIE Frequency (MHz)

Установка рабочей частоты для линий PCI Express южного моста.

Значения опции:

100MHz-131MHz.

Данная опция может встретиться также под следующими названиями:

PCI Express bus (SB)

Стандарт PCI Express является одной из основ современных компьютеров. Слоты PCI Express уже давно занимают прочное место на любой материнской плате декстопного компьютера, вытесняя другие стандарты, например, такие как PCI. Но даже стандарт PCI Express имеет свои разновидности и отличающийся друг от друга характер подключения. На новых материнских платах, начиная примерно с 2010 года, можно увидеть на одной материнской плате целую россыпь портов, обозначенных как PCIE
или PCI-E
, которые могут отличаться по количеству линий: одной x1 или нескольких x2, x4, x8, x12, x16 и x32.

Итак, давайте выясним почему такая путаница среди казалось бы простого периферийного порта PCI Express. И какое предназначение у каждого стандарта PCI Express x2, x4, x8, x12, x16 и x32?

Что такое шина PCI Express?

В далеких 2000-х, когда состоялся переход с устаревающего стандарта PCI (расш. — взаимосвязь периферийных компонентов) на PCI Express, у последнего было одно огромное преимущество: вместо последовательной шины, которой и была PCI, использовалась двухточечная шина доступа. Это означало, что каждый отдельный порт PCI и установленные в него карты, могли в полной мере использовать максимальную пропускную способность не мешая друг другу, как это происходило при подключении к PCI. В те времена количество периферийных устройств, вставляемых в карты расширения, было предостаточно. Сетевые карты, аудио карты, ТВ-тюнеры и так далее — все требовали достаточное количество ресурсов ПК. Но в отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, если рассматривать в общем, является пакетной сетью с топологией типа звезда.


PCI Express x16, PCI Express x1 и PCI на одной плате

С точки зрения непрофессионала, представьте свой настольный ПК в качестве небольшого магазина с одним, двумя продавцами. Старый стандарт PCI был как гастроном: все ожидали в одной очереди, чтобы их обслужили, испытывая проблемы со скоростью обслуживания с ограничением в лице одного продавца за прилавком. PCI-E больше похож на гипермаркет: каждый покупатель движется за продуктами по своему индивидуальному маршруту, а на кассе сразу несколько кассиров принимают заказ.

Очевидно, что гипермаркет по скорости обслуживания выигрывает в несколько раз у обычного магазина, благодаря тому, что магазин не может себе позволить пропускную способность больше чем один продавец с одной кассой.

Также и с выделенными полосами передачи данных для каждой карты расширения или встроенными компонентами материнской платы.

Влияние количества линий на пропускную способность

Теперь, чтобы расширить нашу метафору с магазином и гипермаркетом, представьте, что каждый отдел гипремаркета имеет своих кассиров, зарезервированных только для них. Вот тут-то и возникает идея нескольких полос передачи данных.

PCI-E прошел множество изменений со времени своего создания. В настоящее время новые материнские платы обычно используют уже 3 версию стандарта, причем более быстрая 4 версия становится все более распространенной, а версия 5 ожидается в 2019 году. Но разные версии используют одни и те же физические соединения, и эти соединения могут быть выполнены в четырех основных размерах: x1, x4, x8 и x16. (x32-порты существуют, но крайне редко встречаются на материнских платах обычных компьютерах).

Различные физические размеры портов PCI-Express позволяют четко разделить их по количеству одновременных соединений с материнской платой: чем больше порт физически, тем больше максимальных подключений он способен передать на карту или обратно. Эти соединения еще называют линиями
. Одну линию можно представить как дорожку, состоящею из двух сигнальных пар: одна для отправки данных, а другая для приема.

Различные версии стандарта PCI-E позволяют использовать разные скорости на каждой полосе. Но, вообще говоря, чем больше полос находится на одном PCI-E-порту, тем быстрее данные могут перетекать между периферийной и остальной частью компьютера.

Возвращаясь к нашей метафоре: если речь идёт об одном продавце в магазине, то полоса x1 и будет этим единственным продавцом, обслуживающим одного клиента. У магазина с 4-мя кассирами — уже 4 линии х4
. И так далее можно расписать кассиров по количеству линий, умножая на 2.


Различные карты PCI Express

Типы устройств, использующих PCI Express x2, x4, x8, x12, x16 и x32

Для версии PCI Express 3.0 общая максимальная скорость передачи данных составляет 8 ГТ/с, В реальности же скорость для версии PCI-E 3 чуть меньше одного гигабайта в секунду на одну полосу.

Таким образом, устройство, использующее порт PCI-E x1, например, маломощная звуковая карта или Wi-Fi-антенна смогут передавать данные с максимальной скоростью в 1 Гбит/с.

Карта, которая физически подходит в более крупный слот — x4
или x8
, например, карта расширения USB 3.0, сможет передавать данные в четыре или восемь раз быстрее соответственно.

Скорость передачи портов PCI-E x16 теоретически ограничивается максимальной полосой пропуская в размере около 15 Гбит/с. Этого более чем достаточно в 2017 года для всех современных графических видеокарт, разработанных NVIDIA и AMD.


Большинство дискретных видеокарт используют слот PCI-E x16

Протокол PCI Express 4.0 позволяет использовать уже 16 ГТ/с, а PCI Express 5.0 будет задействовать 32 ГТ/с.

Но в настоящее время не существует компонентов, которые смогли бы использовать такое количество полос с максимальной пропускной способностью. Современные топовые графические карты обычно используют x16 стандарта PCI Express 3.0. Нет смысла использовать те же полосы и для сетевой карты, которая на порту x16 будет использовать только одну линию, так как порт Ethernet способен передавать данные только до одного гигабита в секунду (что, около одной восьмой пропускной способности одной PCI-E полосы — помните: восемь бит в одном байте).

На рынке можно найти твердотельные накопители PCI-E, которые поддерживают порт x4, но они, похоже, скоро будут вытеснены быстро развивающимся новым стандартом M.2. для твердотельных накопителей, которые также могут использовать шину PCI-E. Высококачественные сетевые карты и оборудование для энтузиастов, такие как RAID-контроллеры, используют сочетание форматов x4 и x8.

Размеры портов и линий PCI-E могут различаться

Это одна из наиболее запутанных задач по PCI-E: порт может быть выполнен размером в форм-факторе x16, но иметь недостаточное количество полос для пропуска данных, например, всего например x4. Это связано с тем, что даже если PCI-E может нести на себе неограниченное количество отдельных соединений, все же существует практический предел пропускной способности полосы пропускания чипсета. Более дешевые материнские платы с более бюджетными чипсетами могут иметь только один слот x8, даже если этот слот может физически разместить карту форм-фактора x16.

Кроме того, материнские платы, ориентированные на геймеров, включают до четырех полных слотов PCI-E с x16 и столько же линий для максимальной пропускной способности.

Очевидно, это может вызывать проблемы. Если материнская плата имеет два слота размером x16, но один из них имеет только полосы x4, то подключение новой графической карты снизит производительность первой аж на 75%. Это, конечно, только теоретический результат. Архитектура материнских плат такова, что Вы не увидите резкого снижения производительности.

Правильная конфигурация двух графических видео карт должна задействовать именно два слота x16, если Вы хотите максимального комфорта от тандема двух видеокарт. Выяснить сколько линий на Вашей материнской плате имеет тот или иной слот поможет руководство на оф. сайте производителя.

Иногда производители даже помечают на текстолите материнской платы рядом со слотом количество линий

Нужно знать, что более короткая карта x1 или x4 может физически вписаться в более длинный слот x8 или x16. Конфигурация контактов электрических контактов делает это возможным. Естественно, если карта физически больше, чем слот, то вставить ее не получится.

Поэтому помните, при покупке карт расширения или обновления текущих необходимо всегда помнить как размер слота PCI Express, так и количество необходимых полос.

Весной 1991 года компания Intel завершает разработку первой макетной версии шины PCI. Перед инженерами была поставлена задача разработать недорогое и производительное решение, которое позволило бы реализовать возможности процессоров 486, Pentium и Pentium Pro. Кроме того, было необходимо учесть ошибки, допущенные VESA при проектировании шины VLB (электрическая нагрузка не позволяла подключать более 3 плат расширения), а также реализовать автоматическую настройку устройств.

В 1992 году появляется первая версия шины PCI, Intel объявляет, что стандарт шины будет открытым, и создаёт PCI Special Interest Group. Благодаря этому любой заинтересованный разработчик получает возможность создавать устройства для шины PCI без необходимости приобретения лицензии. Первая версия шины имела тактовую частоту 33 МГц, могла быть 32- или 64-битной, а устройства могли работать с сигналами в 5 В или 3,3 В. Теоретически пропускная способность шины 133 Мбайт/с, однако в реальности пропускная способность составляла около 80 Мбайт/с.

Основные характеристики:

  • частота шины — 33,33 или 66,66 МГц, передача синхронная;
  • разрядность шины — 32 или 64 бита, шина мультиплексированная (адрес и данные передаются по одним и тем же линиям);
  • пиковая пропускная способность для 32-разрядного варианта, работающего на частоте 33,33 МГц — 133 Мбайт/с;
  • адресное пространство памяти — 32 бита (4 байта);
  • адресное пространство портов ввода-вывода — 32 бита (4 байта);
  • конфигурационное адресное пространство (для одной функции) — 256 байт;
  • напряжение — 3,3 или 5 В.

Фото разъемов:

MiniPCI — 124 pin
MiniPCI Express MiniSata/mSATA — 52 pin
Apple MBA SSD, 2012
Apple SSD, 2012
Apple PCIe SSD
MXM, Graphics Card, 230 / 232 pin

MXM2 NGIFF 75 pins

KEY A PCIe x2

KEY B PCIe x4
Sata SMBus

MXM3, Graphics Card, 314 pin

PCI 5V
PCI Universal
PCI-X 5v
AGP Universal
AGP 3.3 v
AGP 3.3 v + ADS Power

PCIe x1
PCIe x16

Custom PCIe
ISA 8bit

ISA 16bit
eISA
VESA
NuBus
PDS
PDS
Apple II / GS Expasion slot
PC/ XT / AT expasion bus 8 bit
ISA (industry standard architecture) — 16 bit
eISA
MBA — Micro Bus architecture 16 bit
MBA — Micro Bus architecture с видео 16 bit
MBA — Micro Bus architecture 32 bit
MBA — Micro Bus architecture с видео 32 bit
ISA 16 + VLB (VESA)
Processor Direct Slot PDS
601 Processor Direct Slot PDS

LC Processor Direct Slot PERCH
NuBus
PCI (Peripheral Computer Interconnect) — 5v
PCI 3.3v
CNR (Communications / network Riser)
AMR (Audio / Modem Riser)
ACR (Advanced communication Riser)
PCI-X (Периферийный PCI) 3.3v
PCI-X 5v

PCI 5v + RAID option — ARO
AGP 3.3v
AGP 1.5v

AGP Universal

AGP Pro 1.5v
AGP Pro 1.5v+ADC power

PCIe (peripheral component interconnect express) x1
PCIe x4

PCIe x8

PCIe x16

PCI 2.0

Первая версия базового стандарта, получившая широкое распространение, использовались как карты, так и слоты с сигнальным напряжением только 5 вольт. Пиковая пропускная способность — 133 Мбайт/с.

PCI 2.1 — 3.0

Отличались от версии 2.0 возможностью одновременной работы нескольких шинных задатчиков (англ. bus-master, т. н. конкурентный режим), а также появлением универсальных карт расширения, способных работать как в слотах, использующих напряжение 5 вольт, так и в слотах, использующих 3,3 вольта (с частотой 33 и 66 МГц соответственно). Пиковая пропускная способность для 33 МГц — 133 Мбайт/с, а для 66 МГц — 266 Мбайт/с.

  • Версия 2.1 — работа с картами, рассчитанными на напряжение 3,3 вольта, и наличие соответствующих линий питания являлись опциональными.
  • Версия 2.2 — сделанные в соответствии с этими стандартами карты расширения имеют универсальный ключ разъёма по питанию и способны работать во многих более поздних разновидностях слотов шины PCI, а также, в некоторых случаях, и в слотах версии 2.1.
  • Версия 2.3 — несовместима с картами PCI, рассчитанными на использование 5 вольт, несмотря на продолжающееся использование 32-битных слотов с 5-вольтовым ключом. Карты расширения имеют универсальный разъём, но не способны работать в 5-вольтовых слотах ранних версий (до 2.1 включительно).
  • Версия 3.0 — завершает переход на карты PCI 3,3 вольт, карты PCI 5 вольт больше не поддерживаются.

PCI 64

Расширение базового стандарта PCI, появившееся в версии 2.1, удваивающее число линий данных, и, следовательно, пропускную способность. Слот PCI 64 является удлинённой версией обычного PCI-слота. Формально совместимость 32-битных карт с 64-битным слотами (при условии наличия общего поддерживаемого сигнального напряжения) полная, а совместимость 64-битной карты с 32-битным слотами является ограниченной (в любом случае произойдёт потеря производительности). Работает на тактовой частоте 33 МГц. Пиковая пропускная способность — 266 Мбайт/с.

  • Версия 1 — использует слот PCI 64-бита и напряжение 5 вольт.
  • Версия 2 — использует слот PCI 64-бита и напряжение 3,3 вольта.

PCI 66

Версия PCI 66 является работающим на тактовой частоте 66 МГц развитием PCI 64; использует напряжение 3,3 вольта в слоте; карты имеют универсальный, либо форм-фактор на 3,3 В. Пиковая пропускная способность — 533 Мбайт/с.

PCI 64/66

Комбинация PCI 64 и PCI 66 позволяет вчетверо увеличить скорость передачи данных по сравнению с базовым стандартом PCI; использует 64-битные 3,3-вольтовые слоты, совместимые только с универсальными, и 3,3-вольтовые 32-битные карты расширения. Карты стандарта PCI64/66 имеют либо универсальный (но имеющий ограниченную совместимость с 32-битными слотами), либо 3,3-вольтовый форм-фактор (последний вариант принципиально не совместим с 32-битными 33-мегагерцовыми слотами популярных стандартов). Пиковая пропускная способность — 533 Мбайт/с.

PCI-X

PCI-X 1.0 — расширение шины PCI64
с добавлением двух новых частот работы, 100 и 133 МГц, а также механизма раздельных транзакций для улучшения производительности при одновременной работе нескольких устройств. Как правило, обратно совместима со всеми 3.3В и универсальными PCI-картами. PCI-X карты обычно выполняются в 64-бит 3,3 В формате и имеют ограниченную обратную совместимость со слотами PCI64/66, а некоторые PCI-X карты — в универсальном формате и способны работать (хотя практической ценности это почти не имеет) в обычном PCI 2.2/2.3. В сложных случаях для того, чтобы быть полностью уверенным в работоспособности комбинации из материнской платы и карты расширения, надо посмотреть таблицы совместимости (compatibility lists) производителей обоих устройств.

PCI-X 2.0

PCI-X 2.0 — дальнейшее расширение возможностей PCI-X 1.0; добавлены частоты 266 и 533 МГц, а также — коррекция ошибок чётности при передаче данных (ECC
). Допускает расщепление на 4 независимых 16-битных шины, что применяется исключительно во встраиваемых и промышленных системах
; сигнальное напряжение снижено до 1,5 В, но сохранена обратная совместимость разъёмов со всеми картами, использующими сигнальное напряжение 3,3 В. В настоящее время для не профессионального сегмента рынка высокопроизводительных компьютеров (мощных рабочих станций и серверов начального уровня), в которых находит применение шина PCI-X, выпускается крайне мало материнских плат с поддержкой шины. Примером материнской платы для такого сегмента является ASUS P5K WS. В профессиональном сегменте применяется в RAID-контроллерах, в SSD-накопителях под PCI-E.

Mini PCI

Форм-фактор PCI 2.2, предназначен для использования, в основном, в ноутбуках.

PCI Express

PCI Express, или PCIe, или PCI-E (также известная как 3GIO for 3rd Generation I/O; не путать с PCI-X
и PXI
) — компьютерная шина
(хотя на физическом уровне шиной не является, будучи соединением типа «точка-точка»), использующая программную модель
шины PCI
и высокопроизводительный физический протокол
, основанный на последовательной передаче данных
. Разработка стандарта PCI Express была начата фирмой Intel после отказа от шины InfiniBand. Официально первая базовая спецификация PCI Express появилась в июле 2002 года.Развитием стандарта PCI Express занимается организация PCI Special Interest Group.

В отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, в общем случае, является пакетной
сетью с топологией типа звезда
. Устройства PCI Express взаимодействуют между собой через среду, образованную коммутаторами, при этом каждое устройство напрямую связано соединением типа точка-точка с коммутатором. Кроме того, шиной PCI Express поддерживается:

  • горячая замена
    карт;
  • гарантированная полоса пропускания (QoS
    );
  • управление энергопотреблением;
  • контроль целостности
    передаваемых данных.

Шина PCI Express нацелена на использование только в качестве локальной шины. Так как программная модель PCI Express во многом унаследована от PCI, то существующие системы и контроллеры могут быть доработаны для использования шины PCI Express заменой только физического уровня, без доработки программного обеспечения. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP
и тем более PCI
и PCI-X
. Де-факто PCI Express заменила эти шины в персональных компьютерах.

  • MiniCard
    (Mini PCIe
    ) — замена форм-фактора Mini PCI
    . На разъём Mini Card выведены шины: x1 PCIe, 2.0 и SMBus.

    • M.2
      — вторая версия Mini PCIe, до x4 PCIe и SATA.
  • ExpressCard
    — подобен форм-фактору PCMCIA
    . На разъём ExpressCard выведены шины x1 PCIe и USB 2.0, карты ExpressCard поддерживают горячее подключение.
  • AdvancedTCA
    , MicroTCA
    — форм-фактор для модульного телекоммуникационного оборудования.
  • Mobile PCI Express Module
    (MXM) — промышленный форм-фактор, созданный для ноутбуков фирмой NVIDIA
    . Его используют для подключения графических ускорителей.
  • Кабельные спецификации PCI Express позволяют доводить длину одного соединения до десятков метров, что делает возможным создание ЭВМ, периферийные устройства которой находятся на значительном удалении.
  • StackPC
    — спецификация для построения наращиваемых компьютерных систем. Данная спецификация описывает разъёмы расширения StackPC
    , FPE
    и их взаимное расположение.

Несмотря на то, что стандарт допускает x32 линий на порт, такие решения физически достаточно громоздки и не выпускаются.

Год
выпуска
Версия
PCI Express
Кодирование Скорость
передачи
Пропускная способность на x линий
×1 ×2 ×4 ×8 ×16
2002 1.0 8b/10b 2,5 ГТ/с 2 4 8 16 32
2007 2.0 8b/10b 5 ГТ/с 4 8 16 32 64
2010 3.0 128b/130b 8 ГТ/с ~7,877 ~15,754 ~31,508 ~63,015 ~126,031
2017 4.0 128b/130b 16 ГТ/с ~15,754 ~31,508 ~63,015 ~126,031 ~252,062
2019 5.0 128b/130b 32 ГТ/с ~32 ~64 ~128 ~256 ~512

PCI Express 2.0

Группа PCI-SIG
выпустила спецификацию PCI Express 2.0 15 января
2007 года
. Основные нововведения в PCI Express 2.0:

  • Увеличенная пропускная способность: ПСП одной линии 500 МБ/с, или 5 ГТ/с (Гигатранзакций/с
    ).
  • Внесены усовершенствования в протокол передачи между устройствами и программную модель.
  • Динамическое управление скоростью (для управления скоростью работы связи).
  • Оповещение о пропускной способности (для оповещения ПО об изменениях скорости и ширины шины).
  • Службы управления доступом — опциональные возможности управления транзакциями точка-точка.
  • Управление таймаутом выполнения.
  • Сброс на уровне функций — опциональный механизм для сброса функций (англ.
    PCI functions) внутри устройства (англ.
    PCI device).
  • Переопределение предела по мощности (для переопределения лимита мощности слота при присоединении устройств, потребляющих бо́льшую мощность).

PCI Express 2.0 полностью совместим
с PCI Express 1.1 (старые будут работать в системных платах с новыми разъемами, но только на скорости 2,5 ГТ/с, так как старые чипсеты
не могут поддерживать удвоенную скорость передачи данных; новые видеоадаптеры будут без проблем работать в старых разъемах стандарта PCI Express 1.х.).

PCI Express 2.1

По физическим характеристикам (скорость, разъём) соответствует 2.0, в программной части добавлены функции, которые в полной мере планируют внедрить в версии 3.0. Так как большинство системных плат продаются с версией 2.0, наличие только видеокарты с 2.1 не даёт задействовать режим 2.1.

PCI Express 3.0

В ноябре 2010 года были утверждены спецификации версии PCI Express 3.0. Интерфейс обладает скоростью передачи данных 8 GT/s (Гигатранзакций/с
). Но, несмотря на это, его реальная пропускная способность всё равно была увеличена вдвое по сравнению со стандартом PCI Express 2.0. Этого удалось достигнуть благодаря более агрессивной схеме кодирования 128b/130b, когда 128 бит данных, пересылаемых по шине, кодируются 130 битами. При этом сохранилась полная совместимость с предыдущими версиями PCI Express. Карты PCI Express 1.x и 2.x будут работать в разъёме 3.0 и, наоборот, карта PCI Express 3.0 будет работать в разъёмах 1.х и 2.х.

PCI Express 4.0

PCI Special Interest Group (PCI SIG) заявила, что PCI Express 4.0 может быть стандартизирован до конца 2016 года, однако на середину 2016 года, когда ряд чипов уже готовился к изготовлению, СМИ сообщали, что стандартизация ожидается в начале 2017. Ожидается, что он будет иметь пропускную способность 16 GT/s, то есть будет в два раза быстрее PCIe 3.0.

Оставьте свой комментарий!

Читатели сайт наверняка помнят наш подобный проект, который мы уже проводили около двух с половиной лет назад. Мы проанализировали пропускную способность PCI Express
в ноябре 2004 года, когда интерфейс PCI Express (PCIe) всё ещё был новым и не давал существенного преимущества по сравнению с видеокартами AGP. Сегодня интерфейс PCI Express есть практически у каждого нового компьютера, он используется и для подключения видеокарты, как встроенной, так и внешней. За прошедшее время видеокарты ощутимо продвинулись вперёд, поэтому, как нам показалось, настало время для нового анализа, который позволил бы ответить на вопрос: какая пропускная способность шины нужна видеокарте на самом деле?

Интерфейс PCI Express быстро обеспечил рост графической индустрии, поскольку он позволил nVidia и ATi/AMD устанавливать в компьютер две и даже четыре видеокарты. Кроме того, PCI Express необходим для карт расширения с высокими требованиями к пропускной способности, такими, как RAID-контроллеры, гигабитные сетевые адаптеры или физические ускорители для 3D-приложений и игр. Вычислительную мощь дополнительных видеокарт можно использовать для увеличения производительности на высоких разрешениях, добавления визуальных функций или для увеличения скорости при стандартных разрешениях и настройках качества. Впрочем, последняя опция не всегда интересна, так как многие современные видеокарты достаточно мощны для стандартных разрешений 1024×768 и 1280×1024. Потенциал роста благодаря решениям ATi CrossFire и nVidia SLI впечатляет, но обоим решениям требуется подходящая платформа. Но универсала, то есть материнской платы, которая поддерживала бы CrossFire и SLI одновременно, не существует. По крайней мере, пока.

Впрочем, конфигурации на двух и четырёх видеокартах являются только частью графического рынка. Большинство компьютеров и сценариев модернизации по-прежнему построены на одной видеокарте, именно поэтому мы решили не расширять наши тесты масштабирования PCI Express до двух видеокарт. Мы взяли обычные high-end видеокарты ATi и nVidia, после чего провели их через серию тестов в разных режимах PCI Express.


Самые распространённые слоты PCI Express: крупный поддерживает 16 линий, а маленький — одну линию для простейших карт расширения.

В отличие от шин PCI и PCI-X, интерфейс PCI Express основан на последовательном протоколе «точка-точка». То есть для интерфейса PCI Express требуется относительно небольшое число проводников. Зато интерфейс использует намного более высокие тактовые частоты по сравнению с параллельными шинами, что даёт высокую пропускную способность. Кроме того, пропускную способность можно легко увеличить, связав вместе несколько линий PCI Express. Чаще всего используются следующие типы слотов: x16, x8, x4, x2 и x1, где цифры указывают на число линий PCI Express.

PCI Express — двунаправленный интерфейс «точка-точка», который обеспечивает одинаковую пропускную способность в двух направлениях, и которому не требуется делиться пропускной способностью с другими устройствами, как это происходило в случае PCI. Благодаря модульной архитектуре производители материнских плат могут распределять доступные линии PCI Express на те слоты, на которые требуется. Скажем, 20 доступных линий PCI Express можно направить на один слот x16 PCIe и на четыре слота x1 PCIe. Так у многих чипсетов и происходит. А для серверных систем, например, можно установить пять портов x4 PCIe. В общем, с PCI Express можно создавать любые математические конфигурации. Наконец, PCI Express позволяет смешивать мосты чипсета от разных производителей.

Впрочем, у PCI Express есть один недостаток: чем больше линий PCIe, тем выше энергопотребление чипсета. Именно по этой причине чипсеты с 40 и большим количеством линий PCI Express требуют больше энергии. Как правило, 16 дополнительных линий PCI Express увеличивают энергопотребление современных чипсетов на 10 Вт.

Число линий PCI Express

Пропускная способность в одном направлении

Суммарная пропускная способность

1

256 Мбайт/с

512 Мбайт/с

2

512 Мбайт/с

1 Гбайт/с

4

1 Гбайт/с

2 Гбайт/с

8

2 Гбайт/с

4 Гбайт/с

16

4 Гбайт/с

8 Гбайт/с


На большинстве материнских плат для подключения видеокарты используется 16 линий PCI Express.


На многих системах с двумя видеокартами два физических слота x16 PCI Express работают в режиме x8 линий каждый.


Чтобы видеокарта заработала в режиме x8 PCI Express, мы заклеили часть контактов скотчем.


Чтобы видеокарта заработала в режиме x4 PCI Express, нам пришлось заклеить скотчем ещё больше контактов.


Та же самая видеокарта, но заклеено больше контактов. Она работает в режиме x4 PCI Express.


То же самое можно сказать и про x1 PCI Express. Мы заклеили все контакты, которые не требовались в режиме x1.


Если заклеить лишние контакты, то видеокарта PCI Express станет работать в режиме всего x1 PCI Express. Пропускная способность составляет 256 Мбайт/с в обоих направлениях.

Следует учитывать, что не каждая материнская плата может работать с видеокартами с низким числом линий PCI Express. В нашей первой статье
, нам пришлось изменить BIOS материнской платы DFI LANParty 925X-T2, чтобы она начала поддерживать «низкие» режимы. Что касается новых материнских плат, то пришлось тоже проверить несколько моделей, прежде чем мы нашли нужную. В конечном итоге мы остановились на MSI 975X Platinum PowerUp Edition. Плата Gigabyte 965P-DQ6 не заработала с самого начала, а Asus Commando отказалась работать с «низкими» режимами после обновления BIOS.

Схема слота x16 PCI Express. По ней можно определить, какие контакты требовалось заклеивать скотчем. Нажмите на картинку для увеличения.

Конкуренты: ATi Radeon X1900 XTX и nVidia GeForce 8800 GTS

Мы взяли две high-end видеокарты от двух конкурентов: AMD/ATi и nVidia, а именно, Radeon X1900 XTX и GeForce 8800 GTS. Модели, конечно, не самые топовые, но определённо класса high-end.

ATi Radeon X1900 XTX состоит из 384 млн. транзисторов и предлагает 48 блоков пиксельных шейдеров. Они организованы по четыре блока в так называемые «квады». GPU работает на частоте 675 МГц, на видеокарту установлено 512 Мбайт памяти GDDR3, работающей на частоте 775 МГц (1,55 ГГц DDR). Обратите внимание, что видеокарты ATi из линейки X1xxx не относятся к стандарту DirectX 10.

Мы взяли модель HIS X1900 XTX IceQ3, которая использует улучшенную систему охлаждения. Поскольку дизайн эталонный, то вентилятор карты по-прежнему радиальный, зато есть система тепловых трубок и массивный радиатор. По нашему опыту, видеокарта HIS работает тише, чем эталонные модели ATi.

Линейка GeForce 8 от nVidia является передовой у этой компании. Хотя перед нами первые видеокарты класса DirectX 10 потребительского уровня, nVidia не очень удачно стартовала под Windows Vista из-за проблем с драйверами. Чип работает на частоте 500 МГц, а пиксельные процессоры — на 1,2 ГГц. В продаже есть карты с 320 и 640 Мбайт ОЗУ, все они используют 800-МГц память (1,6 ГГц DDR).

Мы взяли GeForce 8800 GTS с 320 Мбайт памяти GDDR3 от Zotec. Карта построена по эталонному дизайну nVidia.

Тестовая конфигурация

Системное аппаратное обеспечение

Socket 775

Intel Core 2 Extreme X6800 (Conroe 65 нм, 2,93 ГГц, 4 Мбайт кэша L2)
Материнская плата
MSI 975X Platinum PowerUp Edition, чипсет: Intel 975X, BIOS: 2007-01-24
Общее аппаратное обеспечение

Память

2x 1024 Мбайт DDR2-8000 (CL 4,0-4-4-12), Corsair CM2X1024-6400C3 XMS6403v1.1
Видеокарта I

HIS X1900 XTX IceQ3, GPU: ATi Radeon X1900 XTX (650 МГц), память: 512 Мбайт GDDR3 (1 550 МГц)
Видеокарта II

Zotec GeForce 8800 GTS, GPU: GeForce 8800 GTS (500 МГц), память: 320 Мбайт GDDR3 (1 200 МГц)
Жёсткий диск

400 Гбайт, 7 200 об/мин, кэш 16 Мбайт, SATA/300, Western Digital WD4000KD
DVD-ROM

Gigabyte GO-D1600C (16x)

Программное обеспечение

Графический драйвер I
ATi Catalyst Suite 7.2

Графический драйвер II
nVidia ForceWare 97.92

Драйверы платформы Intel
Chipset Installation Utility 8.1.1.1010
DirectX

Версия: 9.0c (4.09.0000.0904)
ОС

Windows XP Professional, Build 2600 SP2

Тесты и настройки

Тесты и настройки

3D-игры

Version: 1.3 Retail
Video Mode: 1600×1200
Anti Aliasing: 4x
Texture Filter: Anisotropic
Timedemo demo2
Version: 1.2 (Dual-Core Patch)
Video Mode: 1600×1200
Video Quality: Ultra (ATI)/High(Nvidia)
Anti Aliasing: 4x
Multi CPU: Yes
THG Timedemo waste.map
timedemo demo8.demo 1 (1 = load textures)
Приложения

SPECviewperf 9

Version: 9.03
All Tests

3D Mark06

Version: 1.1
Video Mode: 1600×1200
Anti Aliasing: 4x
Anisotropic Filter: 8x

Результаты тестов

Как видим, nVidia GeForce 8800 GTS работает на скоростях x1 и x4 просто ужасно, заметно ниже максимального уровня производительности, который достижим только при скоростях x16. ATi Radeon X1900 XTX, с другой стороны, для нормальной работы в Call of Duty 2 требуется пропускная способность не больше x4 PCI Express.

Ситуация в Quake 4 совершенно иная. Здесь ATi Radeon X1900 XTX и nVidia GeForce 8800 GTS начинают вполне нормально работать на скорости x4 PCI Express, а при переходе на x8 или x16 выигрывают незначительно.

Графический 3D-тест 3DMark06 от Futuremark очень сильно нагружает GPU, поскольку он с самого начала разрабатывался для подобной цели. Поэтому требования к интерфейсу у него невелики. nVidia GeForce 8800 GTS сильнее реагирует на снижение пропускной способности интерфейса PCI Express по сравнению с ATi Radeon X1900 XTX, который работает близко к максимуму уже на скорости x4 PCI Express.

Профессиональный графический OpenGL-тест SPECviewperf 9.03 очень сильно нагружает центральный процессор и графическую подсистему. Как видим, результаты заметно зависят от скорости интерфейса. Было весьма любопытно отметить, как масштабируется производительность при переходе от x1 к x4 и к x8 PCI Express. Переход к x16 PCI Express даёт прирост производительности, но уже не такой существенный. В любом случае, можно совершенно определённо сказать, что профессиональные графические приложения требуют интерфейса с высокой пропускной способностью. Поэтому, если вы хотите работать с 3DSMax, Catia, Ensight, Lightscape, Maya, Pro Engineer или SolidWorks, то без x16 PCI Express не обойтись.

Заключение

Заключение нашего анализа масштабирования PCI Express в 2004 году
было простым: пропускной способности x4 PCIe достаточно для работы одиночных видеокарт, «узкого места» при этом не создаётся. В то время пропускная способность интерфейсов x8 или x16 PCIe не давала никакого выигрыша, да и интерфейса AGP, в принципе, тоже хватало.

Но в наше время ситуация изменилась. Как видим, четырёх линий PCI Express для получения максимальной производительности уже недостаточно. Хотя мы наблюдаем различия как между ATi/AMD и nVidia, так и между играми и профессиональными приложениями, в большинстве случаев максимальная производительность достигается только с интерфейсом x16 PCI Express. Мы тестировали две 3D-игры, Quake 4 и Call of Duty 2, которые сегодня нельзя назвать самыми требовательными, но они определённо выигрывают от более быстрого интерфейса. Но самые любопытные результаты мы получили в тесте SPECviewperf 9.03, поскольку он показал существенное падение производительности при снижении скорости интерфейса PCI Express ниже x16.

Результаты производительности наглядно показывают, что сегодня материнские платы и чипсеты должны поддерживать все видеокарты на полной скорости x16 PCI Express. Если вы установите высокопроизводительные видеокарты на «слабый» интерфейс, такой, как PCI Express x8, то придётся пожертвовать производительностью.

PIO
– при использовании этого режима считыванием данных с диска управляет ЦП, что приводит к повышенной нагрузке на ЦП и замедлению работы в целом.

В стандартах ATA 2/EIDE и ATA 3 предусмотрено несколько режимов быстрого обмена данными с жесткими дисками. Описание этих режимов составляет существенную часть стандарта, который своим появлением во многом обязан именно этим новым возможностям. Большинство современных быстродействующих жестких дисков может работать в так называемых режимах PIO 3 и PIO 4, скорость обмена данными в которых очень высока. От выбора режима PIO (программируемого вводавывода) зависит скорость обмена данными с жестким диском. В самом медленном режиме (режим 0) длительность одного цикла передачи данных не превышает 600 нс. В каждом цикле передается 16 бит данных, поэтому теоретически возможная скорость обмена в режиме 0 составляет 3,3 Мбайт/с. В большинстве современных жестких дисков поддерживается режим PIO 4, в котором скорость обмена данными достигает 16,6 Мбайт/с.

Режимы обмена данными DMA параллельного ATA

DMA – потоком данных управляет сам накопитель, считывая данные в память или из памяти почти без участия ЦП. ЦП выдает команды на выполнение того или иного действия.

Передача через канал прямого доступа к памяти (DMA) означает, что в отличие от режима PIO данные передаются непосредственно из жесткого диска в системную (основную) память, минуя центральный процессор. Это освобождает процессор от большинства операций обмена данными с диском. К тому же во время передачи данных с диска в память процессор может выполнять другую полезную работу. Существуют два типа прямого доступа к памяти: однословный (8 разрядный) и многословный (16 разрядный). Однословные режимы DMA были удалены из стандарта АТА 3, а также из спецификаций более поздних версий и в настоящее время не используются. Режимы DMA, использующие хостадаптер, который поддерживает технологию управления шиной, получили название режимов Bus Master ATA. В первом случае обработка запросов, захват шины и передача данных осуществляются контроллером DMA на системной плате. Во втором случае все эти операции выполняет дополнительная высокоскоростная микросхема, также смонтированная на системной плате.

  1. Развитие шины PCI. Устройства, работающие на шине PCI

Локальная шина PCI

Шина PCI (Взаимодействие периферийных компонентов) анонсирована Intel в 1992 году на выставке PC Expo.

  • 32-битный канал передачи данных между процессором и периферийными устройствами
  • работает на тактовой частоте 33 МГц
  • Максимальная пропускная способность 120 Мбайт/с

При работе с процессорами i486 шина PCI дает примерно те же показатели производительности, что и шина VL-bus.

Шина PCI является процессорно-независимой (шина VL-bus подключается непосредственно к процессору i486).

PCI работает на частоте 66 МГц.

32 бит – при 33 МГц (132 Мбайт/с).

64 бит – при 33 МГц (264 Мбайт/с), пр 66 МГц (528 Мбайт/с).

Подключаемые устройства: аудиокарты, сетевые карты, видеокарты.

В разъем шины PCI можно подключать карты: имеющие питание в 5 в (ключ 50, 51 контакт), 3.3В (ключ 12,13) и универсальный (ключ в 12, 13, 50, 51 контактах). 32-битный слот имеет по 62 контакта с каждой стороны, 64-битный – 94. Данная шина позволяет подключить до четырех устройств одновременно, то есть может иметь до четырех разъемов. Для использования большего количества подключаемых устройств применяется специальная микросхема — мост шины, для соединения двух шин.

Развитие шины PCI

Год Название
PCI v.1.0
PCI v.2.0 (PCI Plug & Play)
PCI v.2.1 (PCI Power Manager)
PCI v.2.2 (PCI Hot Plug)
PCI-X v.1.0 (Mini PCI)
2001-2002 PCI-X v.2.0 и PCI Express v.1.0 и PCI v.2.3
PCI Express v.1.0a (PCI Express mini, PCI Bridge)
PCI v.3.0, PCI Express x16 (Graphics)
PCI Express v.1.1
PCI Express v.2.0
PCI Express v.3.0
2013-2014 PCI Express v.4.0

PCI 2.2
– допускается 64-бит ширина шины и/или тактовая частота 66 МГц, т.е. пиковая пропускная способность до 533МБ/сек

PCI-X
– 64-бит версия PCI 2.2 с увеличенной до 133 МГц частотой (пиковая пропускная полоса 1066МБ/сек)

PCI-X 266
(PCI-X DDR), DDR версия PCI-X (эффективная частота 266 МГц, реальная 133 МГц с передачей по обоим фронтам тактового сигнала, пиковая пропускная полоса 2.1 ГБ/сек

PCI-X 533
(PCI-X QDDDR)6 QDR версия PCI-X (эффективная частота 533 МГц, пиковая пропускная полоса 4.3 ГБ/сек)

Mini PCI
– PCI с разъемом в стиле SO-DIMM, применяется преимущественно для миниатюрных сетевых, модемных и прочих карточек в ноутбуках

Compact PCI
– стандарт на форм фактор (модули вставляются с торца в шкаф с общей шиной на задней плоскости) и разъем, предназначенные в первую очередь для промышленных компьютеров и других критических применений

Accelerated Graphics Port (AGP)
– высокоскоростная версия PCI, оптимизированная для графических ускорителей

Реальная частота – частота, на которой передаются данные (частота тактового генератора).

Эффективная частота – частота соответствующая стандарту (реальная частота умноженная на число бит передающихся за один такт). Если за один такт передается два бита данных, то эффективная частота будет в два раза больше реальной.

Локальная шина PCI для мобильных ПК

  • PCI Express для мобильных устройств в виде стандарта ExspressCard.
  • Первыми поддержку модулей получили ноутбуки и миниатюрные настольные ПК.

Технология ExpressCard заменила все устаревшие параллельные шины, в большинстве используются современные интерфейса – PCI Express, USB 3.0

Локальная шина PCI

На одной шине PCI не более 4 устройств (слотов).

PCI Bridge – (мост шины) аппаратные средства подключения PCI к другим шинам.

  • Host Bridge главный мост – для подключения PCI к шине процессора
  • Peer to Peer Bridge одноранговый мост – для соединения двух шин PCI

Производительность PCI:

GT/s – giga-transfers/second (миллиардов пересылок в секунду). Используется как численная характеристика скорости работы с оперативной памятью процессоров Intel.

Реальная скорость работы памяти зависит от процессора.

Преобразование в Гбит/с для PCIe 3.0 (8x):

64GT/s*(128b/130b) – 63.01Gbps

Локальная шина PCIe

PCI Express 2.0 сигнальная скорость передачи составляет 5 GT/s, то есть пропускная способность равняется 500 Мбайт/с для каждой линии.

PCI Express 2.0, которой обычно используется 16 линий, обеспечивает двунаправленную пропускную способность до 8 Гбайт/с.

Стандарт PCI Experss 2.0 использует схему кодирования 8b/10b, где 8 бит данных передаются в виде 10-битных символов для алгоритма устранения ошибок. В итоге мы получаем 20% избыточность, то есть снижение полезной пропускной способности.

PCI Express 3.0 использует сигнальную скорость 8 GY/s, что дает пропускную способность 1 Гбайт/с на линию (16 Гбайт/с).

PCI Express 3.0 переходит на более эффективную схему кодирования 1128b/130b, устраняя 20% избыточность.

8 GT/s – это «теоретическая» скорость, а фактическая, сравнимая по производительности с сигнальной скоростью 10 GT/s, если бы не использовался принцип кодирования 8b/10b.

В 2011 организация PCI SIG анонсировала стандарт компьютерной шины PCI Express (PCIe) 4.0, который обеспечит рекордную пропускную способность 16 гигатрансферов в секунду на одну линию, что вдвое превышает предельную скорость шины PCIe 3.0.

16 GT/sсоответствует скорости примерно 2 Гб/с на одну линию x1.

  1. Шина USB. История развития, виды, характеристики. Отличие от IEEE 1394 FireWire

Шина USB

Compaq, DEC, IBM, Intel, NEC и др. (1993)

Требования к проекту:

  • пользователи не должны устанавливать переключатели и перемычки
  • пользователи не должны разбирать системный блок
  • должен существовать единый разъем для подключения устройств
  • устройства ввода-вывода должны получать питание через кабель
  • возможность подключить до 127 устройств
  • поддержка устройств реального времени
  • возможность установки оборудования без перезагрузки и выключения ПК
  • небольшие затраты на производство

Шина USB 1.0

В 1996 году USB 1.0 (Universal Serial Bus) – универсальная последовательная шина.

Промышленный стандарт расширения архитектуры ПК, ориентированный на интеграцию с периферийными устройствами.

2 режима скорости передачи данных:

  • Low Speed (1,5 Мбит/с) – клавиатура, джойстик, мышь
  • Full Speed (12 бит/с) – модемы, сканеры, принтеры

В 1998 году USB 1.1 – исправления проблем

Шина USB 2.0

В 2000 году USB 2.0

Добавляется еще один режим работы High Speed 480 Мбит/с для высокоскоростных устройств (HDD, цифровые камеры и др.).

Шина USB 3.0

В 2008 году USB 3.0

Пропускная способность USB 3.0 и USB 3.1 Gen1 – 5 Гбит/с.

Новый интерфейс USB 3.0 получил название SuperSpeed USB (Суперскоростной или Сверхскоростной USB).

USB 3.0 сохраняет полную совместимость с уже существующим оборудованием стандарта USB 2.0.

Чтобы гарантировать надежную передачу данных интерфейс USB 3.0 использует кодирование 8/10 бит.

Один байт (8 бит) передается с помощью 10-битного кодирования, что улучшает надежность передачи в ущерб пропускной способности.

Ø Стандарт эффективно оптимизирует энергопотребление

Ø Интерфейс USB 2.0 постоянно опрашивает доступность устройств, на что расходуется энергия

Ø Интерфейс USB 3.0 имеет четыре состояния подключения, (U0-U3).

1) Состояние подключения U0 соответствует активной передаче данных.

2) Если подключение бездействует, то в состоянии U1 будут отключены возможности приема и передачи данных.

3) Состояние U2 отключает внутренние тактовые импульсы.

4) Состояние U3 погружает устройство в «сон».

Стандарт USB 3.0 обратно совместим с USB 2.0.

Контакты USB 2.0 остались на прежнем месте, но в глубине разъема теперь располагаются пять новых контактов.

Шина USB 3.1

В 2015 году USB 3.1 b и новый разъем USB Type C

USB 3.1 SuperSpeed+

Особенность USB 3.1 Gen2 – это увеличенная до 10 Гбит/с теоретическая пропускная способность

Новые контроллеры Thunderbolt обеспечивают 20 Гбит/с, а перспективные 40 Гбит/с

На CES 2015 представители USB-IF собрали стенд с парой SSD в массив RAID 0, подключенный по USB 3.1. Тестовая утилита CrystalDisk Benchmark показала линейную скорость записи 817 МБ/с.

Спецификации USB Power Delivery 2.0 предусматривают повышение допустимой силы тока с 900 мА у портов USB 3.0, до 5000 мА у USB 3.1

Гарантировано хватит для питания емких внешних жестких дисков и других мощных потребителей от одного порта.

Порт USB Type-C позволит со временем обеспечить питание практически всем устройствам мощностью до ста ватт.

Особенностью USB-C стал симметричный дизайн разъема, позволяющий подключать его к порту любой стороной. По габаритам он идентичен MicroUSB (8,3*2,5 мм).

Восемь контактов USB 3.1 могут быть одновременно использованы как для передачи файлов, так и для подключения монитора через DisplayPort.

Остальные обеспечивают питание и подключение устройств со старым интерфейсом uSB 2.0 – таких, как клавиатура и мыши.

Отличие от IEEE 1394 FireWire

Последовательные интерфейсы FireWire и USB, имея общие черты, являются существенно различными технологиями. Обе шины обеспечивают простое подключение большого числа ПУ (127 для USB и 63 для FireWire), допуская ком- мутации и включение/выключение устройств при работающей системе. Топология обеих шин достаточно близка. Хабы USB входят в состав ЦУ; для пользователя их присутствие незаметно. Обе шины имеют линии питания устройств, но допустимая мощность для FireWire значительно выше. Обе шины поддерживают систему РпР (автоматическое конфигурирование при включении/выключении) и снимают проблему дефицита адресов, каналов DMA и прерываний. Различаются пропускная способность и управление шиной.

USB ориентирована на ПУ, подключаемые к PC. Ее изохронные передачи позволяют передавать только цифровые аудиосигналы. Все передачи управляются централизованно, и PC является необходимым управляющим узлом, находящимся в корне древовидной структуры шины. Соединение нескольких PC этой шиной не предусматривается.

FireWire ориентирована на интенсивный обмен между любыми подключенными к ней устройствами. Изохронный трафик позволяет передавать «живое» видео. Шина не требует централизованного управления со стороны PC. Возможно использование шины для объединения нескольких PC и ПУ в локальную сеть.

Новые устройства цифрового видео и аудио имеют встроенные адаптеры 1394. Подключение к шине FireWire традиционных аналоговых и цифровых устройств (плееров, камер, мониторов) возможно через адаптеры-преобразователи интерфейсов и сигналов. Стандартные однотипные кабели и разъемы FireWire заменяют множество разнородных соединений устройств бытовой электроники с PC. Разнотипные цифровые сигналы мультиплексируются в одну шину. В отличие от сетей Ethernet, высокоскоростные передачи потоков данных по FireWire в реальном времени не требуют дополнительных протоколов. Кроме того, имеются средства арбитража, гарантирующие доступ к шине за заданное время. Применение мостов в сетях FireWire позволяет изолировать трафик групп узлов друг от друга.

  1. Логическая структура поверхности логического диска

Логический диск или том (volume или partition) — часть долговременной памяти компьютера, рассматриваемая как единое целое для удобства работы. Термин «логический диск» используется в противоположность «физическому диску», под которым рассматривается память одного конкретного дискового носителя.

Диски
относятся к машинным носителям информации с прямым доступом. Понятие прямой доступ

означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни находилась головка записи/чтения накопителя.

Накопители на дисках
более разнообразны:

  • накопители на гибких магнитных дисках (НГМД), иначе, на флоппи-дисках или на дискетах;
  • накопители на жестких магнитных дисках (НЖМД) типа «винчестер»;
  • накопители на сменных жестких магнитных дисках, использующие эффект Бернулли;
  • накопители на оптических компакт-дисках CD-ROM (Compact Disk ROM);
  • накопители на оптических дисках типа СС WORM (Continuous Composite Write Once Read Many — однократная запись — многократное чтение);
  • накопители на магнитооптических дисках (НМОД) и др.

Магнитные диски
(МД) относятся к магнитным машинным носителям информации. В качестве запоминающей среды у них используются магнитные материалы со специальными свойствами (с прямоугольной петлей гистерезиса), позволяющими фиксировать два магнитных состояния — два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры: 0 и 1. Накопители на МД (НМД) являются наиболее распространенными внешними запоминающими устройствами в ПК. Диски бывают жесткими и гибкими, сменными и встроенными в ПК.

Устройство для чтения и записи информации на магнитном диске называется дисководом

.

Все диски: и магнитные, и оптические характеризуются своим диаметром или, иначе, форм-фактором.
Наибольшее распространение получили диски с форм-факторами 3,5″ (89 мм). Диски с форм-фактором 3,5″ при меньших габаритах имеют большую емкость, меньшее время доступа и более высокую скорость чтения данных подряд (трансфер),
более высокие надежность и долговечность.

Информация на МД (рис.4.) записывается и считывается магнитными головками
вдоль концентрических окружностей — дорожек (треков).

Количество дорожек на МД и их информационная емкость зависят от типа МД, конструкции накопителя на МД, качества магнитных головок и магнитного покрытия.

Рис. 4.
Логическая структура поверхности магнитного диска

Каждая дорожка МД разбита на сектора

. Сектор
— наименьшая адресуемая единица обмена данными дискового устройства с оперативной памятью. Для того чтобы контроллер мог найти на диске нужный сектор, необходимо задать ему все составляющие адреса сектора: номер поверхности, номер цилиндра (дорожки) и номер сектора.

В одном секторе дорожки помещено обычно 512 байт данных. Обмен данными между НМД и ОП осуществляется последовательно целым числом секторов.

Кластер
— это минимальная единица размещения информации на диске, состоящая из одного или нескольких смежных секторов дорожки.

При записи и чтении информации МД вращается вокруг своей оси, а механизм управления магнитной головкой подводит ее к дорожке, выбранной для записи или чтения информации.

Данные на дисках хранятся в файлах,
которые обычно отождествляют с участком (областью, полем) памяти на этих носителях информации.

Файл
— это именованная область внешней памяти, выделенная для хранения массива данных.

Поле памяти создаваемому файлу выделяется кратным определенному количеству кластеров. Кластеры, выделяемые одному файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Файлы, хранящиеся в разбросанных по диску кластерах, называются фрагментированными.

Для пакетов магнитных дисков (диски установлены на одной оси) и для двухсторонних дисков вводится понятие «цилиндр».

Цилиндром
называется совокупность дорожек МД, находящихся на одинаковом расстоянии от его центра.

  1. Внешние устройства ПК. Классификация и подробное описание.

Внешние устройства

  • Внешние запоминающиеся устройства или внешняя память
  • Устройства ввода информации
  • Устройства вывода информации
  • Средства мультимеда

Внешняя память относится к внешним устройствам ПК и используется для долговременного хранения любой информации.

Классификация по признакам:

  • По виду носителя
  • По типу конструкции
  • По принципу записи и чтения информации
  • По метода доступа и др

Классификация ВЗУ

1) Внешние

· Ленточные

· Бобинные

· Кассетные

3) Дисковые

· Магнитные

· Сменные

· Несменные

· Оптические

· Смешанные

Дискеты

  • 3,5 дюйма
  • 1,44 Мбайт
  • 300 об/мин

Вызывает повреждение:

  • Деформирование дискеты
  • Открытие защитной шторки
  • Воздействие магнитом

HDD — Hard Disk Drive (ЖМД) – жесткий магнитный диск

  • Частота вращения: 7200 об/мин, 10000 об/мин
  • Подключение: IDE, SATA
  1. Audio CD

· Диаметр 12 см

· 74-80 минут звука

  1. CD-ROM, CD-R, CD-RW

· 650-700 Мбайт

CD-ROM – только чтение

CD-R – однократная запись

CD-RW — многократная запись

  1. мини CD (-R, RW)

· Диаметр 8 см

· 24 минуты звука, 210 Мбайт

Достоинства:

  • надежность, долговечность
  • низкая стоимость

Недостатки:

  • Низкая скорость чтения/записи

DVD (Video Disk) -лазер с меньшей длиной волны

1) Однослойные

  • Односторонние 4,7 Гбайт
  • Двухсторонние 9,4 Гбайт

2) Двухслойные

  • Односторонние 8,5
  • Двухсторонние 17,1

DVD-ROM — только чтение

DVD-R, DVD+R — однократная запись

DVD-RW, DVD-RW — многократная запись (1000 циклов)

HD DVD – high definition DVD (высокой четкости)

Разработка:
Toshiba совместно с NEC и SANYO

Поддерживают:
Microsoft, Intel

Blu-ray Disk

Blu-ray Disk (BD) – формат оптического диска высокой плотности для хранения данных или видео высокой четкости, использующий диски стандартного диаметра 12 и 8 см и голубой лазер с длинной волны 405 нм.

BD-RE (перезаписываемые)

На основе микросхем памяти (до 1 Тб) (ноутбуки, нетбуки, телефоны, планшеты)

Достоинства:

  • Не шумят
  • Высокая скорость чтения/записи
  • Небольшой вес

Недостатки:

  • Ограниченное количество циклов записи (100000)
  • Высокая цена

Стример

Стример — устройство для резервного копирования данных с винчестера на магнитную ленту.

Достоинства:

  • Емкость до 4 Тбайт
  • Дешевая магнитная лента
  • Надежность
  • Высокая скорость (до 160 Мб/с)

Недостатки:

  • Последовательный доступ к данным (перематывать» в нужное место)
  • Низкая скорость поиска
  • Только для потока данных, крайне сложно работать с отдельными файлами

Производители:
Sony, IBM, Hewlett Packard

Внешние устройства

  1. Устройства ввода информации

· клавиатура — устройство для ручного ввода в компьютер числовой, текстовой и управляющей информации;

· графические планшеты (дигитайзеры) — для ручного ввода графической информации, изображений путем перемещения по планшету специального указателя (пера); при перемещении пера автоматически выполняется считывание координат его местоположения и ввод этих координат в компьютер;

· сканеры (читающие автоматы) — для автоматического считывания с бумажных носителей и ввода в компьютер машинописных текстов, графиков, рисунков, чертежей;

· устройства указания (графические манипуляторы) — для ввода графической информации на экран монитора путем управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в компьютер (джойстик, мышь, трекбол, световое перо);

· сенсорные экраны — для ввода отдельных элементов изображения, программ или команд с полиэкрана дисплея в компьютер).

· цифровые фото/видеокамеры позволяют получать видеоизображение и фотоснимки непосредственно в цифровом формате.

  1. Устройства вывода информации

· графопостроители (плоттеры) — для вывода графической информации на бумажный носитель;

· принтеры — печатающие устройства для вывода информации на бумажный носитель.

Основные виды принтеров:

  • матричные — изображение формируется из точек, печать которых осуществляются тонкими иглами, ударяющими бумагу через красящую ленту. Знаки в строке печатаются последовательно. Количество иголок в печатающей головке определяет качество печати. Недорогие вдринтеры имеют 9 иголок. Более совершенные матричные принтеры имеют 18 и 24 иглы;
  • струйные — в печатающей головке имеются тонкие трубочки — сопла, через которые на бумагу выбрасываются мельчайщие капельки чернил. Матрица печатающей головки обычно содержит от 12 до 64 сопел. В на-Встоящее время струйные принтеры обеспечивают разрешающую способность до 50 точек на миллиметр и скорость печати до 500 знаков в секунду при отличном качестве печати, приближающемся к качеству лазерной печати. Струйные принтеры выполняют и цветную печать, но разрешающая способность при этом уменьшается примерно вдвое;
  • лазерные — применяется электрографический способ формирования изображений. Лазер служит для создания сверхтонкого светового луча, вычерчивающего на Поверхности предварительно заряженного светочувствительного барабана контуры невидимого точечного электронного изображения. После проявления электронного Воображения порошком красителя (тонера), налипающей на разряженные участки, выполняется печать — перенoc тонера с барабана на бумагу и закрепление изображения на бумаге разогревом тонера до его расплавления. Лазерные принтеры обеспечивают наиболее высококачественную печать с высоким быстродействием. Широко используются цветные лазерные принтеры.

Диалоговые средства пользователя

  • видеотерминалы (мониторы) — устройства для отображения вводимой и выводимой информации. Видеотерминал состоит из видеомонитора (дисплея) и видеоконтроллера (видеоадаптера). Видеоконтроллеры входят в состав системного блока компьютера (находятся на видеокарте, устанавливаемой в разъем материнской платы). Видеомониторы относятся к внешним устройствам компьютера. Основной характеристикой монитора является разрешающая способность, которая определяется максимальным количеством точек, размещающихся по горизонтали и по вертикали на экране монитора. Современные мониторы имеют стандартные значения разрешающей способности от 640 X 480 до 1600 х 1200, но реально могут быть и другие значения. Могут использоваться как цветные, так и монохромные мониторы;

Основной характеристикой монитора является максимальное количество точек размещающихся по горизонтали и по вертикали на экране.

Размер экрана задается величиной его диагонали в дюймах

Например: 17″», 42″», 48″»

Разрешение экрана от 640*480px, 5120*2880px

  • устройства речевого ввода-вывода информации. К ним относятся различные микрофонные акустические системы, а также различные синтезаторы звука, выполняющие преобразование цифровых кодов в буквы и слова, воспроизводимые через динамики или звуковые колонки, подсоединенные к компьютеру.

Средства связи и телекоммуникации

· Сетевые адаптеры (модем — модулятор-демодулятор) используются для подключения компьютера к каналам связи, другим компьютерам и компьютерным сетям.

· Факсы
это устройства факсимильной передачи (точное воспроизведение графического оригинала (подписи, документа и т.д.) средствами печати) изображения по телефонной сети.

· Факс-модемы — модемы, которые могут передавать и получать данные как факс.

  1. Внешние устройства ПК (типы портов ввода-вывода, классификация). Понятие мультимедиа.

VESA (Video Electronics Standards Association — ассоциация стандартизации видеоэлектроники) опубликовала стандарт DisplayPort 1.3.

Пропускная способность до 32,4 Гбит/с (8,1 Гбит/с в каждой из четырех линий). С учетом накладных расходов на передачу скорости несжатого потока видео может достигать 25,92 Гбит/с.

Преобразование видео в vga, dvi, hdvi

Поддержка HDCP 2.2 и hdmi 2.0 с cec (применение в телевизионных приложениях, защита от копирования)

Поддержка формата 4:2:0, используется в потребительских телевизионных интерфейсах

Улучшены возможности по части передачи Display Port одновременно с видео других данных, например USB 3.0

Список портов ввода-вывода, обычно использующихся в персональном компьютере:

  1. Параллельный (LPT)
  2. Последовательный (COM)
  3. Игровой
  4. Разъем Ethernet
  5. Разъем PS/2 (мышь)
  6. Разъем PS/2 (клавиатура)
  7. VGA-разъем и прочие видеовыходы
  8. Аудиоразъемы для подключения динамиков, микрофона, и.т.д.

Порты в/в на материнской плате форм-фактора ATX:

1 – Разъем PS/2 (мышь); 2 – Разъем PS/2 (клавиатура); 3 – Выход Ethernet; 4 – Два разъема USB; 5 – Разъем последовательного порта; 6 – Разъем параллельного порта; 7 – Разъем VGA; 8 – Игровой порт; 9 – Аудиопорты (слева направо: линейный выход, вход, микрофон).

Параллельный порт (LPT)

Главная особенность параллельного порта – одновременная передача данных по нескольким линиям. Эта черта сближает LPT с внутренними шинами компьютера. Основное назначение параллельного порта – подключения внешних устройств, и в большинстве случаев таким устройством является принтер.

Первые версии параллельного порта имели одностороннюю направленность, то есть, данные по кабелю могли передаваться лишь в одну сторону – к периферийному устройству. В дальнейшем были введены усовершенствованные стандарты интерфейса LPT, в которых данные могли передаваться в обе стороны.

Последовательный порт (COM)

Этот порт отличает последовательная передача данных по одной линии. Последовательная передача означает, что биты информации передаются по линии один за другим. Кроме того, передача данных в последовательном порту является двунаправленной. Как правило, COM предназначен для подключения таких периферийных устройств, как мышь или модем. В качестве разъема порта на материнской плате компьютера используется 9-штырьковый разъем DE-9 типа «вилка».

Игровой порт

На сегодняшний день этот порт не так уж часто встречается на материнских платах. Кроме того, его не поддерживают современные операционные системы, такие, как Windows 7. Тем не менее, его до сих пор можно увидеть на звуковых картах. Разъемом порта является коннектор c 15-ю контактами.

Как можно догадаться из названия порта, он предназначен, прежде всего, для подключения джойстиков. Особенностью порта является возможность подключить к нему сразу два устройства. Кроме того, в звуковых картах игровой порт часто используется для подключения MIDI – устройств, например, таких, как синтезаторы. Поскольку он способен работать с аналоговыми и аналого-цифровыми устройствами, то в обслуживающую его микросхему встроен аналого-цифровой преобразователь.

Разъем PS/2 используется в компьютере для подключения мыши и/или клавиатуры. Несмотря на то, что он был разработан довольно давно, еще в середине 1980-x, тем не менее, он до сих активно используется в компьютерах. В некоторых материнских платах находятся два универсальных разъема, к которым можно подключить и мышь, и клавиатуру, в других же существует два отдельных разъема для мыши и клавиатуры. При этом разъем зеленого цвета предназначен для подключения мыши, синего – для клавиатуры. Оба разъема выполнены в формате mini-DIN c 9 контактами.

Порт USB, о котором будет подробно рассказано в отдельной статье, является наиболее скоростным, универсальным и производительным портом в/в в современных компьютерах. Именно по этой причине USB практически вытеснил многие другие порты. Обычно в компьютере используется несколько разъемов для подключения устройств USB.

Мультимедиа
— интерактивная система, обеспечивающая одновременное представление различных медиа — звук, анимированная компьютерная графика, видеоряд. Например, в одном объекте-контейнере (container
) может содержаться текстовая, аудиальная, графическая и видеоинформация, а также, возможно, способ интерактивного взаимодействия с ней.

Средства мультимедиа
— это комплекс аппаратных и программных средств, позволяющих человеку общаться компьютером, используя самые разные естественные для себя среды: звук, видео, графику, тексты, анимацию и др. К средствам мультимедиа относятся:

  • устройства речевого ввода и вывода информации;
  • микрофоны и видеокамеры, акустические и видеовоспроизводящие системы с усилителями, звуковыми колонками, большими видеоэкранами;
  • звуковые и видеоплаты, платы видеозахвата, снимающие изображение с видеомагнитофона или видеокамеры и вводящие его в компьютер;
  • сканеры;
  • внешние запоминающие устройства большой емкости на оптических дисках, часто используемые для записи звуковой и видеоинформации
  • редакторы видеоизображений;
  • профессиональные графические редакторы;
  • средства для записи, создания и редактирования звуковой информации, позволяющие подготавливать звуковые файлы для включения в программы, изменять амплитуду сигнала, наложить или убрать фон, вырезать или вставить блоки данных на каком-то временном отрезке;
  • программы для манипуляции с сегментами изображений, изменения цвета, палитры;
  • программы для реализации гипертекстов и др.

990x.top

Простой компьютерный блог для души)

Управление питанием состояния связи PCI Express — что это, что ставить?

Настройка, позволяющая активировать энергосберегательный режим работы устройств, подключенных к шине PCI-E (разьему).

PCI-E — шина обмена данными между процессором (CPU) и устройствами. Влияет на производительность видеокарты (GPU), особенно при одновременной работе двух или более.

Что ставить?

  1. При наличии игрового компьютера, когда ПК используется предпочтительно для игр — лучше выбрать Откл.
  2. Офисный ПК, где иногда запускаются игры — Умеренное энергосбережение.
  3. На ноутбуках можно выставить Максимально энергосбережение, однако стоит учитывать — автономная работа ноута не сильно увеличится, а производительность графики может немного снизиться.

Смысл данной настройки только в экономии энергии, однако экономиться будет мизерное количество, особенно если речь идет о игровом компьютере/ноуте.

Быстрый способ открыть данную настройку

  1. Зажмите Win + R, появится окошко Выполнить, вставьте powercfg.cpl, нажмите ОК.
  2. Откроется окно Электропитание. Напротив текущей схемы электропитания выберите Настройка схемы.
  3. Далее нажмите Изменить дополнительные параметры.
  4. Перейдите в раздел PCI Express > Управление питанием > установите значение.

На ноутах можно выставлять максимальную экономию. На стационарных компьютерах, особенно игровых — лучше выбирать Откл.

Что такое PCI-E?

Разьемы на материнской плате для расширения функциональности, установить можно например такие устройства:

  1. Видеокарта (GPU). Игровые материнки поддерживают работу одновременно сразу нескольких видеокарт.
  2. Сетевую карту или Wi-Fi-модуль.
  3. Дополнительные порты USB, SATA, IDE.
  4. Звуковую карту и многое другое. После установки в разьем (при выключенном ПК) обычно нужно поставить драйвера, выполнить перезагрузку, после — устройство готово к работе.

Разьемы отличаются скоростью. Визуально, простыми словами чем длиннее разьем — тем быстрее. Поэтому видеокарту лучше устанавливать в большой разьем, а сетевую плату, вай фай — можно ставить в более короткий.

Заключение

  • Управление питанием состояния связи PCI Express — настройка, позволяющая снизить энергопотребление устройств PCI. При наличии игрового компьютера — рекомендуется выбрать Откл, когда ноутбук — можно указать максимальное энергосбережение, однако может снизить производительность видеокарты.

Источник

Как в биосе выставить включение PCI видеокарты?

как выставить в биосе режим PCI-E x1, x2 и соответсвенно их выключить
пожалуйста подскажите как выставить в биосе режим PCI-E x1, x2 и соответсвенно их выключить.

Включение одновременно интегрированной и дискретной видеокарты в биосе от AMI
Здравствуйте. Я облазил уже весь интернет в поисках решения и как бы решение этого вопроса есть и.

Выбор видеокарты под PCI Express 2.0 2 PCI, 1 PCI-E x1, 1 PCI-E x16
Помогите хочу покупать в Среду Видео ATI Radeon 5850 1GB но там PCI Express 2.1 а у меня на.

удалите драйвер — перегрузитесь, войдите в БИОС — отключите видео на матери. Проблема в том, что при обычном удалении драйвера и перезагрузке — драйвер устанавливается заного., т.к для виндоус это приоритетное устройство и ваша карточка из-за этого не видна. По крайней мере я с таким сталкивался и решал это так.

Добавлено через 2 минуты
или может в биосе PCI слот отключен по заводским настройкам

удалите драйвер — перегрузитесь, войдите в БИОС — отключите видео на матери. Проблема в том, что при обычном удалении драйвера и перезагрузке — драйвер устанавливается заного., т.к для виндоус это приоритетное устройство и ваша карточка из-за этого не видна. По крайней мере я с таким сталкивался и решал это так.

Добавлено через 2 минуты
или может в биосе PCI слот отключен по заводским настройкам

Источник

Настройка шины pci e в биосе

На материнских платах MEG B550 Unify и Unify-X имеется по четыре слота M.2, три из которых поддерживают режим PCIe 4.0 x4, позволяющий раскрыть весь скоростной потенциал твердотельных накопителей стандарта PCIe 4.0.

Первый слот (обозначаемый как M2_1) подключен к процессору и поддерживает режим PCIe 4.0 x4. Второй (M2_2) и третий (M2_3) могут подключаться либо к процессору, либо к чипсету, по выбору пользователя. Четвертый слот (M2_4) подключен к чипсету и поддерживает режим PCIe 3.0 x4, поскольку чипсет B550 предлагает лишь интерфейс PCIe стандарта 3.0.

Слоты PCIe и M.2 на материнских платах MEG B550 Unify и Unify-X

  • Слот PCI_E1 подключен к процессору и поддерживает режим PCIe 4.0 x16.
  • Слоты PCI_E2 и PCI_E3 подключены к чипсету и поддерживают режим PCIe 3.0 x1.
  • Слот PCI_E4 подключен к чипсету и поддерживает режим PCIe 3.0 x4.

  • Слот M2_1 подключен к процессору и поддерживает режим PCIe 4.0 x4.
  • Слоты M2_2 и M2_3 поддерживают режим PCIe 4.0 x4 при подключении к процессору и PCIe 3.0 x2 при подключении к чипсету.
  • Слот M2_4 подключен к чипсету и поддерживает режим PCIe 3.0 x4.

Процессорный и чипсетный режимы слотов M2_2 и M2_3

Переключение между процессорным и чипсетным режимами осуществляется в интерфейсе BIOS.

Три накопителя SSD Samsung 980 PRO – скорость чтения достигает 17938 МБ/с.

Конфигурирование линий PCIe для разъемов PCIe, M.2 и SATA

Переключение линий PCIe между разъемами PCIe, M.2 и SATA часто бывает весьма запутанным. На платах B550 Unify и Unify-X слот M2_4 делит линии PCIe 3.0 x4 со слотом PCI_E4. В чипсетном режиме слот M2_2 делит линии PCIe со слотами PCI_E2 и PCI_E3.

Как видно из таблицы, в чипсетном режиме слоты PCI_E2 и PCI_E3 будут недоступны, если в слот M2_2 установлено какое-либо устройство, а при использовании слота M2_4 недоступным будет слот PCI_E4.

Источник

Полные настройки BIOS

Текст включает пояснения абсолютно всех существующих настроек BIOS, как старых так и современных чипсетов. Составлен на основе двух наших старых обзоров: «Оптимизиция BIOS», «Полные настройки BIOS» и дополнен материалом Адриана Вонга The Definitive BIOS Optimization Guide. Будем благодарны за любые дополнения и замечания.

I. BIOS Features Setup

II. Chipset Feature Setup

III. Integrated Peripherals

IV. PNP/PCI Configuration

I. BIOS Features Setup

Однако, эта опция может стать причиной проблем при инсталляции определенного программного обеспечения. Хорошим примером является обычная процедура инсталляции Win95/98. Когда эта опция включена, она становится причиной отказа при инсталляции Win95/98. Выключите ее перед инсталляцией подобного программного обеспечения.

Также многие утилиты диагностики диска, которые обращаются к загрузочному сектору могут выдавать сообщение об ошибке. Следует сначала выключить эту опцию перед тем как использовать эти утилиты.

В итоге, эта опция бесполезна для винчестеров, которые управляются внешними контроллерами (external controllers) с их собственным BIOS. Загрузочные вирусы минуют системный BIOS и пропишутся на такие винчестеры напрямую. Например, SCSI контроллеры и UltraDMA 66 контроллеры.

Некоторые материнские платы могут иметь свой собственный механизм защиты (ChipAway) в составе BIOS. Если вы его включаете, то обеспечивается дополнительная антивирусная защита системы, так как она сможет определять загрузочные вирусы до того как у них появится возможность заразить boot sector на винчестере. Опять же, эта опция бесполезна для винчестеров которые управляются отдельными контроллерами с их собственным BIOS.

CPU Level 1 Cache (Кэш первого уровня CPU)
Опции: Enabled, Disabled

    Эта установка BIOS может использоваться чтобы включить или отключить кэш первого уровня. Естественно, установкой по умолчанию является Enabled.

Эта опция полезна для «оверклокеров», которые хотят точно определить причину неудачного «разгона». Т.е. если CPU не способен достичь 500MHz с включенным кэшем первого уровня и наоборот; тогда L1 cache и является причиной мешающей стабильной работе CPU на 500MHz.

Однако, отключение L1 cache для того чтобы повысить разгоняемость CPU само по себе идея плохая, особенно для типа процессоров семейства Intel`s P6 (Pentium Pro, Celeron, Pentium II, Pentium . ).

CPU Level 2 Cache (Кэш 2-го уровня CPU)
Опции: Enabled, Disabled

    Эта опция BIOS применяется для включения и выключения кэша второго уровня. Естественно, установкой по умолчанию является Enabled.

Эта опция полезна для «оверклокеров», которые хотят точно определить причину неудачного «разгона». Т.е. если CPU не способен достичь 500MHz с включенным кэшем второго уровня и наоборот; тогда L2 cache и является причиной мешающей стабильной работе CPU на 500MHz.

Пользователи могут отключать (disable) L2 cache чтобы «разогнать» процессор до больших значений, но стоит ли игра свеч?

CPU L2 Cache ECC Checking (Коды коррекции ошибок)
Опции : Enabled, Disabled

    Эта опция включает и выключает функцию (ECC — Error Correction Code) коды коррекции ошибок. Включение этой функции обычно рекомендуется, так как она определяет и исправляет ошибки в одном разряде в данных, хранящихся в кэше второго уровня. Она также определяет ошибки в двух разрядах, но не исправляет их. Все же, ECC checking стабилизирует систему, особенно на разогнанных компьютерах, когда наиболее вероятны ошибки.

Некоторые оспаривают полезность включения ECC checking так как это сказывается на производительности. Следует отметить что разница по производительности ничтожна, (если вообще есть). Однако, стабильность и надежность достигаемые при помощи ECC checking очевидны и значительны. Это даже может дать вам возможность «разгона» до более высоких показателей чем когда ECC checking отключена (disabled). Поэтому, включайте ее в целях обеспечения стабильной и надежной работы.

Processor Number Feature (номер процессора)
Опции: Enabled, Disabled

    Эта опция применима только если у вас процессор Pentium . Она может даже и не появиться, если у вас установлен другой процессор. Эта опция позволяет вам решать будут ли внешние программы считывать серийный номер вашего процессора Pentium . Включите ее, если ваши транзакции требуют использования этой опции. Но я полагаю, что для большинства пользователей будет уместно выключить эту функцию, чтобы сохранить их частную информацию.

Quick Power On Self Test (быстрый автотест Power On)
Опции: Enabled, Disabled

    Будучи включенным, уменьшит время некоторых тестов и просто пропустит другие, которые обычно проходят во время процесса загрузки. Таким образом, система загружается гораздо быстрее.
    Включите его для быстрой загрузки, но выключите его после любых изменений в системе, чтобы обнаружить все ошибки которые могут проскочить через быстрый тест. После нескольких корректных (error-free) тест-пробегов ( test runs), вы можете опять включить эту опцию для быстрой загрузки без ухудшения стабильности системы.

Boot Sequence (Последовательность загрузки)
Опции: A, C, SCSI/EXT

    C, A, SCSI/EXT
    C, CD-ROM, A
    CD-ROM, C, A
    D, A, SCSI/EXT
    E, A, SCSI/EXT
    F, A, SCSI
    SCSI/EXT, A, C
    SCSI/EXT, C, A
    A, SCSI/EXT, C
    LS/ZIP,C
    Эта опция позволяет установить последовательность, согласно которой BIOS будет искать операционную систему. Чтобы установить наиболее краткое время загрузки, выберите первым пунктом винчестер, содержащий вашу ОС. Обычно, это диск С: но, если у вас SCSI жесткий диск, выбирайте пункт SCSI.

    Дополнительно: некоторые материнские платы (например ABIT BE6 и BP6) имеют дополнительный встроенный IDE контроллер. Опции BIOS этих плат заменяют SCSI опцию на EXT опцию. Это позволяет компьютеру загружаться с IDE винчестера на третьем или четвертом IDE порту (благодаря дополнительному встроенному IDE контроллеру) или со SCSI винчестера. Если вам нужно загрузиться с IDE винчестера работающего на первом или втором IDE порту, не устанавливайте очередность загрузки так, чтобы она начиналась с EXT. Обратите внимание, что этой функции приходится работать в соседстве с Boot Sequence EXT Means функцией.

Boot Sequence EXT Means (Последовательность загрузки с дополнительных устройств)
Опции: IDE, SCSI

    Эта функция применима только в случае, если вышеописанная Boot Sequence функция имеет установки EXT и этой функции приходится работать совместно с функцией Boot Sequence. Эта функция позволяет вам установить будет ли система загружаться с IDE винчестера соединенного с любым из двух дополнительных IDE портов, которые можно обнаружить на некоторых материнских платах (ABIT BE6 и BP6) или со SCSI винчестера.

Чтобы загрузиться с IDE винчестера соединенного с третьим или четвертым IDE портом (благодаря дополнительному встроенному IDE контроллеру), вам сначала нужно будет установить вышеописанную функцию Boot Sequence так, чтобы она начиналась с EXT. Например, EXT, C, A. Затем, вам нужно установить эту функцию (Boot Sequence EXT Means) в значение IDE.

Чтобы загрузиться с SCSI винчестера вам сначала нужно будет установить вышеописанную функцию Boot Sequence так, чтобы она начиналась с EXT. Например, EXT, C, A. Затем, вам нужно установить эту функцию (Boot Sequence EXT Means) в значение SCSI.

First Boot Device (Первое устройство загрузки)
Опции: Floppy, LS/ZIP, HDD-0, SCSI, CDROM, HDD-1, HDD-2, HDD-3, LAN, Disabled

    Данная функция позволяет выбрать первое устройство, с которого BIOS попробует загрузить операционную систему. Обратите внимание, что, если BIOS загружает систему с устройства, выбранного данной функцией, она не сможет загрузить другую операционную систему, установленную на другом устройстве.

Например, если в качестве первого устройства загрузки (First Boot Device) будет выбран дисковод флоппи-дисков, BIOS загрузит DOS 3.3, которая находится на флоппи-диске, но не будет загружать Win2k, даже если эта система будет установлена на жестком диске C. В целях предупреждения сбоев рекомендуется устанавливать операционную систему с CD.

По умолчанию выбран дисковод флоппи-дисков (Floppy). Но за исключением случаев, когда вы часто загружаетесь с дискеты или устанавливаете систему с CD-Rom, лучше всего в качестве первого устройства загрузки выбирать жесткий диск (обычно HDD-0). Это сократит процесс загрузки компьютера.

Second Boot Device (Второе устройство загрузки)
Опции: Floppy, LS/ZIP, HDD-0, SCSI, CDROM, HDD-1, HDD-2, HDD-3, LAN, Disabled

    Данная функция позволяет выбрать второе устройство, с которого BIOS будет пытаться загрузить операционную систему. Обратите внимание, что если BIOS может загрузить систему с первого устройства загрузки, то настройки данной функции не будут иметь силы. Только если BIOS не сможет найти операционную систему на первом устройстве загрузки, она попытается найти и загрузить систему со второго устройства загрузки.

Например, если в качестве первого устройства загрузки выберете дисковод, но вынете из него дискету, то BIOS загрузит Win2k, которая была установлена на жестком диске C (выбранном в качестве второго устройства загрузки).
По умолчанию выбрано устройство HDD-0, которое является жестким диском, обычно присоединенным к каналу Primary Master IDE. За исключением случаев, когда в качестве первого устройства загрузки выбран съемный диск, данная функция используется редко. HDD-0 является оптимальным выбором, хотя вы можете выбрать другое устройство, в качестве альтернативного устройства для загрузки.

Third Boot Device (Третье устройство загрузки)
Опции: Floppy, LS/ZIP, HDD-0, SCSI, CDROM, HDD-1, HDD-2, HDD-3, LAN, Disabled

    Данная функция позволяет выбрать третье устройство, с которого BIOS попытается загрузить систему. Обратите внимание, что если BIOS может загрузить систему с первого или второго устройства загрузки, настройки данной функции не будут иметь силы. Только в случае если BIOS не сможет найти систему на первом и втором устройствах загрузки, она попытается найти и загрузить систему с третьего устройства загрузки (Third Boot Device).

Например, если Вы выберете 3,5 дисковод в качестве первого устройства, а дисковод LS-120 в качестве второго устройства загрузки, но оба устройства окажутся пусты, то BIOS загрузит Win2k, которая была установлена на жестком диске C (выбранного в качестве третьего устройства загрузки).

По умолчанию выбран дисковод LS/ZIP. За исключением случаев, когда в качестве первого и второго устройств загрузки выбраны съемные диски, данная функция используется редко. LS/ZIP является наиболее подходящим выбором, хотя Вы можете выбрать и другое устройство для загрузки.

Boot Other Device (Загрузка другого устройства)
Опции: Enable, Disabled

    Данная функция определяет, станет ли BIOS загружать систему со второго или третьего устройства загрузки, если не удастся загрузить систему с первого устройства загрузки.

По умолчанию будет выбрано положение Enabled (Включено) и мы рекомендуем не менять его. В противном случае, если BIOS не сможет найти систему на первом устройстве загрузки, она прервет процесс загрузки и выдаст сообщение «No Operating System Found» (не обнаружено операционной системы), хотя операционные системы будут на втором или третьем устройстве загрузки.

Swap Floppy Drive (Перестановка флоппи-дисководов)
Опции:Enable, Disabled

    Данная функция полезна, когда Вы хотите поменять местами логический порядок флоппи-дисководов. Вместо необходимости открывать корпус для механической перестановки дисководов Вы можете просто включить данную функцию (положение Enabled). После этого первый дисковод будет помечен как диск B:, а второй дисковод — как диск A:.
    Данная функция также полезна, когда дисководы имеют разные форматы, и Вы хотите загрузиться со второго дисковода. Это вызвано тем, что BIOS будет грузиться только с диска A:.

Boot Up Floppy Seek (Поиск флоппи-дисковода во время загрузки)
Опции: Enable, Disabled

    Данная функция управляет проверкой флоппи-дисковода, которую осуществляет BIOS при загрузке. Если его не обнаруживается (либо из-за неправильной конфигурации, либо физической недоступности), выдается сообщение об ошибке. Также проверяется, имеет ли флоппи-дисковод 40 или 80 дорожек, но так как в настоящее время все дисководы имеют 80 дорожек, то данная проверка не нужна. Эта функция должна быть отключена для ускорения процесса загрузки.

Boot Up NumLock Status (Статус клавиши NUMLOCK)
Опции: Вкл, Выкл

    Данная функция проверяет состояние функциональной клавиатуры при загрузке. Если эта функция включена, функциональная клавиатура будет действовать в цифровом режиме (для набора цифр), но если функция отключена, то клавиатура будет управлять курсором. Данная установка зависит исключительно от предпочтений пользователя.

Gate A20 Option (Функция управления Gate A20)
Опции: Normal, Fast

    Данная функция определяет, как используется Gate A20 для обращения к памяти выше 1Mб. Когда выбрано положение Fast, чипсет материнской платы управляет работой Gate A20. Когда выбрано положение Normal, Gate A20 управляется пином на контроллере клавиатуры. Установка функции управления Gate A20 в положение Fast улучшает скорость доступа в память и, таким образом, общую скорость работы системы, особенно с OS/2 и Windows.

Это связано с тем, что OS/2 и Windows входят и выходят из защищенного режима через BIOS очень часто, и Gate A20 вынуждено постоянно переключаться. Установка функции в положение Fast улучшает доступ к памяти выше 1MB, потому что чипсет намного быстрее в переключении Gate A20, чем контроллер клавиатуры. Рекомендуется выбирать положение Fast для более быстрой работы памяти.

IDE HDD Block Mode (Режим передачи блоков данных с IDE HDD)
Опции: Enabled, Disabled

    Данная функция (IDE HDD Block Mode) ускоряет доступ к жесткому диску, передавая данные одновременно из нескольких секторов вместо использования режима передачи данных из одного-единственного сектора за раз. Когда вы активизируете данную функцию, BIOS автоматически определяет поддерживает ли ваш жесткий диск передачу данных блоками и устанавливает необходимые настройки передачи данных блоками. При включенном режиме передачи данных блоками за одно прерывание может быть передано до 64Kб данных. Так как в настоящий момент все жесткие диски поддерживает передачу данных блоками, причин, по которым не стоило бы включать данный режим, не имеется.

Однако, если вы пользуетесь WinNT, будьте внимательны. Согласно словам Chris Bope, Windows NT не поддерживают режим IDE HDD Block Mode и его активизация может привести к повреждению данных. Ryu Connor подтвердил это, прислав мне ссылку на статью Micrisoft о работе IDE под WinNT4.0 (Microsoft article about Enhanced IDE operation under WinNT 4.0). Согласно этой статье, режим IDE HDD Block Mode (и функция 32-bit Disk Access) в некоторых случаях приводила к повреждению данных. Microsoft рекомендует пользователям WinNT 4.0 отключать данный режим (положение Disabled).

С другой стороны, Lord Mike, разговаривая с хорошо информированным лицом, услышал, что проблема повреждения данных была серьезно рассмотрена компанией Microsoft и была устранена в Service Pack 2. Хотя он не получил официального заявления от Microsoft, возможно, что включение режима IDE HDD Block Mode под WinNT вполне безопасно, если вы провели апгрейд при помощи Service Pack 2.

Если вы отключите режим IDE HDD Block Mode, за одно прерывание может передаваться только 512 бит данных. Нет необходимости говорить, что это значительно ухудшает работу. Так что отключайте данный режим IDE HDD Block Mode, только если пользуетесь WinNT. В других случаях для оптимальной работы оставляйте этот режим включенным.

32-bit Disk Access (32-бит доступ к жесткому диску)
Опции: Enabled, Disabled

    32-bit Disk Access вообще-то, является неправильным названием этой функции, так как не предоставляет 32-битного доступа к жесткому диску. Что она на самом деле делает, так это настраивает IDE контроллер на объединение двух 16-битных считываний с жесткого диска в одну передачу на процессор двойного слова 32-бит. Это делает использование шины PCI более оптимальным, так как нужно меньшее количество транзакций для передачи имеющегося объема данных.

Однако, согласно статье Microsoft Enhanced IDE operation under WinNT 4.0 (см. выше), 32-битный доступ к жесткому диску в некоторых случаях может вызвать повреждение данных под WinNT. Microsoft рекомендует отключать данную функцию при использовании WinNT 4.0.

С другой стороны, Lord Mike, разговаривая с хорошо информированным лицом, услышал, что проблема повреждения данных была серьезно рассмотрена компанией Microsoft и была устранена в Service Pack 2. Хотя он не получил официального заявления от Microsoft, возможно, что включение режима IDE HDD Block Mode под WinNT вполне безопасно, если Вы провели апгрейд при помощи Service Pack 2.

Если функция отключена, передача данных с IDE контроллера на процессор будет проходить только в 16-бит. Это, конечно, ухудшит работу, так что стоит включать данную функцию, если возможно. Отключайте ее, только если есть опасность повреждения данных.

Typematic Rate Setting (Настройка периода повторения)
Опции: Enabled, Disabled

    Данная функция позволяет настраивать повтор срабатывания клавиши при ее постоянном нажатии. Если он включена, Вы можете вручную сделать настройку, используя два параметра настройки периода повторения (Typematic Rate и Typematic Rate Delay). Если функция отключена, BIOS воспользуется настройками по умолчанию.

Typematic Rate (Chars/Sec) Период повторения (знаков/мин)
Опции: 6, 8, 10, 12, 15, 20, 24, 30

    Эта скорость, с которой клавиатура будет повторять клавишу при ее постоянном нажатии. Эта настройка будет работать, только если будет включена предыдущая функция Typematic Rate Setting.

Typematic Rate Delay (Msec) Задержка периода повторения (мсек)
Опции: 250, 500, 750, 1000

    Это задержка в миллисекундах перед тем, как клавиатура начнет повторять клавишу, которую Вы удерживаете. Эта настройка работает, только когда включена функция Typematic Rate Setting.

Security Setup (Функция защищенной настройки)
Опции: System, Setup

    Эта функция будет работать, только если Вы установите пароль через PASSWORD SETTING (установку пароля) на основном окне BIOS.

Выбор опции System настроит BIOS на запрос пароля при каждой загрузке системы.
При выборе опции Setup, пароль потребуется только при попытке доступа к настройкам BIOS. Эта опция полезна для системных администраторов или перепродавцов компьютеров, которым необходимо отгородить начинающих пользователей от копания в настройках BIOS. 🙂

PCI/VGA Palette Snoop (Корректировка палитры VGA видеокарты на PCI)
Опции: Enabled, Disabled

    Эта опция полезна только тогда когда вы используете MPEG-карточку или дополнительную карту, которая использует Feature Connector исходной графической карты. Она исправляет неправильное воспроизведение цветов путем перехвата в память видеобуфера кадров графической карты и модифицирования (синхронизирования/synchronizing) информации передаваемой от Feature Connector исходной графической карты к MPEG или add-on карте. Она также поможет решить проблему перехода дисплея в режим черного цвета после использования MPEG карты.

Assign IRQ For VGA (Выделение прерывания для VGA)
Опции: Enabled, Disabled

    Многие high-end графические акселераторы теперь требуют IRQ для нормальной работы. Если вы отключите эту опцию с такой карточкой, то возможны сбои в нормальной работе и/или значительно ухудшится производительность. Таким образом, лучше всего убедиться, что вы включили эту опцию, если у вас проблемы с графическим акселератором. Однако, некоторые low-end карты не требуют IRQ для нормальной работы. Следует проверить документацию на вашу графическую карту. Если там указано что данная карточка не требует IRQ, тогда можно выключить эту опцию освобождая IRQ для других целей. Если сомневаетесь, лучше всего оставьте ее включенной, до тех пор пока вам действительно не понадобится IRQ.

MPS Version Control For OS (Версия MPS)
Опции: 1.1, 1.4

    Эта опция имеет смысл только для мультипроцессорных систем, так как она указывает версию Multiprocessor Specification (MPS), которую будет использовать материнская плата. MPS есть спецификация согласно которой производители PC проектируют и создают системы на архитектуре Intel с двумя и более процессорами. В MPS версии 1.4 добавлены расширенные таблицы конфигурации в целях улучшения поддержки для multiple PCI bus конфигураций, и улучшена расширяемость в будущем. Более свежие версии серверных операционных систем в большинстве своем будут поддерживать MPS 1.4 и потому, вам следует изменить BIOS Setup с 1.1 (по умолчанию) на 1.4 если ваша операционная система поддерживает версию 1.4. Значение 1.1 следует сохранить, только если у вас более старая версия серверной ОС.

OS Select For DRAM > 64MB (Выбор OS если DRAM > 64MB)
Опции: OS/2, Non-OS/2

    Когда системная память имеет размер более 64MB, OS/2 отличается от других operating systems (OS) тем, как она управляет памятью. Так, в системе, где установлена OS/2, выберите OS/2, а в системе где установлена иная ОС, выберите Non-OS/2.

HDD S.M.A.R.T. Capability (Совместимость с HDD S.M.A.R.T.)
Опции: Enabled, Disabled

    Эта опция включает и выключает поддержку S.M.A.R.T. совместимости винчестера. Технология S.M.A.R.T. (Self Monitoring Analysis And Reporting) поддерживается всеми современными винчестерами и позволяет на раннем этапе предсказать и предупредить о надвигающихся проблемах с винчестером. Вам следует включить ее, чтобы S.M.A.R.T. утилиты могли бы отслеживать состояние винчестера. Включение этой опции позволяет следить за состоянием винчестера через сеть. Нет никаких преимуществ в производительности, если ее отключить, даже если вы и не намереваетесь использовать технологию S.M.A.R.T.Однако, возможно, что включение технологии S.M.A.R.T. может стать причиной спонтанных перезагрузках в компьютерах работающих в сети. S.M.A.R.T. может посылать пакеты данных через сеть даже если эти данные ничем не просматриваются. Это может привести к спонтанным перезагрузкам. Таким образом, попробуйте отключать HDD S.M.A.R.T. Capability если у вас постоянные перезагрузки или отказы при работе в сети.

Report No FDD For Win95 (Вывод сообщения «No FDD For Win95»)
Опции: Enabled, Disabled

    Если вы работаете под Windows 95/98 без флоппи диска (FDD), выберите Enabled чтобы высвободить IRQ6. Это нужно чтобы пройти Windows 95/98`s SCT тест. Вам также следует отключить Onboard FDC Controller в меню Integrated Peripherals если в системе нет флоппи диска. Если вы выберете Disabled, то BIOS не станет выводить сообщение об отсутствующем floppy drive для Win95/98.

Delay IDE Initial (Задержка инициализации IDE устройства)
Опции: 0, 1, 2, 3, . 15

    Процесс загрузки (booting process) новых BIOS происходит теперь гораздо быстрее. Поэтому, некоторые устройства IDE могут оказаться неспособными раскрутиться достаточно быстро чтобы BIOS смог определить их во время процесса загрузки. Эта установка служит для указания значения периода задержки инициализации подобных IDE устройств во время процесса загрузки.По возможности оставьте значение 0 для более быстрой загрузки системы. Но если одно или более из ваших IDE устройств не сможет инициализироваться во время загрузки, увеличьте значение этой опции до такого при котором будет происходить их нормальная инициализация.

Video BIOS Shadowing (использование теневого ОЗУ для загрузки системной BIOS или видео BIOS из ПЗУ видео карты в системную память)
Опции: Enabled, Disabled

    Когда эта опция включена, Video BIOS копируется в системную память для более быстрого доступа. Улучшает производительность BIOS потому что CPU теперь можно считывать BIOS через 64-bit DRAM bus, а не 8-bit XT bus. Все это весьма привлекательно, так как подразумевает по крайней мере 100x увеличение скорости передачи и за это мы поплатимся пространством в системной памяти, которая будет использована чтобы зеркально отображать содержимое ПЗУ.

Однако, современные ОС минуют BIOS полностью и имеют прямой доступ к видеокарте. Таким образом, нет обращений к BIOS и нет никакого выигрыша от BIOS shadowing. В свете всего этого, нет смысла тратить системную память только на то, чтобы затенить Video BIOS, если он вообще не используется.
Согласно статье Microsoft о Shadowing BIOS under WinNT 4.0, затенение BIOS (независимо от того какой это BIOS) не дает никакого увеличения производительности так как оно не используется WinNT. Оно только «съест» память. Хотя в статье ничего не упоминается о Win9x, все это справедливо и для Win9x, так как она основана на той же самой Win32 архитектуре.
Более того, некоторые руководства упоминают о возможности нестабильной работы системы если определенные игры обращаются в область RAM (region) которая уже была использована для затемнения Video BIOS. Однако, это уже не актуально, так как эта затененная область RAM была сделана недоступной для программ.Вот что стоит упомянуть, так это то что в video BIOS затеняются только 32KB. Более новые video BIOS-ы обычно больше чем 32KB в размере, но если затеняются только 32KB а остальное остается в исходном положении, то начнутся проблемы со стабильностью при обращении к BIOS. Поэтому, если вы намереваетесь затенить video BIOS, вам следует убедиться что затенен ВЕСЬ video BIOS.

Во многих случаях по умолчанию затенена только область C000-C7FF. Чтобы это исправить, вам следует:

  • enable video BIOS shadowing (для области C000-C7FF) и
  • enable shadowing оставшихся порций,

т.е. C800-CBFF, пока не будет затенен весь video BIOS.

В конце концов, большинство современных видеокарт сейчас имеют Flash ROM (EEPROM) которое значительно быстрее чем старые ROM и даже быстрее чем DRAM. Поэтому, больше нет необходимости в video BIOS shadowing и может быть даже большей производительности можно добиться вообще не применяя shadowing! В дополнение, вам не следует затенять video BIOS если ваша видеокарта имеет Flash ROM так как вы не сможете обновить его содержимое если shadowing будет включен.

С другой стороны, от этой опции все-таки есть кое-какая польза. Некоторые игры под DOS до сих пор используют video BIOS так как они не обращаются напрямую к графическому процессору (хотя более продвинутые в смысле графики игры делают это). Таким образом, если вы играете в кучу разных игр под DOS, можете попробовать включить Video BIOS Shadowing в целях большей производительности. Весь предмет обсуждения является по природе своей вопросом историческим. Когда-то, когда иметь VGA видеокарту было круто, графические карты были довольно тупыми и примитивными. Они представляли из себя кусок памяти который представлял пиксели на экране. Чтобы поменять пиксель, надо было поменять память представляющую его. Вещи типа изменения цветовой гаммы, разрешения экрана, и т.д. выполнялись через запись в набор регистров на видеокарте. Однако, все делалось процессором. Так как согласование (interfacing) с железом изменяется вместе с самим железом, то «разговор» с вашей видеокартой зависел от установленной конкретно вами карточки. Чтобы разрешить эту проблему, видеокарты включали в себя BIOS chip. Проще говоря, video BIOS являлся расширением к system BIOS. Он представлял собой документированный набор функций — запросов который мог использовать программист для общения с видео чипсетом. Так почему же появилось BIOS shadowing? Память, используемая для хранения BIOS на видеокарте обычно является разновидностью EPROM (Electrically Programmable Read Only Memory). Очень быстрая EPROM имеет время доступа (access time) 130-150ns, что примерно равно памяти в 8086-based компьютере. Также, пропускная способность шины составляет 8 bits. По мере того как ускорялись компьютеры (x386, x486, и т.д.), а игры становились все более насыщенными графикой, доступ к BIOS становилось все более и более критичным моментом. Чтобы разрешить эту проблему, продвинули video BIOS к более быстрой 16-bit system memory дабы ускорить дело. На самом же деле, большинство насыщенных графикой игр под DOS, по любому, редко обращаются к BIOS. Большинство взаимодействуют с чипсетом по возможности напрямую.

Получаем: в «старину», video BIOS не особо-то и работал с видеокартой. Он просто обеспечивал набор функций — запросов чтобы сделать жизнь разработчика легче. Новые видеокарточки, с функциями ускорителя, подпадают под совсем иную категорию. На самом деле их процессор встроен в карту. Таким же путем как системный BIOS приказывает вашему процессору как запускать ваш компьютер, так и ваш видео BIOS говорит вашему видеопроцессору как отображать картинку. Новые карты имеют флэш-память, и производители могут искоренить любой «баг» существующий в прошивке. Любая ОС использующая функцию ускорителя, напрямую общается с процессором на карте, давая ему набор команд. Вообще-то это работа видео драйвера. Идея в том, что драйвер предоставляет ОС набор документов с функциями — запросами. Когда происходит вызов, драйвер посылает соответствующую команду к видеопроцессору. Видеопроцессор выполняет команды так, как диктует его запрограммированный видео BIOS.

Что же касается shadowing video BIOS, это не имеет особого значения. Windows, Linux, или любые иные ОС которые используют функции ускорителя никогда напрямую не сообщаются с video BIOS. А вот старый добрый DOS все еще это делает! А посему, те же самые функции которые когда то существовали в первых VGA картах до сих пор существуют в новеньких 3D картах. От того как в DOS программах написан видео интерфейс зависит производительность видео системы, если видео BIOS затенен (shadowed).

Краткий итог #2: в сегодняшних видео акселераторах, основной работой видео BIOS-а является обеспечение программы для видео процессора (RIVA TNT2, Voodoo3, и т.д.) чтобы он смог выполнить свою задачу. Интерфейс между видеокартой и программным обеспечением обеспечивается набором команд от драйвера и на самом деле не имеет ничего общего с видео BIOS. Первоначальные функции BIOS-а все еще наличествуют для обратной совместимости с VGA.

Shadowing Address Ranges (xxxxx-xxxxx Shadow) Затенение блока памяти в адресном пространстве
Опции: Enabled, Disabled

    Эта опция дает вам возможность решать, затенять ли блок памяти на дополнительной карте в адресном пространстве xxxxx-xxxxx или нет. Оставьте опцию выключенной если у вас нет дополнительной карты использующей этот диапазон памяти. Также, как и при Video BIOS Shadowing, нет никакого преимущества во включении этой функции если вы работаете под Win95/98 и у вас имеются драйверы соответствующие вашей add-on карте.Ivan Warren также предупреждает, что если вы используете дополнительную карту которая использует некоторую область CXXX-EFFF под I/O, то затенение вероятно не даст карте работать, так как запросы на чтение/запись памяти не смогут быть переданы к ISA шине.

II. Chipset Features Setup

SDRAM CAS Latency Time (Время задержки SDRAM CAS [Column Address Strobe])

Опции: 2, 3

    Управляет задержкой времени (по периодам синхронизирующих импульсов) которая происходит до момента когда SDRAM начинает выполнять команду считывания (read command) после ее получения. Также определяет значение «цикла таймера» для завершения первой части пакетной передачи. Таким образом, чем меньше время ожидания, тем быстрее происходит транзакция. Однако некоторые SDRAM не в состоянии обеспечить меньшее время ожидания, становятся нестабильными и теряют данные.Таким образом, по возможности устанавливайте Время ожидания (SDRAM CAS Latency Time) в поз.2 для оптимальной производительности, но увеличивайте до 3 если система становится нестабильной.

SDRAM Cycle Time Tras/TrcTras/Trc (время цикла памяти SDRAM)
Опции: 5/6, 6/8

    Эта функция позволяет изменить минимальное количество циклов памяти требуемых для Tras и Trc в SDRAM. Tras означает SDRAM`s Row Active Time (время активности ряда SDRAM ), т.е. период времени в течение которого ряд открыт для переноса данных. Также существует термин Minimum RAS Pulse Width (минимальная длительность импульса RAS ). Trc, с другой стороны, означает SDRAM`s Row Cycle Time (цикл памяти/время цикла ряда SDRAM), т.е. период времени в течение которого завершается полный цикл открытия и обновления ряда (row-open, row-refresh cycle).

    Установкой по умолчанию является 6/8, более медленной и стабильной чем 5/6. Однако, 5/6 быстрее сменяет циклы в SDRAM, но может не оставлять ряды открытыми на период времени достаточный для полного завершения транзакции данных. Это особенно справедливо для SDRAM с тактовой частотой свыше 100MHz. Следовательно, следует попробовать 5/6 в целях увеличения производительности SDRAM, но следует увеличить до 6/8 если система становится нестабильной.

SDRAM RAS-to-CAS Delay (Задержка SDRAM RAS-to-CAS)
Опции: 2, 3

    Эта опция позволяет вам вставить задержку между сигналами RAS (Row Address Strobe) и CAS (Column Address Strobe). Это происходит когда что-то записывается, обновляется или считывается в SDRAM. Естественно, что уменьшение задержки улучшает производительность SDRAM, а увеличение, наоборот, ухудшает производительность SDRAM.Таким образом, уменьшайте задержку со значения 3 (default) до 2 для улучшения производительности SDRAM. Однако, если уменьшения задержки возникает проблема со стабильностью, то установите значение обратно на 3.

SDRAM RAS Precharge Time (Время предварительного заряда RAS SDRAM)
Опции: 2, 3

    Эта опция устанавливает количество циклов необходимых, чтобы RAS накопил свой заряд перед обновлением SDRAM. Уменьшение времени предзаряда до 2 улучшает производительность SDRAM, но если эта установка недостаточна для установленного SDRAM, то SDRAM может обновляться некорректно и не сможет удерживать данные. Таким образом, для улучшения производительности SDRAM, устанавливайте SDRAM RAS Precharge Time на 2, но увеличивайте до 3, если уменьшение времени предзаряда вызывает проблемы со стабильностью.

SDRAM Cycle Length (Длина цикла SDRAM)
Опции: 2, 3

    Данная характеристика сходна с SDRAM CAS Latency Time. Управляет задержкой времени (по периодам синхронизирующих импульсов) которая происходит до момента когда SDRAM начинает выполнять команду считывания (read command) после ее получения. Также определяет значение «цикла таймера» для завершения первой части пакетной передачи. Таким образом, чем меньше длина цикла, тем быстрее происходит транзакция. Однако, некоторые SDRAM не в состоянии обеспечить меньшую длину цикла, становясь нестабильными. По возможности устанавливайте SDRAM Cycle Length в поз.2 для оптимальной производительности, но увеличивайте до 3 если система становится нестабильной.

SDRAM Leadoff Command (время доступа к первому элементу пакета данных)
Опции: 3, 4

    Данная опция позволяет вам подстроить значение leadoff time, периода времени требуемого до того как можно будет получить доступ к данным хранимым в SDRAM. В большинстве случаев это время доступа к первому элементу пакета данных. Для оптимальной производительности, для быстрого доступа к SDRAM устанавливайте значение на 3, но увеличивайте его до 4, если система становится нестабильной.

SDRAM Bank Interleave (Чередование банка данных SDRAM)
Опции: 2-Bank, 4-Bank, Disabled

    Данная характеристика позволяет вам установить режим interleave(чередование) интерфейса SDRAM. Чередование позволяет банкам SDRAM чередовать их циклы обновления и доступа. Один банк проходит цикл обновления в то время как другой находится в стадии обращения к нему. Это улучшает производительность SDRAM путем маскирования (masking) времени обновления каждого банка. Более внимательное рассмотрение чередования покажет, что с упорядочиванием циклов обновления всех банков SDRAM проявляется эффект схожий с конвейерным эффектом.

    Если в системе 4 банка, то CPU может в идеале посылать один запрос данных к каждому из банков SDRAM последовательными периодами синхроимпульсов (consecutive clock cycles). Это значит, что в первом периоде CPU пошлет один адрес к Bank 0 и затем пошлет следующий адрес к Bank 1 во втором периоде, перед тем как пошлет третий и четвертый адреса к Banks 2 и 3 в третьем и четвертом периодах соответственно. Такая последовательность будет иметь примерно следующий вид:

    1. CPU посылает адрес #0 к Bank 0
    2. CPU посылает адрес #1 в Bank 1 и получает данные #0 из Bank 0
    3. CPU посылает адрес #2 в Bank 2 и получает данные #1 из Bank 1
    4. CPU посылает адрес #3 в Bank 3 и получает данные #2 из Bank 2
    5. CPU получает данные #3 из Bank 3

    В результате, данные из всех четырех запросов последовательно поступят от SDRAM без задержек между ними. Но, если чередование не было активизировано, та же самая 4-х адресная транзакция примет следующий вид:

    1. SDRAM refreshes (SDRAM обновляется)
    2. CPU sends address #0 to SDRAM (CPU посылает адрес #0 в SDRAM)
    3. CPU receives data #0 from SDRAM (CPU получает данные #0 из SDRAM)
    4. SDRAM refreshes (SDRAM обновляется)
    5. CPU sends address #1 to SDRAM (CPU посылает адрес #1 в SDRAM)
    6. CPU receives data #1 from SDRAM (CPU получает данные #1 из SDRAM)
    7. SDRAM refreshes (SDRAM обновляется)
    8. CPU sends address #2 to SDRAM (CPU посылает адрес #2 в SDRAM)
    9. CPU receives data #2 from SDRAM (CPU получает данные #2 из SDRAM)
    10. SDRAM refreshes (SDRAM обновляется)
    11. CPU sends address #3 to SDRAM (CPU посылает адрес #3 в SDRAM)
    12. CPU receives data #3 from SDRAM (CPU получает данные #3 из SDRAM)

    Как видите, с чередованием, первый банк начинает перенос данных к CPU в том же самом цикле при котором второй банк получает адрес от CPU. Без чередования, CPU посылал бы этот адрес к SDRAM, получал бы требуемые данные и затем ждал бы пока обновится SDRAM, перед тем как начать вторую транзакцию данных. На все это тратится множество периодов синхроимпульсов. Вот почему пропускная способность SDRAM увеличивается при включенном чередовании (interleaving enabled).

    Однако, чередование банков (bank interleaving) работает только в том случае если последовательно запрошенные адреса не находятся в одном и том же банке. Иначе транзакции данных происходят так, словно эти банки не чередуются. CPU придется подождать пока не очистится первая транзакция данных, а этот банк SDRAM не обновится, и только затем CPU сможет послать еще один запрос к этому банку.

    Каждый SDRAM DIMM состоит либо из 2-х банков, либо 4-х банков. Двухбанковые SDRAM DIMM используют 16Mbit SDRAM чипы и обычно бывают 32MB или менее в размере. Четырехбанковые SDRAM DIMM, с другой стороны, обычно используют 64Mbit SDRAM чипы, хотя SDRAM плотность может достигать 256Mbit на один чип. Все SDRAM DIMMs размером хотя бы 64MB или более по природе своей являются 4-банковыми. Если вы используете отдельный 2-bank SDRAM DIMM, то устанавливайте значение этой опции на 2-Bank. Но если вы используете пару 2-bank SDRAM DIMMs, то можно также применить 4-Bank опцию. С 4-bank SDRAM DIMMs, вы можете использовать любую из опций чередования (interleave options).

    Само собой, 4-банковое чередование лучше, чем 2-банковое чередование, поэтому по возможности выбирайте 4-Bank. Выбирайте 2-Bank только если используете отдельный 2-bank SDRAM DIMM. Заметьте, однако, что Award (теперь часть Phoenix Technologies) рекомендует отключать SDRAM bank interleaving если используются 16Mbit SDRAM DIMMs.

SDRAM Precharge Control (Управление предварительным зарядом SDRAM)
Опции: Enabled (включен), Disabled (выключен)

    Данная характеристика определяет, чем управляется предзаряд SDRAM — процессором или самим SDRAM. Если эта опция выключена, то все циклы CPU к SDRAM завершатся командой All Banks Precharge на интерфейсе SDRAM, что улучшит стабильность, но понизит производительность. Если же эта опция включена, то предварительный заряд предоставлен самому SDRAM. Это уменьшит количество раз предзаряда SDRAM, так как произойдет множество циклов CPU- SDRAM до того как потребуется обновить SDRAM. Поэтому включайте эту опцию для оптимальной производительности, если это не окажет влияния на стабильность системы.

DRAM Data Integrity Mode (Режим целостности данных DRAM)
Опции: ECC, Non-ECC

    Эта установка BIOS применяется для конфигурации режима целостности данных вашего RAM. ECC означает Error Checking and Correction (Проверка и Исправление Ошибок), и ее следует использовать только если вы пользуетесь специальным 72-bit ECC RAM. Это позволит системе определять и исправлять ошибки в одном разряде, а также определять в двух разрядах, но не исправлять их. Все это увеличит целостность данных и повысит стабильность системы, но за счет небольшого уменьшения скорости.Если у вас ECC RAM, установите ECC чтобы повысить целостность данных. В конце концов, вы и так уже потратились на дорогой ECC RAM, так почему бы и не использовать его? 😉 если же вы не используете ECC RAM, то выбирайте установку Non-ECC.

Read-Around-Write (Выполнение команды считывания с изменением последовательности)
Опции: Enabled, Disabled

    Данная настройка позволяет процессору выполнять команды считывания с изменением последовательности, как если бы они были независимы от команд записи. Таким образом, если команда на чтение указывает адрес в памяти, последняя запись (содержание) которого находится в кэше (ожидая копирования в память), команда на чтение будет удовлетворена содержимым кэша вместо этого. Это улучшает эффективность подсистемы памяти. Мы рекомендуем включить эту опцию.

System BIOS Cacheable (Кэширование области системного BIOS)
Опции: Enabled, Disabled

    Данная настройка применима только в случае если system BIOS затенен. В ней включается или выключается кэширования области памяти по адресам системного BIOS с F0000H по FFFFFH через кэш второго уровня. Это заметно ускоряет доступ к системному BIOS. Однако не повышает производительность, так как ОС не сильно требуется доступ к BIOS. А поэтому, было бы пустой тратой пропускной способности кэша второго уровня — кэшировать системный BIOS, вместо данных которые гораздо более критичны для производительности системы. Важно то что, когда любая программа пишет в эту область памяти, это закончится полным отказом системы. Следовательно, мы рекомендуем вам выключить System BIOS Cacheable для оптимальной производительности системы.

Video BIOS Cacheable (Кэширование области BIOS видеоадаптера)
Опции: Enabled, Disabled

    Данная настройка применима только в случае если video BIOS затенен. В ней включается или выключается кэширования области памяти по адресам BIOS видеокарты с C0000H по C7FFFH через кэш второго уровня. Это заметно ускоряет доступ к video BIOS. Однако не повышает производительность, так как OS обходит BIOS, используя графический драйвер для прямого доступа к видеокарте. А потому, было бы пустой тратой пропускной способности кэша второго уровня — кэшировать video BIOS, вместо данных которые гораздо более критичны для производительности системы. Важно что, когда любая программа пишет в эту область памяти, это закончится полным отказом системы. Следовательно, мы рекомендуем вам выключить Video BIOS Cacheable для оптимальной производительности системы.

Video RAM Cacheable (Кэширование видео памяти)
Опции: Enabled, Disabled

    Данная настройка включает или выключает кэширование видео памяти в A0000h-AFFFFh через кэш второго уровня (L2 cache). Это предположительно ускоряет доступ к видео памяти. Однако, не улучшает производительность. Cовременные графические карты имеют пропускную способность памяти порядка 5.3GB/s (128bit x 166MHz DDR) и эти цифры постоянно растут. Тем временем, пропускная способность SDRAM`s все еще застряла где-то около 0.8GB/s (64bit x 100MHz) или, в лучшем случае, 1.06GB/s (64bit x 133MHz) если вы используете PC133 систему.

    Так вот, хотя Pentium 650 и может иметь кэш второго уровня с пропускной способностью примерно 20.8GB/s (256bit x 650MHz), все равно лучше кэшировать действительно медленный system SDRAM, а не RAM графических карт. Также, заметьте, что кэширование видео памяти не имеет особого смысла даже если есть хорошая пропускная способность кэша второго уровня. Это потому, что video RAM сообщается с кэшем второго уровня (L2 cache) через AGP шину, которая имеет максимальную пропускную способность всего 1.06GB/s используя AGP4X протокол. На самом деле, данная пропускная способность «ополовинена» в случае если L2 cache кэширует RAM видеокарточки так как данные должны идти в двух направлениях. Опять же, когда любая программа пишет в эту область памяти, это закончится полным отказом системы, поэтому, мы не так уж и выигрываем при кэшировании RAM видеокарты. Гораздо лучше использовать вместо этого L2 cache процессора для кэширования системной SDRAM. Следовательно, мы рекомендуем вам выключить Video RAM Cacheable для оптимальной производительности системы.

Memory Hole At 15M-16M (Промежуток между 15-16 мегабайтом памяти)
Опции: Enabled, Disabled

    Некоторые особые ISA карты требуют под себя эту область памяти для корректной работы. Если эта опция включена, то она резервирует область памяти для использования подобными карточками. Это также предотвращает доступ системы к памяти свыше 16MB. Означает это только то, что если вы включите эту функцию, ваша ОС сможет использовать только не более 15MB памяти, независимо от того как много памяти на самом деле в вашей системе. 🙂
    Всегда выключайте эту функцию.

8-bit I/O Recovery Time (Время восстановления для восьми разрядных устройств)
Опции: NA, 8, 1, 2, 3, 4, 5, 6, 7

    PCI гораздо быстрее чем шина ISA и для нормальной работы ISA карточек с I/O циклами от PCI шины, механизм восстановления шины ввода/вывода (I/O bus recovery mechanism) добавляет в ISA шину дополнительные синхронизирующие циклы шины между каждыми последовательными PCI-вырабатываемыми I/O циклами.
    По умолчанию, этот механизм восстановления шины ввода/вывода добавляет минимум 3.5 синхронизирующих цикла между каждыми последовательными 8-bit I/O циклами в ISA шину. Вышеописанная опция позволяет вам добавить даже больше синхронизирующих циклов между каждыми последовательными 8-bit I/O циклами в ISA шину. Опция NA устанавливает количество циклов задержки на минимум 3.5 синхронизирующих циклов. Таким образом, по возможности устанавливайте 8-bit I/O Recovery Time в позицию NA для оптимальной производительности ISA шины. Увеличивайте I/O Recovery Time только если у вас проблемы с вашей восьми разрядной ISA карточкой, обратите внимание что эта функция не имеет смысла если вы не используете ISA карточки.

16-bit I/O Recovery Time (Время восстановления для 16-разрядных устройств)
Опции: NA, 4, 1, 2, 3

    PCI гораздо быстрее чем шина ISA, поэтому, для нормальной работы ISA карточек с I/O циклами от PCI шины, механизм восстановления шины ввода/вывода (I/O bus recovery mechanism) добавляет в ISA шину дополнительные синхронизирующие циклы шины между каждыми последовательными PCI-вырабатываемыми I/O циклами.
    По умолчанию, этот механизм восстановления шины добавляет минимум 3.5 синхронизирующих цикла между каждыми последовательными 16-bit I/O циклами в ISA шину. Вышеописанная опция позволяет вам добавить даже больше синхронизирующих циклов между каждыми последовательными 16-bit I/O циклами в ISA шину. Опция NA устанавливает количество циклов задержки на минимум 3.5 синхронизирующих циклов. Таким образом, по возможности устанавливайте 16-bit I/O Recovery Time в позицию NA для оптимальной производительности ISA шины. Увеличивайте I/O Recovery Time только если у вас проблемы с вашей 16-bit ISA карточкой, обратите внимание что эта функция не имеет смысла если вы не используете ISA карточки.

Passive Release (Функция BIOS, которая включает/выключает механизм параллельной работы шин ISA и PCI)
Опции: Enabled, Disabled

    Если Passive Release включена, то доступ процессора к шине PCI разрешен во время пассивного разделения. Следовательно, процессор может иметь доступ к PCI шине пока происходит обращение к ISA шине. Включите Passive Release для оптимальной производительности. И выключите Passive Release только если у вас проблемы с вашей ISA картой.

Delayed Transaction (Функция BIOS, которая включает/выключает задержку транзакций на шине PCI)
Опции: Enabled, Disabled

    Эта опция применяется, чтобы соответствовать периоду ожидания PCI циклов к ISA шине и от неё. PCI циклы «к» и «от» ISA шины требуют большего времени для завершения и это замедляет PCI шину. Однако, если установить Delayed Transaction в позицию Enabled, это включит встроенный в чипсет 32-битный буфер записи для поддержки задержанных транзакционных циклов. Это означает, что транзакции к ISA шине и от ISA шины заполняют буфер и PCI шина освобождается, чтобы выполнять иные транзакции пока реализуется ISA транзакция. Эта опция должна быть включена для лучшей производительности и чтобы соответствовать требованиям PCI 2.1. Выключите ее только если ваша PCI карточка не может нормально работать или вы используете ISA карту которая не совместима с PCI 2.1.

PCI 2.1 Compliance (Совместимость с PCI 2.1)
Опции: Enabled, Disabled

    Это то же самое что и Delayed Transaction описанная выше. Опция применяется, чтобы соответствовать периоду ожидания PCI циклов к ISA шине и от неё. ISA шина гораздо медленнее чем PCI bus. Поэтому, PCI циклы к и от ISA шины требуют большего времени для завершения и это замедляет PCI шину. Однако, если установить Delayed Transaction в позицию Enabled, это включит встроенный в чипсет 32-битный буфер записи для поддержки задержанных транзакционных циклов. Это означает, что транзакции к ISA шине и от ISA шины заполняют буфер и PCI шина освобождается, чтобы выполнять иные транзакции пока реализуется ISA транзакция. Эта опция должна быть включена для лучшей производительности и чтобы соответствовать требованиям PCI 2.1. Выключите ее только если ваша PCI карточка не может нормально работать или вы используете ISA карту которая не совместима с PCI 2.1.

AGP Aperture Size MB (Размер апертуры AGP Mб)
Опции: 4, 8, 16, 32, 64, 128, 256

    Данная опция выбирает размер апертуры AGP. Апертура — часть диапазона адреса памяти PCI (memory address range) отведенная под пространство адреса графической памяти . Ведущие циклы которые подпадают под этот диапазон апертуры пересылаются к AGP без необходимости трансляции. Данный размер также устанавливает максимальный размер системной RAM отведенной графической карточке для хранения текстур.

    Размер апертуры AGP устанавливает следующая формула: максимально используемая AGP память x2 плюс 12MB. Это значит что размер используемой памяти AGP составляет менее половины размера апертуры AGP. Это из-за того, что система требует не кэшированную память AGP плюс равное количество области памяти для комбинированной записи и дополнительные 12MB для виртуальной адресации. Это адресное пространство, а не используемая физическая память. Физическая память размещается и высвобождается по необходимости только когда Direct3D запрашивает («create non-local surface») запрос.Win95 (с VGARTD.VXD) и Win98 используют «эффект водопада» («waterfall effect»). Поверхности сначала создаются в локальной памяти. Когда эта память заполнена, процесс создания поверхности вытекает в AGP память и затем в системную память. Таким образом, использование памяти автоматически оптимизируется для каждого приложения. Память AGP и системная память не используются без абсолютно крайней необходимости.

    Размер апертуры не соответствует производительности, поэтому увеличивая его до огромных пропорций, мы не улучшим производительность. Многие графические карты, однако, потребуют размера апертуры более чем 8MB AGP для нормальной работы, так что следует устанавливать размер апертуры AGP минимум 16MB. Даже тогда, вам следует устанавливать завышенный размер апертуры, чтобы он был достаточно большим для соответствия требованиям графики предъявляемым вашими играми и приложениями.В настоящее время, практическим правилом считается иметь размер апертуры AGP от 64MB до 128MB. Превышая 128MB мы не ухудшим производительность, но все равно лучше придерживаться 64MB-128MB чтобы GART (Graphics Address Relocation Table) не был слишком большой. При увеличении устанавливаемого RAM и практики сжатия текстур, становится меньше нужды в размере апертуры AGP превышающем 64MB. Так что мы рекомендуем вам устанавливать AGP Aperture Size на 64MB или, в крайнем случае, на 128MB.

AGP 2X Mode (Режим AGP 2X)
Опции: Enabled, Disabled

    Этот пункт в BIOS включает и выключает протокол передачи AGP2X. Стандарт AGP2X использует возрастающий край сигнала AGP для передачи данных. При 66MHz, это транслируется в пропускную способность 264MB/s. Включение режима AGP 2X Mode удваивает эту пропускную способность при помощи передачи данных по обоим (возрастающему и нисходящему) краям сигнала. Поэтому, в то время как тактовая частота или частота (следования) тактовых или синхронизирующих импульсов шины AGP все еще остается 66MHz, эффективная пропускная способность шины удваивается. Таким же образом достигается усиление производительности в UltraDMA 33. Однако, как чипсет на материнской плате так и видеокарточка должны поддерживать AGP2X режим до того как вы сможете использовать AGP2X протокол. Если ваша графическая карта поддерживает AGP2X режим, включите AGP 2X Mode в целях повышения AGP скорость передачи (transfer rate). Выключите его только если начинаются проблемы со стабильной работой (особенно с Super Socket 7 материнскими платами) или если планируете разогнать AGP шину за пределы 75MHz.

AGP Master 1WS Read (Уменьшение задержки до 1 цикла ожидания при чситывании)
Опции: Enabled, Disabled

    По умолчанию, AGP устройство ожидает минимум 2 периода или AGP цикла ожидания до того как он начнет транзакцию чтения. Эта опция BIOS позволяет вам уменьшить задержку только до 1 периода ожидания или цикла ожидания. Для лучшей производительности AGP считывания (read performance) включите эту опцию. Но выключите ее если вы обнаружите странные графические аномалии типа контуров или «каркасного» изображения и пиксельных артефактов после включения этой опции.

AGP Master 1WS Write (Уменьшение задержки до 1 цикла ожидания при записи)
Опции: Enabled, Disabled

    По умолчанию, AGP устройство ожидает минимум 2 периода или AGP цикла ожидания до начала транзакции чтения. Эта опция BIOS позволяет вам уменьшить задержку только до 1 периода ожидания или цикла ожидания. Для лучшей производительности AGP записи включите эту опцию. Но выключите ее если вы обнаружите странные графические аномалии типа контуров или «каркасного» изображения и пиксельных артефактов после включения этой опции.

USWC Write Posting (Некэшируемая прогностическая комбинация записи)
Опции: Enabled, Disabled

    USWC или Uncacheable Speculative Write Combination (некэшируемая прогностическая комбинация записи) улучшает производительность для систем Pentium Pro (а также, вероятно, иных P6 процессоров) с графическими картами которые имеют линейный буфер видео кадров (linear framebuffer) (он есть у всех новых моделей). Путем комбинации меньших записей данных в 64-битной записи, она уменьшает количество транзакций требуемых для конкретного объема данных для передачи в линейный буфер видео кадров графической карты. Однако это может привести к сбоям в графике, отказам и проблемам с загрузкой, и т.д. если графическая карта не поддерживает такую опцию. Следует добавить, что тесты применяющие FastVid (в предыдущих статьях — The Phoenix Project) показали, что такая опция возможно способна ухудшить производительность, вместо того чтобы улучшить ее! Подобное наблюдалось на материнских платах на основе Intel 440BX. Таким образом, если вы используете процессор Pentium Pro или материнскую плату на основе более старых чипсетов, включите эту опцию для быстрой графической производительности. Если у вас достаточно новая материнская плата, то можете попробовать включить ее, но обязательно проведите серию тестов чтобы определить улучшает ли это на самом деле производительность или нет. Вполне возможно, что ничего не улучшится, а то и ухудшится.

Spread Spectrum (Функция BIOS, позволяющая изменять режим работы задающего генератора частоты и, таким образом, снизить электромагнитное излучение от системного блока компьютера)
Опции: Enabled, Disabled, 0.25%, 0.5%, Smart Clock

    Когда на материнской плате пульсирует генератор тактовых или синхронизирующих импульсов, то предельные величины (пики — spikes) этих пульсаций образуют EMI (Electromagnetic Interference — электромагнитное излучение проникающее за пределы среды передачи, главным образом за счет использования высоких частот для несущей и модуляции. Функция Spead Spectrum понижает EMI путем модуляции пульсаций таким образом что пики этих пульсаций сглаживаются до более плоских кривых. Это достигается путем варьирования частоты и она не использует какую-либо отдельную частоту дольше одного момента. Это уменьшает проблему помех для другой электроники расположенной вблизи.

    Однако, хотя включение Spread Spectrum и понижает EMI, стабильность системы и производительность становятся вопросом компромисса. Особенно это справедливо для устройств где критичны временные параметры, например чувствительные к синхронизации SCSI устройства. Некоторые BIOS предлагают опцию Smart Clock. Вместо модулирования частоты импульсов по времени, Smart Clock отключает AGP, PCI и SDRAM синхросигналы, когда они не используются. Таким образом, можно понизить EMI не идя на компромисс со стабильностью системы. В качестве бонуса, применение Smart Clock может также помочь снизить потребление энергии. Если у вас нет никаких проблем с EMI, оставьте установку Disabled для оптимальной производительности и стабильности системы. Но если вас очень волнует вопрос EMI то используйте опцию Smart Clock если возможно, а если нет, то вас может устроить Enabled или одно из двух оставшихся значений. Процентное значение показывает количество вариаций которое BIOS производит на частоту синхронизации. Т.е. меньшее значение (0.25%) сравнительно лучше для стабильности системы, в то время как большее значение (0.5%) лучше для понижения EMI.

Auto Detect DIMM/PCI Clk (Автоматическое обнаружение DIMM/PCI Clk)
Опции: Enabled, Disabled

    Данная функция схожа с опцией Smart Clock в Spread Spectrum function. BIOS контролирует работу AGP, PCI и SDRAM. Если в этих слотах нет карт, BIOS отключает соответствующие AGP, PCI или SDRAM синхроимпульсы. То же самое он делает и с занятыми слотами AGP / PCI / SDRAM. Таким образом, можно понизить EMI не идя на компромисс со стабильностью системы. Это также может также помочь снизить потребление энергии, так как энергию будут потреблять только работающие компоненты. Все же, если у вас нет никаких проблем с EMI, оставьте установку Disabled для оптимальной производительности и стабильности системы. Включайте ее только если вас очень волнует вопрос EMI или вы хотите сэкономить больше энергии.

BIOS Flash BIOS Protection (Функция Flash защиты данных)
Опции: Enable, Disable

    Данная функция предназначена для защиты BIOS от случайного повреждения пользователями или компьютерными вирусами. Когда она включена, данные, содержащиеся в BIOS, не смогут быть изменены при попытке обновить BIOS при помощи утилиты Flash. Для того, чтобы обновить BIOS, Вам нужно отключить функцию Flash защиты данных BIOS.Вы должны оставить эту функцию всегда включенной. Единственная ситуация, в которой следует отключать данную функцию — это обновление данных BIOS. После обновления данных BIOS, Вы должны немедленно включить ее вновь, чтобы защитить BIOS от вирусов.

Hardware Reset Protect (Защита от случайной перезагрузки компьютера)
Опции: Enable, Disable

    Данная функция полезна для серверов, маршрутизаторов и т.д., которые необходимо держать включенными 24 часа в сутки. Когда данная функция включена, кнопка перезагрузки компьютера Reset не работает. Это предотвращает возможность случайной перезагрузки. Когда функция отключена, т.е. выбрана позиция Disabled, то кнопка Reset работает в обычном порядке. Рекомендуется выключить данную функцию (позиция Disabled) в том случае, если вы не используете сервер или у вас нет детей, которые любят просто бегать и нажимать маленькую красную кнопку. 😉

DRAM Read Latch Delay (Установка задержки считывания DRAM)
Опции: Enable, Disable

    Данная функция BIOS устанавливает небольшую задержку прежде, чем система начинает считывать данные из модуля DRAM. Данная функция добавлена для оптимизации работы с некоторыми специальными модулями SDRAM, у которых необычная синхронизация. Вам не следует включать данную функцию, если не сталкиваетесь с внезапными отказами системы, которые, скорее всего, вызваны нестабильной работой оперативной памяти. Таким образом, выбирайте позицию Disabled, если не испытываете проблем со стабильной работой системы. В этом случае можно включить данную функцию для того, чтобы увидеть, имеет ли ваш модуль DRAM необычную синхронизацию и устранить эту проблему.

DRAM Interleave Time (Время чередования работы DRAM)
Опции: 0мс, 0.5мс

    Данная функция BIOS управляет временными интервалами для перехода к чтению следующей порции данных DRAM, когда включено чередование работы DRAM. Естественно, чем меньше используемое время, тем быстрее модули DRAM могут чередоваться и, соответственно, тем лучше они работают. Таким образом, рекомендуется устанавливать как можно меньшее время для лучшей работы модулей DRAM. Увеличивайте промежутки времени чередования работы DRAM, только если Вы сталкиваетесь с проблемами стабильности работы системы.

Byte Merge (Сливание байтов)
Опции: Enable, Disable

    Функция сливания байтов удерживает 8-битные или 16-битные записи с CPU на шину PCI в буфере, где они аккумулируются и сливаются в 32-битные записи. Затем чипсет заносит данные из буфера на шину PCI, как только у него появляется такая возможность. Как видно, сливание 8-битных или 16-битных записей уменьшает количество транзакций, проходящих через PCI, освобождая тем самым время, затрачиваемое CPU и повышая пропускную способность шины. Таким образом, рекомендуется выбрать позицию enable, чтобы обеспечить лучшую работу PCI.

PCI Pipeline / PCI Pipelining
Опции: Enable, Disable

    Данная функция BIOS сочетает конвейерную обработку данных на PCI или CPU со сливанием байтов (byte merging). Сливание байтов используется для оптимизации работы видеокарты. Данная функция управляет сливанием байтов для циклов передачи данных из видеобуфера. Если данная функция включена (позиция Enabled), контроллер проверяет восемь сигналов CPU Byte Enable для того, чтобы определить, можно ли слить байты данных, поступающих с шины PCI на CPU. Таким образом, рекомендуется оставить данную функцию включенной для лучшей работы Вашей PCI видеокарты. Также могут лучше работать и другие PCI устройства.

Fast R-W Turn Around
Опции: Enable, Disable

    Данная функция BIOS уменьшает задержку, которая происходит в тот момент, когда CPU сначала считывает данные из RAM, а затем пишет в оперативную память. Обычно происходит и дополнительная задержка в момент переключения с чтения на запись. Если включить данную функцию, задержка будет сокращена и ускорится переключение с чтения на запись. Однако, если ваш модуль RAM не сможет выдержать более быстрый темп, данные могут быть потеряны, а система станет нестабильной. Имея это в виду, включите данную функцию для лучшей работы RAM, если только не испытываете проблемы со стабильностью системы.

CPU to PCI Write Buffer (Буфер записи данных, поступающих с CPU на шину PCI)
Опции: Enable, Disable

    Эта функция контролирует буфер записи данных, поступающих с CPU на шину PCI. Если этот буфер отключен, CPU пишет непосредственно на шину PCI. Хотя это может показаться более быстрым, а потому и предпочтительным способом передачи данных, на самом деле это не так. Так как шина CPU быстрее, чем шина PCI, записи данных, передаваемых с CPU на шину PCI, вынуждены ждать, пока шина PCI будет готова принять данные. Это не дает возможности CPU перейти к другим задачам до тех пор, пока процессор не закончит передачу данных на шину PCI. Включение буфера позволяет CPU немедленно до 4 слов данных в буфер, что позволяет ему продолжать выполнять другие задачи, не ожидая момента, когда эти 4 слова данных достигнут шины PCI. Данные в буфере записей будут переданы на шину PCI в момент, когда начнется следующий цикл считывания данных на шине PCI. Разница заключается в том, что он делает это без стопорения процессора во время всей транзакции с CPU на PCI. Таким образом, рекомендуется активирование буфера записей с CPU на PCI.

PCI Dynamic Bursting
Опции: Enable, Disabled

    Данная функция BIOS управляет буфером записи PCI. Если она включена, то каждая транзакция на шине PCI заносится в буфер записи. Транзакции затем отправляются по назначению, как только набирается достаточно транзакций, чтобы составить один пакет. Если функция отключена, данные поступают в буфер записи и передаются пакетами позже (когда шина PCI свободна или заполнен буфер записи), если записанная транзакция является пакетной транзакцией. Если транзакция не является пакетной, то буфер очищается, и данные немедленно передаются на шину PCI. Рекомендуется включить функцию PCI Dynamic Bursting для лучшей работы шины.

PCI Master 0 WS Write
Опции: Enable, Disabled

    Данная функция определяет задержку между записями в PCI. Если данная функция включена, то запись в PCI осуществляется немедленно (с нулевой задержкой), как только шина PCI готова получить данные. Но если данная функция отключена, то каждая транзакция на шину PCI идет с задержкой с периодом ожидания one (один).Обычно рекомендуется включить данную функцию (позиция enable), для ускорения работы PCI. Однако отключение данной функции может быть полезно, когда «разгон» шины PCI ведет к нестабильной работе. Задержка, как правило, улучшает работу «разогнанной» шины PCI.

PC Delay TransactionI
Опции: Enable, Disabled

    Данная функция схожа с другой функцией BIOS — отложенной транзакции (Delayed Transaction). Она используется для адаптации к задержке циклов передачи данных с шины PCI на шину ISA. Шина ISA намного медленнее, чем шина PCI. Вследствие этого цикл передачи данных с PCI на ISA и наоборот занимает большее время, что замедляет работу шины PCI. Включение функции Delayed Transaction позволяет встроенному 32-битному буферу записи чипсета поддерживать отложенные циклы трансакций. Это означает, что транзакции с и на шину ISA заносятся в буфер, и шина PCI освобождается для проведения других транзакций, пока шина ISA все еще занята этими транзакциями.Данная функция должна быть включена (позиция Enabled) для лучшей работы шины PCI и соответствия техническим требованиям PCI 2.1. Отключайте ее только в том случае, если Ваши PCI карты не работают должным образом, или если Вы используете ISA карту, которая не совместима с PCI 2.1.

PCI#2 Access #1 Retry
Опции: Enable, Disabled

    Эта функция BIOS связана с буфером записи данных, идущих между CPU и шиной PCI. Обычно данный буфер записи включен. Все записи на шине PCI, по сути, заносятся в буфер записи, а не на шину PCI. Это избавляет CPU от необходимости ждать, когда освободится шина PCI. Затем данные идут на шину PCI в момент начала следующего цикла работы шины PCI. Существует вероятность, что запись в буфер на шине PCI может сорваться. В случае, если это происходит, данная функция BIOS определяет, следует попробовать осуществить запись еще раз или отсылать назад на проверку. Затем, если данная функция BIOS включена, буфер будет пытаться провести запись в шину PCI до тех пор, пока у него это не получится. Если же функция отключена, буфер очистит свое содержимое и зарегистрирует данную запись как сбойную. CPU придется вновь заносить запись в буфер записи.

    Рекомендуется держать данную функцию включенной (позиция enable) за исключением случаев, когда в системе имеется много медленных PCI устройств. В этом случае отключение данной функции предотвратит генерацию большого количества повторных попыток, которые могут серьезно нагрузить шину PCI.

Master Priority Rotation
Опции: 1 PCI, 2 PCI, 3 PCI

    Данная функция контролирует доступ CPU к шине PCI. Если выберете позицию 1 PCI, CPU всегда будет иметь доступ к текущей шине PCI после того, как будет закончена транзакция независимо от того, сколько других шин PCI находится в очереди. Это обеспечивает моментальный доступ CPU к шине PCI, но означает более медленную работу устройств PCI. Если выбираете позицию 2 PCI, CPU получит доступ после того, как текущая и следующая PCI транзакции будут закончены. Другими словами, CPU получает доступ после двух транзакций PCI, независимо от того, сколько других устройств передачи данных по шине PCI будет в очереди. Это означает, что CPU вынужден будет ждать несколько дольше, чем в предыдущем опции (1 PCI), но устройства PCI получат более быстрый доступ к шине PCI. Если выберете опцию 3 PCI, CPU получит доступ к PCI шине после того, как будут закончены текущая и две последующих транзакции устройствами передачи данных по шине PCI. Таким образом, CPU вынужден будет ждать, пока три устройства передачи данных, находящихся в очереди, не закончат свои транзакции через шину PCI прежде, чем он получит доступ к самой шине PCI. Это означает более медленную коммуникацию от CPU к PCI, но PCI устройства будут работать лучше. Но, независимо от выбора, CPU будет иметь доступ к PCI после максимум 3 транзакций устройствами передачи данных по шине PCI. Это произойдет независимо от того, сколько устройств передачи данных по PCI будет находиться в очереди, или когда CPU запросит доступ к шине PCI. Процессор всегда получит доступ к шине PCI после одной транзакции (1 PCI), двух транзакций (2 PCI) или трех транзакций (3 PCI).

Режим AGP 4X
Опции: Enable, Disabled

    Данная функция имеется только у материнских плат, поддерживающих AGP4X. Однако, она обычно отключена (выбрана позиция Disabled) по умолчанию, так как не каждый использует карту AGP4X. У пользователей карт AGP1X или 2X данная функция BIOS должна быть отключена, чтобы карты смогли нормально работать. Для того, чтобы избежать осложнений, производители предпочитают просто отключать режим AGP4X. Однако, это означает, что пользователи карт AGP4X не смогут воспользоваться большой пропускной способностью, которая доступна в режиме AGP4X. Хотя скорость передачи данных в режиме AGP4X незначительно выше, чем в режиме AGP2X, все равно будет неразумно не воспользоваться возможностями этого режима. Так что, если у вас видеокарта AGP4X, рекомендуется включить режим AGP4X (позиция enable) для лучшей работы шины AGP. Не включайте данный режим, если карта поддерживает только режимы передачи данных AGP1X или AGP2X.

AGP Driving Control
Опции: Автоматический режим, Ручной режим

    Данная функция BIOS позволяет настраивать управление работой порта AGP. Обычно по умолчанию выбирается автоматический режим (позиция Auto), что позволяет чипсету автоматически настраивать работу AGP в соответствии установленной видеокартой формата AGP. Однако для устранения сбоев в работе и «разгона» шины можете перейти в ручной режим управления работой шины AGP для выбора необходимого значения AGP Driving Value.

AGP Driving Value
Опции: от 00 до FF (шестеричная система)

    Данная опция зависит от функции BIOS, которая отвечает за настройку управления AGP (см. выше). Если эта функция будет переведена в автоматический режим, (позиция Auto), то значение, которое вы будет устанавливать в данной опции, работать не будет. Для того чтобы данная опция BIOS работала, необходимо перевести функцию настройки управления AGP в ручной режим (позиция Manual). AGP Driving Value определяет интенсивность сигнала шины AGP. Чем больше значение, тем сильнее сигнал. Диапазон значений в шестеричной системе счисления (от 00 до FF) соответствует диапазону от 0 to 255 в десятичных значениях. По умолчанию значение AGP Driving Value установлено на DA (218), однако, если вы используете AGP карту серии NVIDIA GeForce2, рекомендуется установить AGP Driving Value на более высокое значение EA (234).

    Характер данной опции BIOS позволяет «разгонять» шину AGP (работать на большей частоте, чем предусмотрено). Шина AGP чувствительна к «разгону», особенно в режиме AGP4X и с активированной повышенной пропускной способностью. По сути более высокое значение AGP Driving Value может оказаться как раз тем способом для «разгона» шины AGP, который Вам необходим. Увеличением силы сигнала шины Вы можете повысить стабильность ее работы на больших скоростях.Однако, будьте предельно осторожны, увеличивая значение AGP Driving Value при «разогнанной» шине AGP, так как Вы можете безнадежно повредить свою AGP карту! Кстати, вопреки некоторым сообщениям увеличение значения AGP Driving Value не улучшит работу шины AGP. Это не та опция, которая увеличивает производительность шины, так что не следует задирать ее значение, если в этом нет необходимости.

III. Integrated Peripherals

PIO режим Максимальная пропускная способность (MB/s)
PIO Mode 0 3.3
PIO Mode 1 5.2
PIO Mode 2 8.3
PIO Mode 3 11.1
PIO Mode 4 16.6

Таблица показывающая разную пропускную способность в зависимости от режима DMA.

DMA Transfer Mode Максимальная пропускная способность (MB/s)
DMA Mode 0 4.16
DMA Mode 1 13.3
DMA Mode 2 16.6
UltraDMA 33 33.3
UltraDMA 66 66.7
UltraDMA 100 100.0

IV. PNP/PCI Configuration

Примечание: Windows 2000 будет работать с ACPI (Advanced Computer Management and Interface) даже в том случае если PNP OS Installed = Yes. Достаточно убедится, что отключен APM (Advanced Power Management). Как обычно Майкрософт рекомендует ставить PNP OS Installed = No

Совет для пользователей Linux: Не смотря на то, что Linux не по настоящему PnP совместимый, многие дистрибутивы используют часть программы ISAPNPTOOLS, для установки ISA карт. Если у вас значение PNP OS Installed = No, BIOS будет пытаться конфигурировать ISA карты самостоятельно. Это не сделает их работоспособными в Linux, и необходимость в ISAPNPTOOLS или подобной утилите останется. Если пытаться конфигурировать ISA карты и с помощью BIOS и с помощью ISAPNPTOOLS могут возникнуть проблемы. Оптимальный вариант это установка PNP OS Installed = Yes, затем с помощью ISAPNPTOOLS конфигурировать ISA устройства.

Force Update ESCD / Reset Configuration Data (Быстрое обновление ESCD)
Опции: Enabled, Disabled

    ESCD (Extended System Configuration Data — данные расширенной системной конфигурации) опция Plug & Play BIOS которая хранит IRQ, DMA, I/O и конфигурации всех ISA, PCI и AGP карт в системе. Cледует оставить эту опцию в положении Disabled. Но если вы установили дополнительную карту и вследствие чего произошел конфликт ресурсов (ОС даже может и не загрузится), тогда следует включить эту опцию и BIOS сбросит и переконфигурирует настройки для всех PnP карт в системе во время загрузки. После этого BIOS автоматически отключит эту опцию (положение Disabled) сразу после следующей загрузки.

Resource Controlled By (Функция распределения ресурсов)
Опции: Auto, Manual

    BIOS умеет автоматически конфигурировать все загрузочные и Plug & Play совместимые устройства. Нормально если опция установлена в значение Auto, тогда BIOS может автоматически распределять прерывания (IRQ) и DMA каналы. Все установки IRQ и DMA исчезнут или станут недоступными. Но если есть проблемы с распределением ресурсов и BIOS не справился с автоматическим распределением, выберете опцию Manual чтобы открыть поля ручной настройки IRQ и DMA. Тогда возможно присвоить каждому IRQ или DMA каналу одно из двух значений Legacy ISA или PCI/ISA PnP устройства. Legacy ISA устройства попадают под спецификации «PC AT bus» и требуют отдельного прерывания / DMA канала чтобы функционировать нормально. PCI/ISA PnP устройства попадают под Plug & Play стандарт и могут использовать любое прерывание / DMA канал.

Assign IRQ For VGA (Выделение прерывания для VGA)
Опции: Enabled, Disabled

    Многие high-end акселераторы теперь требуют прерывания, чтобы функционировать нормально. Отключение этой функции при использовании таких карт повлечет за собой сбои в работе либо просто слабую производительность. Так что лучше включите эту функцию если наблюдаете проблемы. Однако, многие видеокарты не требуют прерывания для нормальной работы. Прочтите документацию к видеокарточке. Если карте не требуется IRQ то отключите эту функцию — IRQ всегда слишком большой дефицит.

Assign IRQ For USB (Выделение прерывания для USB)
Опции: Enabled, Disabled

    Эта опция схожа с опцией USB Controller. Она включает и отключает выделение IRQ для USB (Universal Serial Bus — универсальная последовательная шина). Включите (положение Enabled) если используете USB устройства. Если вы отключите данную опцию во время использования USB устройства, у вас могут возникнуть проблемы с работоспособностью устройства. Выключите опцию, если не используете USB устройства. Тем самым освободив прерывание (IRQ) для других устройств.

PCI IRQ Activated By (Активизация прерывания)
Опции: Edge, Level

    Это редкая функция BIOS которая позволяет выбирать метод активизации прерываний ваших PCI карт. ISA и старые PCI карты активизируются по перепаду уровня сигнала (используя единое напряжение), тогда как новые PCI и AGP карты активизируются только по уровню сигнала (используя составное напряжение). Когда PCI устройства только появились, опцию устанавливали в значение Edge потому как эти устройства ёщё не поддерживали распределение прерываний. Однако сейчас практически все PCI устройства поддерживают распределение IRQ, поэтому ставьте опцию в положение Level чтобы работало распределение, до тех пор пока вам не понадобится использовать старые PCI карты активизирующиеся по перепаду уровня сигнала.

PIRQ_0 Use IRQ No.

PIRQ_3 Use IRQ No. (Установка IRQ индивидуально)
Опции: Auto, 3, 4, 5, 7, 9, 10, 11, 12, 14, 15

    Эта опция позволяет устанавливать прерывания индивидуально каждому устройству на PCI и AGP шине. Это очень полезная функция может пригодиться, если вы переносите жесткий диск с одного компьютера на другой, и вы не хотите переустанавливать операционную систему чтобы переопределить прерывания. Тогда вы можете подогнать установки прерываний к оригинальным и избежать множество проблем при установке жесткого диска в новую систему. Заметки:

    • Если вы укажите прерывание, такое же как для ISA шины возникнет конфликт.
    • Каждый PCI слот может активизировать до четырёх прерываний — INT A, INT B, INT C и INT D
    • AGP слот может активизировать два прерывания — INT A и INT B
    • Нормально когда каждый слот назначен как INT A. Остальные прерывания как резервы если PCI/AGP устройство потребует больше чем одно прерывание или если запрашиваемое прерывание занято.
    • AGP слот и PCI слот#1 распределяют одинаковые прерывания (IRQ)
    • PCI слот #4 и #5 распределяют одинаковые прерывания (IRQ)
    • USB использует PIRQ_4

    Таблица показывающая связь между PIRQ (programmable interrupt request — программируемый запрос прерывания) и INT (Interrupt — прерывание):

Источник

Настройка, позволяющая активировать энергосберегательный режим работы устройств, подключенных к шине PCI-E (разьему).

PCI-E — шина обмена данными между процессором (CPU) и устройствами. Влияет на производительность видеокарты (GPU), особенно при одновременной работе двух или более.

Что ставить?

  1. При наличии игрового компьютера, когда ПК используется предпочтительно для игр — лучше выбрать Откл.
  2. Офисный ПК, где иногда запускаются игры — Умеренное энергосбережение.
  3. На ноутбуках можно выставить Максимально энергосбережение, однако стоит учитывать — автономная работа ноута не сильно увеличится, а производительность графики может немного снизиться.

РЕКЛАМА

Смысл данной настройки только в экономии энергии, однако экономиться будет мизерное количество, особенно если речь идет о игровом компьютере/ноуте.

Быстрый способ открыть данную настройку

  1. Зажмите Win + R, появится окошко Выполнить, вставьте powercfg.cpl, нажмите ОК.
  2. Откроется окно Электропитание. Напротив текущей схемы электропитания выберите Настройка схемы.
  3. Далее нажмите Изменить дополнительные параметры.
  4. Перейдите в раздел PCI Express > Управление питанием > установите значение.

На ноутах можно выставлять максимальную экономию. На стационарных компьютерах, особенно игровых — лучше выбирать Откл.

Разьемы на материнской плате для расширения функциональности, установить можно например такие устройства:

  1. Видеокарта (GPU). Игровые материнки поддерживают работу одновременно сразу нескольких видеокарт.
  2. Сетевую карту или Wi-Fi-модуль.
  3. Дополнительные порты USB, SATA, IDE.
  4. Звуковую карту и многое другое. После установки в разьем (при выключенном ПК) обычно нужно поставить драйвера, выполнить перезагрузку, после — устройство готово к работе.

Разьемы отличаются скоростью. Визуально, простыми словами чем длиннее разьем — тем быстрее. Поэтому видеокарту лучше устанавливать в большой разьем, а сетевую плату, вай фай — можно ставить в более короткий.

Заключение

Выяснили:

  • Управление питанием состояния связи PCI Express — настройка, позволяющая снизить энергопотребление устройств PCI. При наличии игрового компьютера — рекомендуется выбрать Откл, когда ноутбук — можно указать максимальное энергосбережение, однако может снизить производительность видеокарты.

Удачи.

Понравилась статья? Поделить с друзьями:

Читайте также:

  • Как изменить режим флешки
  • Как изменить режим у электроключа
  • Как изменить режим туалета
  • Как изменить режим съемки на айфоне
  • Как изменить режим стрельбы скиппи

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии