Как изменить ток драйвера для светодиодов

Доработка недорогих китайских драйверов для светодиов

ДрайверДля конструирования светодиодных светильников постоянно требуются источники питания — драйвера. При большом объеме вполне можно наладить сборку драйверов самостоятельно, но себестоимость таких драйверов получается не такой уж и низкой, а изготовление и пайка двухсторонних печатных плат с SMD-компонентами — процесс в домашних условиях довольно трудоемкий.

Я решил обойтись готовым драйвером. Нужен был недорогой драйвер без корпуса, желательно с возможностью настройки тока и диммированием.

Выбор пал на китайского производителя QIHANGвыпускающего широкий спектр данной продукции.

Где и как купить можно прочитать в моей статье на профильном блоге mysku.ru. Скажу только, что мне  20Вт драйвера на 6-10 светодиодов 600мА обошлись примерно по $2.5

Характеристики драйвера

  • Артикул: QH-20WLP6 ~ 10X3W
  • Входное напряжение: AC 85 ~ 277V
  • Выходное напряжение: DC 18 ~ 35V
  • Выходной ток: 0.6A
  • Выходная мощность: 20Вт
  • КПД: ? 88%
  • Точность выходных параметров: ± 3%
  • Коэффициент мощности (PF): ? 0,95
  • Размер пульсации на выходе: ? 50 мВ (не соответствует действительности)
  • Размеры: длина X ширина X высота = 47 х 20 х 13мм
  • Рабочая температура: -40 ~ + 85 ° C
  • Вес 20г

Драйвер в упаковке

Драйверы 20вт

Драйвер вид сверху

Драйвер. Вид с обратной стороны

Драйвер. Вид сбоку

На фото видна микросхема драйвера QH7938. Поиск в интернете приводит к даташиту на эту микросхему на китайском языке
Даташит явно не полный, на схеме не хватает номиналов деталей да и на драйвере элементов явно больше. И что делать с загадочными ногами DIM и RTH?

Спасибо  пользователю Муськи Sarayan14 который уже ковырял данный драйвер и даже нарисовал схему.

Схему перерисовал и немного доработал

Схема светодиодного драйвера

Подключаю цепочку из 9-ти трех-ваттных светодиодов. Все работает, ток стабильный 598мА, но прибор в режиме измерения переменного напряжения показывает пульсации на выходе около 1В или более 3%. Где же заявленные в характеристиках 50мВ?

Доработка №1. Уменьшаем пульсации на выходе.

Как уменьшить пульсации выходного напряжения? Правильно, конденсаторами.
Конденсаторы можно поставить в двух местах — увеличить выходную емкость и добавить конденсатор на входе после мостика параллельно пленочному конденсатору на 0.22мкФ.

Уменьшение выходных пульсаций

Для тестирования применяю стрелочный прибор в режиме измерения переменного напряжения и самодельный люксметр, измеряющий пульсации светового потока

Пульсации без конденсаторов

Характеристики без конденсаторов ~0.9В и 8.7% (пульсации светового потока)

Конденсатор на выходе ожидаемо уменьшат пульсации вдвое ~0.4В и 4%

А вот 10мкФ конденсатор на входе уменьшает пульсации в 9 раз ~0.1В и 1%, правда добавление этого конденсатора значительно снижает PF (коэффициент мощности)

Оба конденсатора приближают характеристики выходных пульсаций к паспортным ~ 0.05В и 0.6%

Пульсации побеждены при помощи конденсаторов

Итак пульсации побеждены при помощи двух конденсаторов из старого блока питания.

Доработка №2. Настройка выходного тока драйвера

Основное предназначение драйверов — поддерживать стабильный ток на светодиодах. Данный драйвер стабильно выдает 600мА.

Иногда ток драйвера хочется изменить. Обычно это делается подбором резистора или конденсатора в цепи обратной связи. Как обстоят дела у этих драйверов? И зачем здесь установлены три параллельных резистора малого сопротивления R4, R5, R6?
Резисторы для подбора тока драйвера

Все правильно. Ими можно задавать выходной ток. Видимо, все драйверы одинаковой мощности, но на разные токи и отличаются именно этими резисторами и выходным трансформатором, дающим разное напряжение.

Если аккуратно демонтировать резистор на 1.9Ом, получаем выходной ток 430мА, демонтировав оба резистора 300мА.

Подбор резисторов обратной связи

Можно пойти и обратным путем, подпаяв параллельно еще один резистор, но данный драйвер выдает напряжение до 35В и при большем токе мы получим превышение по мощности, что может привести с выходу драйвера из строя. Но 700мА вполне можно выжать.

Итак, при помощи подбора резисторов R4, R5 и R6 можно уменьшать выходной ток драйвера (или очень незначительно увеличивать) не меняя количество светодиодов в цепочке.

Доработка 3. Диммирование

На плате драйвера имеется три контакта с надписью DIMM, что наводит на мысль, что данный драйвер может управлять мощностью светодиодов. О том же говорит и даташит на микросхему, хотя типовых схем диммирования в них не приведено. Из даташита можно почерпнуть информацию, что подавая на ногу 7 микросхемы напряжение -0.3 — 6В, можно получить плавное регулирование мощности.

Подключение к контактам DIMM переменного резистора ни к чему не приводит, кроме того, нога 7 микросхемы драйвера вообще ни к чему не подключена. Значит снова доработки.

Подпаиваем резистор на 100К к ноге 7 микросхемы

Подключение к ноге диммирования

Теперь подавая между землей и резистором напряжение 0-5В получаем ток 60-600мА

Схемма диммирования внешним напряжением
Чтобы уменьшить минимальный ток диммирования, необходимо уменьшить и резистор. К сожалению, в даташите про это ничего не написано, поэтому подбирать все компоненты придется опытны путем. Меня лично устроило диммирования от 60 до 600мА.

Если нужно организовать диммирование без внешнего питания, то можно взять напряжение питания драйвера ~15В (нога 2 микросхемы или резистор R7) и подать по следующей схеме.
Диммирование при помощи потенциометра

Ну и, напоследок, подаю ШИМ с D3 ардуино на диммирующий вход.

Диммирование при помощи Ардуино

Пишу простейший скетч, меняющий уровень ШИМ от 0 до максимуму и обратно:

#include <arduino.h>

void setup() {
pinMode(3, OUTPUT);
Serial.begin(9600);
analogWrite(3,0);
}

void loop() {
for( int i=0; i< 255; i+=10 ){
analogWrite(3,i);
delay(500);
}
for( int i=255; i>=0; i-=10 ){
analogWrite(3,i);
delay(500);
}
}

Получаю диммирование при помощи ШИМ.

Диммирование при помощи ШИМ увеличивает выходные пульсации примерно на 10-20% по сравнению с управлением постоянным током. Максимально пульсации увеличиваются примерно вдвое при установке тока драйвера в половину от максимального.

Проверка драйвера на КЗ

Токовый драйвер должен корректно реагировать на короткое замыкание. Но лучше китайцев проверить. Не люблю я такие штуки. Под напряжением что-то втыкать. Но искусство требует жертв. Закорачиваем выход драйвера во время работы:

Драйвер нормально переносит короткие замыкания и восстанавливает свою работу. Защита от КЗ есть.

Подведем итоги

Плюсы драйвера

  • Малые габариты
  • Низкая стоимость
  • Возможность регулировки тока
  • Возможность диммирования

Минусы

  • Высокие выходные пульсации (устраняется добавлением конденсаторов)
  • Вход диммирования нужно распаивать
  • Мало нормальной документации. Неполный даташит
  • При работе обнаружился еще один минус — помехи на радио в ФМ диапазоне. Лечится установкой драйвера в алюминиевый корпус или корпус обклеенный фольгой или алюминиевым скотчем

Драйверы вполне годятся для тех, кто дружит с паяльником или для тех кто не дружит, но готов терпеть выходные пульсации 3-4%.

Полезные ссылки

  • Обсуждение на форуме ledway.ru
  • Даташит на QH7938
  • Обсуждение на импортном форуме
  • Товар на ТАОБАО
  • Товар на алиэкспрессе
  • Сайт производителя (китайский язык)

Из цикла — коты это жидкость. Тимофей — литров 5-6 )))

Кот тимофей

Форум РадиоКот • Просмотр темы — Как уменьшить ток у светодиодного драйвера

Сообщения без ответов | Активные темы

ПРЯМО СЕЙЧАС:

Автор Сообщение

Не в сети

Заголовок сообщения: Как уменьшить ток у светодиодного драйвера

СообщениеДобавлено: Вт май 05, 2015 12:14:20 

Первый раз сказал Мяу!

Зарегистрирован: Пн май 06, 2013 13:06:56
Сообщений: 33

Рейтинг сообщения: 0

Есть вот такая плата заказана в китае. Выдает 300ма и можно подключать до 18 1w светодиодов.
Нужно как то уменьшить ток на нагрузке. Подскажите как можно это сделать?

Изображение
Изображение

Вернуться наверх
 

ПрофильПрофиль

 

Реклама

Maykill

Не в сети

Заголовок сообщения: Re: Как уменьшить ток у светодиодного драйвера

СообщениеДобавлено: Вт май 05, 2015 12:42:41 

Друг Кота
Аватар пользователя

Карма: 129

Рейтинг сообщений: 2954

Зарегистрирован: Вт дек 20, 2011 12:46:51
Сообщений: 72577
Откуда: Петроград

Рейтинг сообщения: 0

сила тока= производная от напряжения и сопротивления :)
сказал товарищ Ом, Георг Симон


_________________
https://www.int-s.spb.ru
» Можно я лягу?»(C)

Вернуться наверх
Реклама

Plexx

Не в сети

Заголовок сообщения: Re: Как уменьшить ток у светодиодного драйвера

СообщениеДобавлено: Вт май 05, 2015 12:48:57 

Зарегистрирован: Пн май 06, 2013 13:06:56
Сообщений: 33

Рейтинг сообщения: 0

Maykill писал(а):

сила тока= производная от напряжения и сопротивления :)
сказал товарищ Ом, Георг Симон

Какое сопротивление нужно поменять на плате? Это драйвер светодиодный, он же стабилизатор тока.

Вернуться наверх

vdavid

Не в сети

Заголовок сообщения: Re: Как уменьшить ток у светодиодного драйвера

СообщениеДобавлено: Вт май 05, 2015 12:50:28 

Карма: 8

Рейтинг сообщений: 101

Зарегистрирован: Чт ноя 13, 2008 16:33:42
Сообщений: 410

Рейтинг сообщения: 0

Было бы не плохо увидеть маркировку чипа. Но и без этого понятно, что нужно увеличить сопротивление токоизмерительных резисторов. Если отпаять один из двух резисторов R200, ток должен упасть в 2 раза.

Последний раз редактировалось vdavid Вт май 05, 2015 13:29:36, всего редактировалось 1 раз.

Вернуться наверх
Реклама

Выгодные LED-драйверы для решения любых задач

КОМПЭЛ представляет со склада и под заказ широкий выбор LED-драйверов производства MEAN WELL, MOSO, Snappy, Inventronics, EagleRise. Линейки LED-драйверов этих компаний, выполненные по технологии Tunable White и имеющие возможность непосредственного встраивания в систему умного дома (димминг по шине KNX), перекрывают практически полный спектр применений: от простых световых указателей и декоративной подсветки до диммируемых по различным протоколам светильников внутреннего и наружного освещения.

Подобрать LED-драйвер>>

Plexx

Не в сети

Заголовок сообщения: Re: Как уменьшить ток у светодиодного драйвера

СообщениеДобавлено: Вт май 05, 2015 12:53:41 

Зарегистрирован: Пн май 06, 2013 13:06:56
Сообщений: 33

Рейтинг сообщения: 0

На чипе 8 ногом только 5305 1305. полевик ME15N10-G

Вернуться наверх
Реклама

Реклама

LIMF – источники питания High-End от MORNSUN со стандартным функционалом на DIN-рейку

На склад Компэл поступили ИП MORNSUN (крепление на DIN-рейку) с выходной мощностью 240 и 480 Вт. Данные источники питания обладают 150% перегрузочной способностью, активной схемой коррекции коэффициента мощности (ККМ; PFC), наличием сухого контакта реле для контроля работоспособности (DC OK) и возможностью подстройки выходного напряжения. Источники питания выполнены в металлическом корпусе, ПП с компонентами покрыта лаком с двух сторон, что делает ее устойчивой к соляному туману и пыли. Изделия соответствуют требованиям ANSI/ISA 71.04-2013 G3 на устойчивость к коррозии, а также нормам ATEX для взрывоопасных зон.

Подробнее>>

vdavid

Не в сети

Заголовок сообщения: Re: Как уменьшить ток у светодиодного драйвера

СообщениеДобавлено: Вт май 05, 2015 13:28:06 

Карма: 8

Рейтинг сообщений: 101

Зарегистрирован: Чт ноя 13, 2008 16:33:42
Сообщений: 410

Рейтинг сообщения: 1

Это QX5305. Токозадающий резистор подключен между общим проводом и 4-й ногой чипа. Скорее всего это резистор в правой части фотографии, который виден на ней лишь частично. Ток через светодиоды в мА определяется как 260/R.

Вернуться наверх

Plexx

Не в сети

Заголовок сообщения: Re: Как уменьшить ток у светодиодного драйвера

СообщениеДобавлено: Вт май 05, 2015 14:23:38 

Зарегистрирован: Пн май 06, 2013 13:06:56
Сообщений: 33

Рейтинг сообщения: 0

R5 номинал 103 я так понимаю 10ком. он соединен с 4 ногой микросхемы. Спасибо. Попробую настроить ток.

Вернуться наверх

vdavid

Не в сети

Заголовок сообщения: Re: Как уменьшить ток у светодиодного драйвера

СообщениеДобавлено: Вт май 05, 2015 14:48:09 

Карма: 8

Рейтинг сообщений: 101

Зарегистрирован: Чт ноя 13, 2008 16:33:42
Сообщений: 410

Рейтинг сообщения: 0

Plexx, Нет, при токе 300 мА сопротивление резистора должно быть 0.8..0.9 Ом. Еще раз: в правой части фотографии виднеется синий выводной резистор. Это он и есть. Изменение сопротивления R5 ничего Вам не даст.

Вернуться наверх

Plexx

Не в сети

Заголовок сообщения: Re: Как уменьшить ток у светодиодного драйвера

СообщениеДобавлено: Вт май 05, 2015 15:23:01 

Зарегистрирован: Пн май 06, 2013 13:06:56
Сообщений: 33

Рейтинг сообщения: 0

судя по маркировке он 0,82 ома и ток 315ма. для уменьшения 1ом думаю поставить. спасибо за пояснение

Вернуться наверх

Кто сейчас на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 32

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Наткнулся на статейку. тк заколебался уже лампы покупать. оставлю тут.
Как правило, в светодиодных лампах сильно завышен рабочий ток светодиодов, в связи с чем светодиоды деградируют и выходят через год — два из строя. Часть ламп после ремонта и понижения тока на 15-20% работают долго, но часть выходит из строя повторно, так как светодиоды сильно деградировали, и можно понижать ток сразу на 40-50%. Световой поток от светодиода при уменьшении с предельного тока до номинального падает не в 2, а в 1.5 раза, а значит яркость лампы не уменьшится в 2 раза.

В лампах ECO-C37 3.5Вт 4000K E14 на 220В/50Гц 1244 с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 0,62мкф (624 надпись и 400~) применяются кругляш S5-C37 3030 4-27,8мм с последовательно включенными 4 светодиодами на 15.8В, 55мА 0,87W, в итоге 63В, 3,5W. Нужно уменьшить ёмкость понижающего конденсатора до 0,47 мкф (474) и рабочим напряжение 400~ или 250~ соответственно. Таким образом рабочий ток 4-х светодиодов упадёт с 55 мА до 42 мА, напряжение с 63 до 58 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 27%.

В лампах 5.4W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,3мкф (135 надпись и 400~) применяются последовательных 10 светодиодов на 6В, 90мА 0,54W, в итоге 60В, 5,4W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400~ или 250~ соответственно. Таким образом рабочий ток 10-ти светодиодов упадёт с 90 мА до 60 мА, напряжение с 60 до 56 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 30%.

В лампах Ecola A50 LED 7W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,1мкф (115 надпись и 400~) применяются последовательных 40 светодиодов на 3В, 57мА 0,54W, в итоге 120В, 6,6W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400~ или 250~ соответственно. Таким образом рабочий ток 40-ти светодиодов упадёт с 57 мА до 52 мА, напряжение с 120 до 114 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 10%.

В лампах 3.5W Feron LB-40 E27 2700K на AC ~220-240V на основе драйвера микросхемы BP3122 (8 ног) и трансформатора 12x12x10мм применяются 6 последовательно (3 планки)-параллельно (по 2 светодиода на планке) включенных светодиодов на 3.13В 85мА, 0,3W. На светодиоды идёт 9.4В, 170мА, 1.6W. Для понижения тока нужно увеличить резистор c 1 на 2 ногу CS (BP3122) с 2.2 ома до 2.7 ома путём замены или допайки последовательно R50 — 0.5 омного резистора. Мощность снизится на 19%. Рабочее напряжение на светодиодах снизится до 9 Вольта, ток до 140мА, соответственно для одного светодиода 3,0В, 70мА, 0,21W. На плате светодиодов надпись 3WG45B.

В лампах 5W на AC 85-265V на основе драйвера микросхемы BP3102 (8 ног) и трансформатора 10x10x10мм применяются 10 последовательно (по 5 в группе)-параллельно(в 2 группы) включенных светодиодов на 3,1В 90мА, 0,3W. На каждой планке стоят 2 светодиода из разных групп. На 2 группы светодиодов идёт 15,4В, 180мА, 3W. Для понижения тока нужно увеличить резистор на 4 ноге CS (BP3102) с 2.2 ома до 3.2 ома путём замены или допайки последовательно 1R0 — 1 омного резистора. Мощность снизится на 32%. Рабочее напряжение на группах светодиодов снизится до 15,2 Вольта, ток до 120мА, соответственно для одного светодиода 3,0В, 60мА, 0,2W. На плате светодиодов надпись BL-5650.

В лампах 5W на AC 85-265V на основе драйвера микросхемы BP3102 (8 ног) и трансформатора 10x10x10мм применяются 8 последовательно (по 4 в группе)-параллельно(в 2 группы) включенных светодиодов на 3,2В 110мА, 0,35W. На каждой планке стоят 2 светодиода из одной группы. На 2 группы светодиодов идёт 12,8В, 220мА, 3W. Для понижения тока нужно увеличить резистор на 4 ноге CS (BP3102) с 1.8 ома до 2.8 ома путём замены или допайки последовательно 1R0 — 1 омного резистора. Мощность снизится на 36%. Рабочее напряжение на группах светодиодов снизится до 12,2 Вольта, ток до 140мА, соответственно для одного светодиода 3,0В, 70мА, 0,2W.

В лампах 9W E27 4000K на AC 220V на основе стабилизатора тока — микросхемы BP2832 2832 (8 ног) применяется круг A60-2835-26 из 2 параллельных линеек по 13 последовательно включенных светодиодов, на 6,15В 57мА, 0.35W. На все светодиоды идёт 80В, 114мА, 9W. Для понижения тока нужно увеличить резистор 1R65 до 1R8 или 2R0 ома путём замены (я поставил параллельно 2 и 22 ома, итогом 1,8 Ома). Мощность снизится на 9-18%, до 8W-7.5W. Рабочее напряжение на группах светодиодов снизится до 78 Вольт, ток до 52-47мА, соответственно для одного светодиода 6В, 52-47мА, 0,31-0,28W.

В лампах 10W E27 4200K на AC 230V FLL-A60-9-230-4K-E27 на основе стабилизатора тока — микросхемы BP9916C 9916C (8 ног) применяется круг A60-2835-1W-10C из 10 последовательно включенных светодиодов, на 8,9В 90мА, 0.8W. На все светодиоды идёт 89В, 90мА, 8W. Для понижения тока нужно увеличить параллельно включенные резисторы 5R9 и 6R8 ом, до 5R9+2R2 и 6R8 — с вычисленного 3.15 ома до 3.7 ома путём замены или допайки последовательно с 5,9 омным ещё 2,2 омного резистора. Мощность снизится на 17%, до 7W. Рабочее напряжение на группах светодиодов снизится до 87,6 Вольт, ток до 79мА, соответственно для одного светодиода 8,76В, 79мА, 0,7W.

В лампах 11W на AC 220V на основе стабилизатора тока — микросхемы BP9918C 9918C (3 ноги) применяются 18 последовательно включенных светодиодов, на 11В 55мА, 0,6W. На все светодиоды идёт 200В, 55мА, 11W. Для понижения тока нужно увеличить параллельно включенные резисторы 10 и 12 ом, до 20 и 12 ом (средняя нога CS BP9918C) — с вычисленного 5.5 ома до 7.5 ома путём замены или допайки последовательно с 10 омным ещё 10 омного резистора. Мощность снизится на 28%, до 8W. Рабочее напряжение на группах светодиодов снизится до 180 Вольт, ток до 44мА, соответственно для одного светодиода 10В, 44мА, 0,44W.

В лампах 12W на 220В 50Гц, 4000K E27 на основе стабилизатора тока — микросхемы BP2833A 2833A (8 ноги) на плате L2029-03-40 распаяны 23 последовательно включенных светодиода, на 3,2В 162мА, 0,52W. На все светодиоды идёт 73,6В, 162мА, 12W. Для понижения тока нужно увеличить параллельно включенные резисторы 2R10 и 2R70 ом, до 2R10 и 3R2 ом (8 нога BP2833A) — с вычисленного 1.18 ома до 1.26 ома путём замены. Мощность снизится на 8%, до 11W. Рабочее напряжение на группах светодиодов снизится до 73 Вольт, ток до 150мА, соответственно для одного светодиода 3.17В, 150мА, 0,47W.

В лампах Космос AC 220V 3W на основе стабилизатора тока 200ма — микросхемы BP2812 (8 ног) (плата GL-0AC5W_V2.0) применяются 10 последовательно включенных светодиодов, на 30.7В 90мА, 2.8W, плата T2-P45-3W. От лабораторного БП ставлю 31.5В и эти светодиоды жрут 50ма и светят слабее, что говорит о нестандартном. В схеме же осциллографом форма напряжения 31 В ровная, а до зеленого дросселя пульсации.

В лампах с али 15W Warm White 220V RoHS на основе стабилизатора тока 2 микросхемы MBI1802 (плата D44-22P-01 3611E) применяются 22 последовательно включенных светодиода, разорванных на 16 и 6 штук микросхемами. На светодиодах 38V и 109V постоянки соответственно, ток 57мА, 8.5W, в середине на U1 и U2 микросхемах 43V, всего 190V. На одном светодиоде 6.7V, 0.38W. От сети было потребление ~230V, 62мА на переменке. Внимание, эта лампа на фотоаппарате сильно мерцает! Обязательно паяем конденсатор от 4.7 uF до 10 uF на 400V после диодного моста и для кондёра есть много места в цоколе. После впайки кондёра ток возрастает до 92мА и светодиоды сгорят за 5 сек. Для уменьшения тока нужно на микросхемах 1802 вместо R1 и R2 по 13 Ом впаять два резистора по 15 Ом (ток упадёт до 50мА), если хай себе мерцает и не паять кондёр, или по 23 Ома (можно резюки стоя допаять последовательно в длину два по 10 Ом) (ток упадёт до 52мА), если паять кондёр.

В лампах Ming & Ben 18W 6500K 220V-240V 50/60H RoHS на основе 2-х стабилизаторов тока — 2-е микросхемы JZ1009AE (8 ног) (плата D49-18P-01 29045B 2019-D, если хотите посмотреть аналог, гуглите D44-22P-01) применяются 18 светодиодов из 6-ти последовательных секций по 3 параллельных светодиода на 162В 110мА, 18W (В схеме можно померить только импульсное напряжение после диодного моста 200В, и напряжение в разрыв цепи светодиодов 50В, а на каждой секции светодиодов 27В), соответственно для одного светодиода 27В, 37мА, 0,99W. Для понижения тока нужно увеличить 2 резистора R1 и R2 с 10 Ом до 15 Ом (между 1 ногой и 2-4 ногами JZ1009AE) — путём замены или добавить резисторы 5,1 Ома последовательно. Мощность снизится на 33%, до 12W. Рабочее напряжение на 1 секции светодиодов снизится до 26,5 Вольт, ток до 74мА, соответственно для одного светодиода 26,5В, 24,6мА, 0,66W. Для справки, лампа потребляла от ~220V 81мА 18W до переделки и 54мА 12W после. В этих лампах нет конденсатора, поэтому они мерцают.

В лампах Космос basic A65 E27 25Вт 4500K 220В/50Гц 0,100A модель LED25wA65E2745 световой поток 2100 лм срок службы 25000 ч на основе стабилизатора тока — микросхемы HA5836AE (8 ног) (плата N018082 V1.1) применяются 22 светодиода (11 последовательных секций по 2 светодиода в параллель) на 99В 176мА, 17W, плата A65Y 2P11S N018080A (и N018082). Для понижения тока нужно увеличить резистор 1R07 ом, до 1R30 (между 7,8 ногой и 1 ногой HA5836AE) — с 1,07 ома до 1.3 ома путём замены на 1R3 или на 1R0 и 0R3 ома. Мощность снизится на 19%, до 14W. Рабочее напряжение на секциях светодиодов снизится до 98 Вольт, ток до 146мА, соответственно для одного светодиода 8,9В, 146мА, 1,3W. Для справки, лампа потребляла от ~220V 105мА 23W до переделки и 70мА 15W после.

Нужно понимать, что если «всеволишь» в одной из секций из трёх параллельных светодиодов вышел из строя «всеволишь» один светодиод, то через два оставшихся потекёт ток как через три и нужно понизить ток в 1,5 раза (чтобы было как раньше), а чтобы понизить — нужно в 2,2 раза, или же сначала сгорит более слабый один из двух, а сразу за ним и третий, потому что через него потечёт весь ток. Производители ламп делают гарантированно умирающие максимально неремонтнопригодные схемы.

В светильнике VARTON EB40-095-0-280-2180 213L — там 4 полоски VARTON EB 18-222-1-12 9W DC27V DW — формат 9 пар = 18 светодиодов = 4×18=72 светодиода, плата JBT-IW0401-006 REV 2.1 20130715, чип IW3623-00, конденсаторы 33uFx450V и 50v220uF x 2шт, трансформаторы JBT-IW0401-29V, JBT-IW0401-EE16, дроссель UU9.8-40mH, транзисторы D13007, X13001, 7N65A, спаренный диод SFF1004. На светодиодные ленты шло 28.7В 1.14А, 32.7 Ватта. Соответственно на один светодиод 3.2В, 142мА, 0.45Вт. Для понижения тока нужно снять R36 — 3.6 Ома (стоит в параллель 4 штуки R25 R34 R26 R36 — 3R30, 3R60, 3R30, 3R60) — ток упадёт до 0.86А, вольтаж до 27.7В, мощность до 23,8 Вт, а яркость упадёт на 27%. Если же к R25 допаять последовательно 2R2 — 2 шт, то ток упадёт до 0.98А, вольтаж до 28.1В, мощность до 27,5Вт, а яркость на 16%. При ремонте светильника был найден высохший C16 47uFx25V, симптомы поломки через 7 лет работы — постепенно увеличивающаяся задержка перед свечением, потом совсем перестал включаться.

В уличном фонаре СТАРТ LED FL20W42 20 Вт IP65 плата YDZ220 14LED корпус YTZ-3.1-00017 SL-A-2-1 применяются две микросхемы RM9001E с резисторами RS1 и RS4 по 22 Ома — увеличиваем каждый до 33 или даже до 44 Ом — мощность упадёт до 15 или даже до 10 Вт — фонарь будет работать долго. В фонаре на этой микросхеме нет конденсатора, поэтому он мерцает.

Охлаждение:

Также, в лампах с массивным алюминиевым радиатором между ним и кругляшом светодиодов часто отсутствует белая теплопроводящая паста КПТ-8, желательно её нанести.

Если не опасно и есть возможность разобрать лампу — то желательно снять пластиковый или стеклянный стакан — стекло греть путем включения лампы )) — то это даст дополнительное охлаждение, а с исчезновением пластика немного повысит световой поток, но даст синеватый оттенок и точечные источники света будут слепить глаза при попадании лампы в зрительную область.

Если есть возможность намного более качественно улучшить охлаждение лампы путём установки горизонтально, в всегда холодном месте или путём разбора на составляющие и при разносе греющихся компонентов или установке их на массивные радиаторы, то можно снижать потребление лампы не на 30%, а на 10-15%. На заводе срок действия лампы точно посчитан на уровне 1 года — дешевые, 2 года — средние, 3 года — дорогие, поэтому важно сделать чтобы не ярко светило, а долго. Для яркости просто ставьте больше ламп. Если не снижать рабочий ток, то через время деградируют и светодиоды, и конденсаторы.

Ремонт:

Всё то же самое нужно делать и в процессе ремонта вышедших из строя ламп, в которых чаще всего горят светодиоды, а реже вздуваются конденсаторы. В лампах с последовательной схемой включения светодиодов сгоревшие закорачиваем (если последовательных две группы — то в каждой должно остаться одинаковое количество светодиодов), в параллельных все утухшие светодиоды меняем на целые (увы, или не будет работать группа, но можно с умом и коротить в каждой группе поровну), и обязательно снижаем ток (потому что все светодиоды немного деградировали или в схемах без регулятора тока возрос ток после закорачивания светодиодов).
источник agansk.ru/tech/2017/04/04…рока-службы-светодиодных/

(Last Updated On: 11.11.2021)

Как правило, в светодиодных лампах сильно завышен рабочий ток светодиодов, в связи с чем светодиоды деградируют и выходят через год — два из строя. Часть ламп после ремонта и понижения тока на 15-20% работают долго, но часть выходит из строя повторно, так как светодиоды сильно деградировали, и можно понижать ток сразу на 40-50%. Световой поток от светодиода при уменьшении с предельного тока до номинального падает не в 2, а в 1.5 раза, а значит яркость лампы не уменьшится в 2 раза.

В лампах ECO-C37 3.5Вт 4000K E14 на 220В/50Гц 1244 с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 0,62мкф (624 надпись и 400~) применяются кругляш S5-C37 3030 4-27,8мм с последовательно включенными 4 светодиодами на 15.8В, 55мА 0,87W, в итоге 63В, 3,5W. Нужно уменьшить ёмкость понижающего конденсатора до 0,47 мкф (474) и рабочим напряжение 400~ или 250~ соответственно. Таким образом рабочий ток 4-х светодиодов упадёт с 55 мА до 42 мА, напряжение с 63 до 58 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 27%.

В лампах 5.4W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,3мкф (135 надпись и 400~) применяются последовательных 10 светодиодов на 6В, 90мА 0,54W, в итоге 60В, 5,4W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400~ или 250~ соответственно. Таким образом рабочий ток 10-ти светодиодов упадёт с 90 мА до 60 мА, напряжение с 60 до 56 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 30%.

В лампах Ecola A50 LED 7W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,1мкф (115 надпись и 400~) применяются последовательных 40 светодиодов на 3В, 57мА 0,54W, в итоге 120В, 6,6W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400~ или 250~ соответственно. Таким образом рабочий ток 40-ти светодиодов упадёт с 57 мА до 52 мА, напряжение с 120 до 114 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 10%.

В лампах 3.5W Feron LB-40 E27 2700K на AC ~220-240V на основе драйвера микросхемы BP3122 (8 ног) и трансформатора 12x12x10мм применяются 6 последовательно (3 планки)-параллельно (по 2 светодиода на планке) включенных светодиодов на 3.13В 85мА, 0,3W. На светодиоды идёт 9.4В, 170мА, 1.6W. Для понижения тока нужно увеличить резистор c 1 на 2 ногу CS (BP3122) с 2.2 ома до 2.7 ома путём замены или допайки последовательно R50 — 0.5 омного резистора. Мощность снизится на 19%. Рабочее напряжение на светодиодах снизится до 9 Вольта, ток до 140мА, соответственно для одного светодиода 3,0В, 70мА, 0,21W.  На плате светодиодов надпись 3WG45B.

В лампах 5W на AC 85-265V на основе драйвера микросхемы BP3102 (8 ног) и трансформатора 10x10x10мм применяются 10 последовательно (по 5 в группе)-параллельно(в 2 группы) включенных светодиодов на 3,1В 90мА, 0,3W. На каждой планке стоят 2 светодиода из разных групп. На 2 группы светодиодов идёт 15,4В, 180мА, 3W. Для понижения тока нужно увеличить резистор на 4 ноге CS (BP3102) с 2.2 ома до 3.2 ома путём замены или допайки последовательно 1R0 — 1 омного резистора. Мощность снизится на 32%. Рабочее напряжение на группах светодиодов снизится до 15,2 Вольта, ток до 120мА, соответственно для одного светодиода 3,0В, 60мА, 0,2W.  На плате светодиодов надпись BL-5650.

В лампах 5W на AC 85-265V на основе драйвера микросхемы BP3102 (8 ног) и трансформатора 10x10x10мм применяются 8 последовательно (по 4 в группе)-параллельно(в 2 группы) включенных светодиодов на 3,2В 110мА, 0,35W. На каждой планке стоят 2 светодиода из одной группы. На 2 группы светодиодов идёт 12,8В, 220мА, 3W. Для понижения тока нужно увеличить резистор на 4 ноге CS (BP3102) с 1.8 ома до 2.8 ома путём замены или допайки последовательно 1R0 — 1 омного резистора. Мощность снизится на 36%. Рабочее напряжение на группах светодиодов снизится до 12,2 Вольта, ток до 140мА, соответственно для одного светодиода 3,0В, 70мА, 0,2W.

В лампах 9W E27 4000K на AC 220V на основе стабилизатора тока — микросхемы BP2832 2832 (8 ног) применяется круг A60-2835-26 из 2 параллельных линеек по 13 последовательно включенных светодиодов, на 6,15В 57мА, 0.35W. На все светодиоды идёт 80В, 114мА, 9W. Для понижения тока нужно увеличить резистор 1R65 до 1R8 или 2R0 ома путём замены (я поставил параллельно 2 и 22 ома, итогом 1,8 Ома). Мощность снизится на 9-18%, до 8W-7.5W. Рабочее напряжение на группах светодиодов снизится до 78 Вольт, ток до 52-47мА, соответственно для одного светодиода 6В, 52-47мА, 0,31-0,28W.

В лампах 10W E27 4200K на AC 230V FLL-A60-9-230-4K-E27 на основе стабилизатора тока — микросхемы BP9916C 9916C (8 ног) применяется круг A60-2835-1W-10C из 10 последовательно включенных светодиодов, на 8,9В 90мА, 0.8W. На все светодиоды идёт 89В, 90мА, 8W. Для понижения тока нужно увеличить параллельно включенные резисторы 5R9 и 6R8 ом, до 5R9+2R2 и 6R8 — с вычисленного 3.15 ома до 3.7 ома путём замены или допайки последовательно с 5,9 омным ещё 2,2 омного резистора. Мощность снизится на 17%, до 7W. Рабочее напряжение на группах светодиодов снизится до 87,6 Вольт, ток до 79мА, соответственно для одного светодиода 8,76В, 79мА, 0,7W.

В лампах 11W на AC 220V на основе стабилизатора тока — микросхемы BP9918C 9918C (3 ноги) применяются 18 последовательно включенных светодиодов, на 11В 55мА, 0,6W. На все светодиоды идёт 200В, 55мА, 11W. Для понижения тока нужно увеличить параллельно включенные резисторы 10 и 12 ом, до 20 и 12 ом (средняя нога CS BP9918C) — с вычисленного 5.5 ома до 7.5 ома путём замены или допайки последовательно с 10 омным ещё 10 омного резистора. Мощность снизится на 28%, до 8W. Рабочее напряжение на группах светодиодов снизится до 180 Вольт, ток до 44мА, соответственно для одного светодиода 10В, 44мА, 0,44W.

В лампах 12W на 220В 50Гц, 4000K E27 на основе стабилизатора тока — микросхемы BP2833A 2833A (8 ноги) на плате L2029-03-40 распаяны 23 последовательно включенных светодиода, на 3,2В 162мА, 0,52W. На все светодиоды идёт 73,6В, 162мА, 12W. Для понижения тока нужно увеличить параллельно включенные резисторы 2R10 и 2R70 ом, до 2R10 и 3R2 ом (8 нога BP2833A) — с вычисленного 1.18 ома до 1.26 ома путём замены. Мощность снизится на 8%, до 11W. Рабочее напряжение на группах светодиодов снизится до 73 Вольт, ток до 150мА, соответственно для одного светодиода 3.17В, 150мА, 0,47W.

В лампах Космос AC 220V 3W на основе стабилизатора тока 200ма —  микросхемы BP2812 (8 ног) (плата GL-0AC5W_V2.0) применяются 10 последовательно включенных светодиодов, на 30.7В 90мА, 2.8W, плата T2-P45-3W. От лабораторного БП ставлю 31.5В и эти светодиоды жрут 50ма и светят слабее, что говорит о нестандартном.. В схеме же осциллографом форма напряжения 31 В ровная, а до зеленого дросселя пульсации..

В лампах с али 15W Warm White 220V RoHS на основе стабилизатора тока 2 микросхемы MBI1802 (плата D44-22P-01 3611E) применяются 22 последовательно включенных светодиода, разорванных на 16 и 6 штук микросхемами. На светодиодах 38V и 109V постоянки соответственно, ток 57мА, 8.5W, в середине на U1 и U2 микросхемах 43V, всего 190V. На одном светодиоде 6.7V, 0.38W. От сети было потребление ~230V, 62мА на переменке. Внимание, эта лампа на фотоаппарате сильно мерцает! Обязательно паяем конденсатор от 4.7 uF до 10 uF на 400V после диодного моста и для кондёра есть много места в цоколе. После впайки кондёра ток возрастает до 92мА и светодиоды сгорят за 5 сек. Для уменьшения тока нужно на микросхемах 1802 вместо R1 и R2 по 13 Ом впаять два резистора по 15 Ом (ток упадёт до 50мА), если хай себе мерцает и не паять кондёр, или по 23 Ома (можно резюки стоя допаять последовательно в длину два по 10 Ом) (ток упадёт до 52мА), если паять кондёр.

В лампах Ming & Ben 18W 6500K 220V-240V 50/60H RoHS на основе 2-х стабилизаторов тока — 2-е микросхемы JZ1009AE (8 ног) (плата D49-18P-01 29045B 2019-D, если хотите посмотреть аналог, гуглите D44-22P-01) применяются 18 светодиодов из 6-ти последовательных секций по 3 параллельных светодиода на 162В 110мА, 18W (В схеме можно померить только импульсное напряжение после диодного моста 200В, и напряжение в разрыв цепи светодиодов 50В, а на каждой секции светодиодов 27В), соответственно для одного светодиода 27В, 37мА, 0,99W. Для понижения тока нужно увеличить 2 резистора R1 и R2 с 10 Ом до 15 Ом (между 1 ногой и 2-4 ногами JZ1009AE) —  путём замены или добавить резисторы 5,1 Ома последовательно. Мощность снизится на 33%, до 12W. Рабочее напряжение на 1 секции светодиодов снизится до 26,5 Вольт, ток до 74мА, соответственно для одного светодиода 26,5В, 24,6мА, 0,66W. Для справки, лампа потребляла от ~220V 81мА 18W до переделки и 54мА 12W после. В этих лампах нет конденсатора, поэтому они мерцают.

В лампах ASD LED-A60 E27 20Вт 4000K 230В/50Гц 0,150A модель 4690612004204 световой поток 1800 лм срок службы 30000 ч на основе стабилизатора тока — микросхемы D 9607SA (8 ног) (плата N11-A65T-23S-9607) применяются 23 последовательно включенных светодиода на 134В 91мА, 12.2W,  Для понижения тока нужно увеличить резистор 4R3 до 8R2 ом (между 1 ногой и 8 ногой 9607SA) — с 4,3 ома до 8.2 ома, общее сопротивление двух задающих резисторов 3R6 и 4R3 = 1,96 Ома возрастёт до 3R6 и 8R2 = 2,5 Ома. Мощность снизится на 22%, до 9,3W. Рабочее напряжение на секциях светодиодов снизится до 131 Вольт, ток до 71мА, соответственно для одного светодиода 5,7В, 71мА, 0,4W. В этой лампе вышедшие из строя светодиоды можно смело замыкать, так как включение светодиодов только последовательное.

В лампах Космос basic A65 E27 25Вт 4500K 220В/50Гц 0,100A модель LED25wA65E2745 световой поток 2100 лм срок службы 25000 ч на основе стабилизатора тока — микросхемы HA5836AE (8 ног) (плата N018082 V1.1) применяются 22 светодиода (11 последовательных секций по 2 светодиода в параллель) на 99В 176мА, 17W, плата A65Y 2P11S N018080A (и N018082). Для понижения тока нужно увеличить резистор 1R07 ом, до 1R30 (между 7,8 ногой и 1 ногой HA5836AE) — с 1,07 ома до 1.3 ома путём замены на 1R3 или на 1R0 и 0R3 ома. Мощность снизится на 19%, до 14W. Рабочее напряжение на секциях светодиодов снизится до 98 Вольт, ток до 146мА, соответственно для одного светодиода 8,9В, 73мА, 0,65W. Для справки, лампа потребляла от ~220V 105мА 23W до переделки и 70мА 15W после.

Нужно понимать, что если «всеволишь» в одной из секций из трёх параллельных светодиодов вышел из строя «всеволишь» один светодиод, то через два оставшихся потекёт ток как через три и нужно понизить ток в 1,5 раза (чтобы было как раньше), а чтобы понизить — нужно в 2,2 раза, или же сначала сгорит более слабый один из двух, а сразу за ним и третий, потому что через него потечёт весь ток. Производители ламп делают гарантированно умирающие максимально неремонтнопригодные схемы..

В светильнике VARTON EB40-095-0-280-2180 213L — там 4 полоски VARTON EB 18-222-1-12 9W DC27V DW — формат 9 пар = 18 светодиодов = 4×18=72 светодиода, плата JBT-IW0401-006 REV 2.1 20130715, чип IW3623-00, конденсаторы 33uFx450V и 50v220uF x 2шт, трансформаторы JBT-IW0401-29V, JBT-IW0401-EE16, дроссель UU9.8-40mH, транзисторы D13007, X13001, 7N65A, спаренный диод SFF1004. На светодиодные ленты шло 28.7В 1.14А, 32.7 Ватта. Соответственно на один светодиод 3.2В, 142мА, 0.45Вт. Для понижения тока нужно снять R36 — 3.6 Ома (стоит в параллель 4 штуки R25 R34 R26 R36 — 3R30, 3R60, 3R30, 3R60) — ток упадёт до 0.86А, вольтаж до 27.7В, мощность до 23,8 Вт, а яркость упадёт на 27%. Если же к R25 допаять последовательно 2R2 — 2 шт, то ток упадёт до 0.98А , вольтаж до 28.1В, мощность до 27,5Вт, а яркость на 16%. При ремонте светильника был найден высохший C16 47uFx25V, симптомы поломки через 7 лет работы — постепенно увеличивающаяся задержка перед свечением, потом совсем перестал включаться.

В уличном фонаре СТАРТ LED FL20W42 20 Вт IP65 плата YDZ220 14LED корпус YTZ-3.1-00017 SL-A-2-1 применяются две микросхемы RM9001E с резисторами RS1 и RS4 по 22 Ома — увеличиваем каждый до 33 или даже до 44 Ом — мощность упадёт до 15 или даже до 10 Вт — фонарь будет работать долго. В фонаре на этой микросхеме нет конденсатора, поэтому он мерцает.

Охлаждение:

Также, в лампах с массивным алюминиевым радиатором между ним и кругляшом светодиодов часто отсутствует белая теплопроводящая паста КПТ-8, желательно её нанести.

Если не опасно и есть возможность разобрать лампу — то желательно снять пластиковый или стеклянный стакан — стекло греть путем включения лампы )) — то это даст дополнительное охлаждение, а с исчезновением пластика немного повысит световой поток, но даст синеватый оттенок и точечные источники света будут слепить глаза при попадании лампы в зрительную область.

Если есть возможность намного более качественно улучшить охлаждение лампы путём установки горизонтально, в всегда холодном месте или путём разбора на составляющие и при разносе греющихся компонентов или установке их на массивные радиаторы, то можно снижать потребление лампы не на 30%, а на 10-15%. На заводе срок действия лампы точно посчитан на уровне 1 года — дешевые, 2 года — средние, 3 года — дорогие, поэтому важно сделать чтобы не ярко светило, а долго. Для яркости просто ставьте больше ламп.. Если не снижать рабочий ток, то через время деградируют и светодиоды, и конденсаторы..

Ремонт:

Всё то же самое нужно делать и в процессе ремонта вышедших из строя ламп, в которых чаще всего горят светодиоды, а реже вздуваются конденсаторы. В лампах с последовательной схемой включения светодиодов сгоревшие закорачиваем (если последовательных две группы — то в каждой должно остаться одинаковое количество светодиодов), в параллельных все утухшие светодиоды меняем на целые (увы, или не будет работать группа, но можно с умом и коротить в каждой группе поровну), и обязательно снижаем ток (потому что все светодиоды немного деградировали или в схемах без регулятора тока возрос ток после закорачивания светодиодов).

Файл для расчетов 1R2

Оставляйте комментарии по файлу, кому что нужно рассчитать..

Тэги: LED driver, 9918C, BP3102, iW3623, energo efficiency, LED lamp, Понижение яркости, Как уменьшить яркость, Уменьшаем светимость — увеличиваем срок службы. Срок жизни.

Новичок

 

Регистрация: 19.11.2014

Адрес: Воронеж

Сообщений: 37

Репутация: 16



Имеется 3 светодиодных светильника NAVIGATOR на 12W .Один сгорел , вылетел драйвер .Светильник был разобран , в нем плата с 24 светиками 5730 ,соединены 12 пар последовательно . драйвер выдает на них 38.5В 280мА , хотя на его корпусе написано 270мА 36-42В ,что многовато для них ( плата греется до 80 гр. примерно ,то что нет термопасты отдельный разговор ) . Вопрос таков-хочу понизить ток драйвера до 240мА чтоб продлить срок службы . На плате драйвера полевик U2N60 и то что думал микросхема управляющая полевиком, 3106 пробивается по даташиту как трехфазный диодный мост . Как тогда все это работает ? У меня мозгов не хватает ,помогите . Думал просто поставить последовательно резистор но тогда драйвер будет вытягивать напругу и еще быстрее сгорит .


Оценка

На склад Компэл поступили ИП MORNSUN (крепление на DIN-рейку) с выходной мощностью 240 и 480 Вт. Данные источники питания обладают 150% перегрузочной способностью, активной схемой коррекции коэффициента мощности (ККМ; PFC), наличием сухого контакта реле для контроля работоспособности (DC OK) и возможностью подстройки выходного напряжения. Источники питания выполнены в металлическом корпусе, ПП с компонентами покрыта лаком с двух сторон, что делает ее устойчивой к соляному туману и пыли.

Гуру

 

Регистрация: 08.05.2006

Адрес: москва

serzh76
Вы не правильно определили микросхему, её маркировка кодовая Смотрите КОДЫ SMD в разделе ФАЙЛЫ форума (турута). Посмотрите, есть ли резистор в истоке полевика. Если есть, то его номинал и как подсоединена (ли) точка транзистор-резистор к микросхеме


Оценка

КОМПЭЛ представляет со склада и под заказ широкий выбор LED-драйверов производства MEAN WELL, MOSO, Snappy, Inventronics, EagleRise. Линейки LED-драйверов этих компаний, выполненные по технологии Tunable White и имеющие возможность непосредственного встраивания в систему умного дома (димминг по шине KNX), перекрывают практически полный спектр применений: от простых световых указателей и декоративной подсветки до диммируемых по различным протоколам светильников внутреннего и наружного освещения.

Новичок

 

Регистрация: 19.11.2014

Адрес: Воронеж

Сообщений: 37

Репутация: 16



Цитата:

Сообщение от lllll

serzh76 Смотрите КОДЫ SM. Посмотрите, есть ли резистор в истоке полевика. Если есть, то его номинал и как подсоединена (ли) точка транзистор-резистор к микросхеме

Кода такого нету ти . А резистор обозначил на картинке во вложении и его соединения с микрухой .

Последний раз редактировалось serzh76; 21.11.2014 в 10:07.


Оценка

Компания FANSO EVE Energy расширила номенклатуру продукции, разработав новый химический источник тока (ХИТ) – батарейку литий-тионилхлоридной электрохимической системы (Li-SOCl2; номинальное напряжение 3,6 В) типоразмера ААА – ER10450. Батарейка имеет бобинную конструкцию (тип Energy) и предназначена для долговременной работы при малых токах.
Батарейка может применяться в приборах учета ресурсов, в различных датчиках, устройствах IoT и в других приборах и устройствах, в которых требуется компактный ХИТ соответствующей емкости.

Эксперт

 

Аватар для DmitriyVDN

 

Регистрация: 08.11.2009

Сообщений: 2,282

Репутация: 608



что мешает при съемке подкладывать лист белой бумаги под плату….


Оценка

Новичок

 

Регистрация: 19.11.2014

Адрес: Воронеж

Сообщений: 37

Репутация: 16



Цитата:

Сообщение от DmitriyVDN

что мешает при съемке подкладывать лист белой бумаги под плату….

религия


Оценка

Гуру

 

Регистрация: 08.05.2006

Адрес: москва

serzh76
RS1 и RS2 — сенсорные резисторы. Отпаяйте один из них. Ток через светодиоды должен уменьшится в два раза.


Оценка

Новичок

 

Регистрация: 19.11.2014

Адрес: Воронеж

Сообщений: 37

Репутация: 16



Цитата:

Сообщение от lllll

serzh76
RS1 и RS2 — сенсорные резисторы. Отпаяйте один из них. Ток через светодиоды должен уменьшится в два раза.

Спасибо за помощь , я в принципе так и подумал , а вы убедили что шел в нужном направлении . Как будет время займусь переделкой ,результат отпишу .


Оценка

Новичок

 

Регистрация: 19.11.2014

Адрес: Воронеж

Сообщений: 37

Репутация: 16



Цитата:

Сообщение от lllll

serzh76
RS1 и RS2 — сенсорные резисторы. Отпаяйте один из них. Ток через светодиоды должен уменьшится в два раза.

При отпайке одного резистора ток упал до 160мА , подпаяв пару резисторов вывел ток до 250мА . Что и было нужно . Спасибо еще раз за помощь .


Оценка

Новичок

 

Регистрация: 20.10.2015

Сообщений: 2

Репутация: 10



serzh76 а драйвер отремонтировал, что там было?


Оценка

Новичок

 

Регистрация: 20.10.2015

Сообщений: 2

Репутация: 10



Подскажите какие там проблемы 5шт таких светильников с мертвыми драйверами.


Оценка

Для работы проектов iXBT.com нужны файлы cookie и сервисы аналитики.
Продолжая посещать сайты проектов вы соглашаетесь с нашей
Политикой в отношении файлов cookie

В этом
обзоре будет изучен и протестирован драйвер
для линейных светодиодных светильников. Заодно выясним, как его настроить под
конкретное применение; и почему он не подойдёт
для светодиодных лент.

Содержание

  • Конструкция и схемотехника светодиодного драйвера
  • Испытания светодиодного драйвера для
    линейных светодиодных планок и теория их совместного применения
  • Отличие линейных и
    «плоских» светодиодных светильников от светильников на основе
    светодиодных лент
  • Итоги и выводы

Итак,
драйвер выполнен в виде узкой конструкции, предназначенной для установки в
тонкие линейные светильники:

Ключевое свойство платы состоит в том, что она — очень узкая: ширина составляет всего 16 мм.

А светильники, в которых применяются подобного рода светодиодные драйверы, выглядят так:

Широкие платы в такой конструкции было бы просто невозможно разместить.

Но при
этом никто не запрещает устанавливать такой драйвер и в большие плоские светильники (квадратной или прямоугольной формы), если схема соединения светодиодов в них идеологически подходит для
такого драйвера (высокое напряжение при
относительно низком токе).

Габариты драйвера — 65*16*10 мм. В описании указано, что он поддерживает нагрузку мощностью 8-18 Вт при напряжении на нагрузке 100 — 260 В.Как показали испытания, реальные параметры — более широкие в нижнюю сторону (по напряжению на нагрузке).

Светодиодный драйвер основан на понижающем DC-DC преобразователе со
стабилизацией тока выхода (тока, а не напряжения!).

Главный и единственный чип драйвера — BP2866C. Он виден на фото как микросхема с 7-ю
ножками (должно быть 8 ножек, но одной ножки нет за ненадобностью).

За величину тока стабилизации отвечают два SMD-резистора, соединённых
параллельно: 1.3 Ом и 2.1 Ом (расположены на фото выше микросхемы).

Для такой конфигурации «по умолчанию» ток выхода составил 230 мА.

Питающее напряжение драйвера поступает на стандартную выпрямительную схему: диодный мост с электролитическим конденсатором (номинал 10 мкФ * 400 В).

Голубая деталь округлой формы на плате — варистор, защищающий плату от
чрезмерных бросков входного напряжения.

В схеме формирования выходного напряжения участвуют: индуктивность, обычный
маломощный (но высоковольтный) диод и электролитический конденсатор 2.2 мкФ * 400 В,
сглаживающий пульсации выходного напряжения.

При отсутствии нагрузки напряжение на выходе драйвера становится близким к
напряжению выпрямленного входного напряжения; при питании от сети 220 В
получилось 284 В.

Осциллограмма напряжения на высоковольтном выходе микросхемы
преобразователя:

Частота импульсов составила почти точно 100 кГц.

Сначала разберём вопрос, для чего приобретался этот драйвер: это поможет
нам разобраться с областью его применения.

Началось всё с того, что у меня сгорел линейный светодиодный светильник. Вот что было обнаружено после разборки:

Такие светильники сейчас массово выпускаются для замены морально устаревших
ламп дневного света (содержащих ртуть, а также имеющих относительно небольшой
срок службы и абсолютно неремонтопригодных).

Осмотр показал, что в светильнике сгорел драйвер светодиодной планки. Сгорел драйвер очень хорошо, даже испарилась одна из ножек диодного моста:

Обычно в таких случаях сгорает не только диодный мост, но и окружающая
его обвязка. В связи с этим было
принято решение не пытаться ремонтировать драйвер, а целиком заменить его на
новый.

Умерла, так умерла!

Анализ светодиодной планки, на которую работал драйвер, показал, что она состоит из 31-ой
последовательно соединённой секции светодиодов; в каждой секции по 2 параллельных
светодиода.

Прозвонка всех секций с помощью источника 5 В и резистора 1 кОм показала,
что при гибели драйвера ни один светодиод не пострадал; и вся планка пригодна к
дальнейшему употреблению (но так может быть не всегда).

На планке имеется условное обозначение, раскрывающее её структуру: 2B31C
(количество светодиодов в секции и число последовательных секций):

Расчёт тока, потребляемого светодиодной планкой, был произведён для
типового падения напряжения на белом светодиоде 3 В.

Номинальная мощность светильника составляла 12 Вт, падение напряжения 31*3
В = 93 В, ток составляет 12 Вт / 93 В = 129 мА.

Готового драйвера с таким выходным током не было, поэтому был куплен
драйвер на ток 220-230 мА с расчётом на последующую доработку.

Кратковременное испытание драйвера с этой планкой без доработки показало, что
отдаваемый ток составляет ровно 230 мА, что может представлять опасность при
длительном питании светодиодной планки, рассчитанной только на 129 мА. Даже можно сказать, что точно убьёт. :)

Но, к счастью, производителем была предусмотрена возможность регулировки
выходного тока. Эта возможность заключается в том, что на плате в качестве
задающих выходной ток резисторов установлены параллельно 2 резистора разных
номиналов: 1.3 Ом и 2.1 Ом; их параллельное сопротивление составляет 0.8 Ом.

Благодаря этому, выпаивая из платы один или другой резистор, можно получить
ещё два варианта тока нагрузки (расчетные величины): 142 мА (если выпаять 2.1 Ом) или 88 мА (если
выпаять 1.3 Ом).

Я решил выпаять резистор 2.1 Ом, задав, тем самым, ток 142 мА. Это — выше
ранее рассчитанного для ремонтируемого светильника номинала 129 мА, но превышение
— небольшое, и к сгоранию светодиодов привести не должно (вроде бы).

Испытание после этой доработки показало, что реальный ток очень близок к
расчётному и составил 141 мА. Напряжение на светодиодной планке при этом оказалось немного выше расчётного (93 В) и составило 98.8 В.

Следующее испытание — проверка стабильности выходного тока в зависимости от
выходного напряжения
.

Для этой проверки не использовалось никакого сложного оборудования:
изменение напряжения на выходе осуществлялось 
поочерёдным замыканием разного количества секций в светодиодной линейке.
Замыкание каждой секции уменьшает напряжение на оставшейся рабочей части линейки
примерно на 3 В.

Проверка проводилась после доработки драйвера со снижением выходного тока
до 141 мА (измеренное значение).

Результаты оказались такими: при замыкании 1-2 секций ток в нагрузке увеличивался на 1 мА; при замыкании 3 — 4 секций увеличивался ещё на 1 мА (до 143 мА); при замыкании 21 секции (осталось ровно 10 секций) ток составил 149 мА при напряжении на нагрузке 32.7 В. Это — очень хороший результат с точки зрения
стабильности выходного тока.

Теперь, пожалуй, самый важный тест: на пульсации (мерцания) яркости
питаемой от этого драйвера светодиодной планки.

Для проверки использовался «колхозный», но проверенный в работе,
датчик освещённости на основе солнечной панели.

И вот — осциллограмма освещённости:

На осциллограмме видим почти идеальную ровную линию; что в высшей степени
одобряем: вреда для зрения из-за мерцания света не будет.

Теперь разберёмся, почему такой замечательный светодиодный драйвер нельзя
применить для питания светодиодных лент.

Как устроена светодиодная планка в линейных светильниках, уже было
рассмотрено выше: она состоит из светодиодов, соединённых между собой в
последовательно-параллельные секции. Никаких других элементов, кроме
светодиодов, на планке нет.

Количество последовательных секций обычно составляет 10-40; количество
параллельных светодиодов в каждой секции от одного и выше; в типовых случаях 2
— 5.

«Плоские» светильники обычно состоят из нескольких подобных
светодиодных планок, расположенных параллельно друг другу.

Что касается светодиодных лент, то они устроены по-другому.

Они питаются не от источника с фиксированным током, а от источника с фиксированным напряжением; а в качестве драйвера в каждой секции используется
банальный резистор.

Напряжение питания лент обычно составляет 12 или 24 В, но можно найти и с
питанием 5 В.

Светодиодные ленты, как и линейки, тоже состоят из множества секций; но
соединены они параллельно, и состоят эти секции из нескольких последовательных
светодиодов и резистора. Секции соединяются параллельно в ленту на гибкой
основе (светодиодные планки отличаются тем, что обычно изготовляются на жесткой основе из тонкого стеклотекстолита).

Между секциями на ленте часто рисуют линию разреза, по которой можно отрезать кусок
необходимой длины.

Так выглядят секции светодиодной ленты на самое ходовое напряжение (12 В):

Каждая секция состоит из трёх последовательных светодиодов и резистора 150 Ом. При
питании напряжением 12 В такая секция потребляет ток 20 мА.

Длина секции — 2.5 см,
в ленте длиной 1 м
содержится 40 секций (плотность светодиодов — 120 на метр).

Потребляет 1 метр
такой ленты около 800 мА.

Иными словами, для питания светодиодных лент нужен источник с совершенно
противоположными свойствами, чем у протестированного драйвера: с невысоким
напряжением, но высоким выходным током. При этом напряжение должно быть стабильным: из-за применённой схемотехники с резистором даже небольшие колебания напряжения приведут к значительным колебаниям яркости.

И, наконец, что лучше: светодиодная линейка (планка), или светодиодная
лента?

С точки зрения КПД лучше светодиодные планки, так как на светодиодных лентах
в каждой секции установлен резистор, бесполезно рассеивающий 15-30% поступающей
энергии (в зависимости от типа ленты).

Протестированный драйвер показал высокие технические характеристики; а
самое главное — он отдаёт очень стабильный ток, благодаря чему и испускаемый
свет от питаемой светодиодной линейки практически не имеет пульсаций.

Пожалуй, в этом и состоит основное достоинство линейных светильников по сравнению со светодиодными лампами. В обычных грушевидных лампах из-за их ограниченных габаритов устанавливаются более примитивные драйверы, вследствие чего большинство недорогих ламп мерцают.

Путём несложной доработки драйвера можно изменить номинальное значение
отдаваемого тока с 230 мА на 140 или 90 мА. Можно получить и другие значения
тока, но для этого придётся добыть и впаять резистор из внешних источников
радиодеталей.

Здесь же отметим и небольшой недостаток такого рода регулировки
(выпаиванием резистора): производитель не предусмотрел такого удобного для
пользователя метода регулировки выходного тока, как замыкание или размыкание
контактных площадок (это было бы проще, чем выпаивание SMD-резисторов).

В качестве дополнительного полезного эффекта, полученного в ходе
тестирования стабильности выходного тока, надо отметить подтверждение
возможности ремонта светодиодных планок методом замыкания сгоревших
светодиодных секций
. В этом случае ток в оставшихся рабочих секциях существенно
не изменится.

Правда, такой метод ремонта имеет ограничения.

Во-первых (важно!), он применим только в тех случаях, когда в светильнике применён
драйвер с хорошей стабилизацией выходного тока (подобный протестированному).

Во-вторых, такой метод будет не слишком эстетичным, поскольку в светодиодной планке
образуются «пустые» места (не светящиеся светодиоды). Допустима ли
такая потеря гламура — зависит исключительно от вкуса владельца.

И, последнее замечание касается техники безопасности.

Выход драйвера не изолирован гальванически от входа, поэтому вся схема,
включая светодиоды, будет находиться под сетевым напряжением.

Соответственно, в светильнике, в котором будет применён этот драйвер, не
должно быть доступных для прикосновения токоведущих частей (имейте это в виду в случае сборки собственной конструкции).

Коротко — об области применения протестированного драйвера (и ему подобных).

Основная область применения — ремонт светильников с одной или несколькими высоковольтными светодиодными планками.

С его помощью возможно и создание собственных конструкций с немерцающим светом, но здесь всё непросто. По результатам моих поисков, подходящие светодиодные планки практически отсутствуют в розничной продаже. Вероятно, почти все они поступают производителям конечной продукции (светильников).

Из того, что удалось найти, на Алиэкспресс есть светодиодные планки со встроенным примитивным драйвером с питанием от 220 В (ссылка). Теоретически, можно этот примитивный драйвер выломать, и вместо него подключить приличный светодиодный драйвер без мерцания, подобный протестированному, подрегулировав величину выходного тока (но я не пробовал).

Протестированный светодиодный драйвер можно купить, например, у этого продавца на Алиэкспресс. Цена на дату обзора — около 140 рублей с учётом доставки (в дальнейшем цена может меняться).

Линейные светодиодные светильники наиболее широко в рознице представлены марками Uniel и Эра (например, светильник Эра на Яндекс.Маркет, подобный отремонтированному).

Всем спасибо за внимание!

При проведении теста использовалось следующее оборудование:

Осциллограф Fnirsi — D1013 (обзор);

Мультиметр ANENG V8 (обзор);

«Колхозный» (DIY) датчик яркости на основе солнечной панели (руководство по сборке и применению).

Понравилась статья? Поделить с друзьями:

Читайте также:

  • Как изменить товарный знак чтоб он прошел регистрацию
  • Как изменить товар у жителей
  • Как изменить то что изменить невозможно
  • Как изменить тлл виндовс 10
  • Как изменить титульного собственника

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии