В современном мире человек просто не может представить свою жизнь без электричества. Так сильно оно вошло в его работу и быт. В тёмное время суток электричество даёт освещение домов и улиц населённых пунктов. У себя дома каждый человек постоянно видит бытовые электроприборы, помогающие ему в повседневной жизни и создающие комфортное проживание. К ним можно отнести: электроплиту, холодильник, микроволновую печь, миксер, телевизор, компьютер, сотовый телефон и многое другое. Люди, проживающие выше третьего этажа многоквартирных домов, не представляют свою жизнь без лифта. Если спуститься вниз ещё можно по лестнице, то подниматься вверх с сумками на десятый этаж выдержит далеко не каждый человек. Всем известная мировая информационная сеть интернет без электричества просто существовать не будет, как наверно и любой другой современный вид связи. На электричестве полностью работает часть городского транспорта (трамвай, троллейбус, метро и т.п.). Даже в обычном автомобиле электричество играет огромную роль, без которой он с места не сдвинется. Можно приводить ещё множество примеров, но и этого уже вполне достаточно, чтобы понять – без электричества современный человек существовать просто не сможет. Удивительно, но в жизнь человека электричество вошло практически не так давно, каких-нибудь полторы сотни лет назад, хотя известно о нём было намного раньше.
История электричества
Давным-давно, в VII веке до нашей эры, греческий философ Фалес Милетский (624 – 545 гг. до н.э.) заметил, что потёртый о шерсть янтарь приобретает свойство притягивать лёгкие предметы. Что интересно, греки называли янтарь электроном, по имени звезды Электра из созвездия Тельца. С тех давних пор прошло больше двух тысячелетий и только в 1600 году английский физик Уильям Гилберт (1544 – 1603 гг.) издаёт книгу, в которой описывает свои опыты над магнитами и электрическими свойствами тел. Он заметил, что не только янтарь, но и ряд других тел после натирания обладают способностью притягивать мелкие лёгкие предметы. Отдавая честь янтарю, Уильям Гилберт назвал это явление электрическим (от латинского слова electricus – янтарный) и впервые ввёл термин «электричество». Под ним подразумевается совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов.
В последующие годы многие учёные занимались исследованием электричества. Они сделали большое количество открытий в этой области, благодаря которым человечество использует данный вид энергии. В память о заслугах отдельных учёных их фамилиями были названы некоторые единицы измерений. Среди них: итальянский физик, химик и физиолог Александро Вольта (1745 – 1827 гг.), французский физик, математик и естествоиспытатель Андре-Мари Ампер (1775 – 1836 гг.), немецкий физик Георг Симон Ом (1789 – 1854 гг.) и ряд других учёных. Благодаря таким людям, сейчас мы используем электричество для своего блага и удобства.
Не всем известно, что к изучению электричества имел отношение Бенджамин Франклин (1706 – 1790 гг.). Большинство людей знают его как великую историческую личность, внёсшую огромный вклад в становление США (Соединённых Штатов Америки) как независимого государства. В память о политических заслугах Бенджамина Франклина установлены памятники, а на стодолларовых купюрах с 1914 года печатают его портрет. Как говорят: «Талантливый человек талантлив во всём». Оказывается, он был не только политиком, но ещё исследователем и изобретателем. Бенджамин Франклин ввёл понятие положительного и отрицательного заряда. Вот те самые «+» (плюсы) и «-» (минусы), которые в наше время можно увидеть на любой простой батарейке. Ещё он проводил исследования грозовых явлений и обнаружил присутствие электричества в воздухе, так называемое атмосферное электричество. В 1752 году Бенджамин Франклин изобрёл молниеотвод (в быту его чаще называют громоотвод, хотя к грому это устройство отношения не имеет). Металлический штырь, соединённый толстой проволокой с заземлителем, снимал во время грозы напряжённость электрического поля. В редких случаях удара молнии пропускал её через себя в землю. Это изобретение имело большое практическое значение. Теперь высокие здания, колокольни и т.п., оборудованные такими устройствами, могли больше не бояться молнии.
Электрический ток
Электрический ток – упорядоченное движение заряженных частиц под действием электрического поля. В зависимости от среды материи (вещества) частицы могут быть разные: в металлах – электроны, в электролитах – ионы, в полупроводниках – электроны или дырки (электронно-дырочная проводимость).
Если говорить сильно упрощённо, то вся окружающая нас материя (всё, что мы видим вокруг) состоит из молекул. В свою очередь молекулы состоят из атомов. Сами атомы представляют из себя ядро (протоны и нейтроны) и вращающиеся вокруг него электроны. Для более наглядного понимания электрического тока возьмём обычную батарейку. Внутри неё протекает химическая реакция. В результате этого электроны переходят от одних атомов к другим. Поэтому получается, что атомы одного вещества (клемма «плюс») испытывают недостаток электронов, а атомы другого вещества (клемма «минус») избыток. То есть вещества клемм батарейки имеют разноимённые заряды. Если соединить их (клеммы) между собой проводником с нагрузкой, то электроны будут стремиться перейти из одного вещества в другое (от отрицательной клеммы к положительной). Это перемещение электронов и есть электрический ток. Он будет течь пока заряды веществ не уровняются.
В качестве проводника для передачи электрического тока сейчас в основном используют медные или алюминиевые провода. Возьмём, например, медную проволоку. В атоме меди вокруг ядра по четырём орбитам вращаются 29 электронов. Электроны, находящиеся на крайних орбитах, испытывают меньшую силу притяжения, чем их собратья, расположенные ближе к ядру. Поскольку атомы меди находятся очень плотно друг к другу, то дальние электроны испытывают силу притяжения не только своего, но и соседнего ядра. Они могут покинуть свой атом и перейти к другому. Такие электроны называют свободными. При подключении к проводнику внешнего электрического поля (например, батарейки) движение свободных электронов становится упорядоченным и направленным от «-» к «+» батарейки. В результате по цепи начинает течь постоянный электрический ток.
При рассмотрении принципа работы различных электронных схем принято использовать направление постоянного тока от плюса к минусу. Этот выбор изначально был сделан не очень корректно, так как в то время о движении свободных электронов ещё не знали. За направление тока условно приняли то направление, по которому могли бы двигаться в проводнике положительные заряды. В последующем этот выбор менять никто не стал.
В любом веществе атомы располагаются на расстоянии друг от друга. В меди, алюминии и других металлах эти расстояния очень малы. Электронные оболочки соседних атомов практически соприкасаются друг с другом. Это даёт возможность электронам переходить от одного атома к другому. Поэтому металлы и ряд других веществ называют «проводниками» электрического тока. Существуют вещества, где атомы располагаются на значительном расстоянии друг от друга. Их электроны не могут преодолеть силу притяжения ядра своего атома, а сила ядра соседнего атома (куда электрон может перейти) очень мала из-за относительно большого расстояния. Даже если к такому веществу подключить электрическое поле, то электрон всё равно останется у своего атома (электрический ток не потечёт). Подобные вещества называют «диэлектриками». Они не пропускают электрический ток.
Сила тока
Если взять в качестве проводника электрического тока медную проволоку и под прямым углом перерезать её, то размер среза будет представлять собой поперечное сечение данного проводника. Количество заряженных частиц (в нашем случае электронов), протекающих через поперечное сечение проводника, называется силой тока. Для её измерения существует специальный прибор – амперметр. За единицу величины силы тока принят один ампер (А). Это довольно большой ток. В различных электронных приборах и схемах протекают более маленькие токи. Для удобства работы применяются следующие величины измерения: микроампер (мкА, 0,000001 А), миллиампер (мА, 0,001А), ампер (А, 1А). На схемах и в формулах электрический ток обозначается буквой «I» (и).
Напряжение
Разность потенциалов двух точек внутри электрического поля называется напряжением. Чем больше будет величина различия, тем сильнее электроны будут стремиться перейти к веществу с противоположным зарядом. Если сказать проще, то напряжение – это сила, которая перемещает электроны от одного атома к другому. Напряжение измеряется вольтметром. За единицу измерения напряжения принят один «вольт» (В). Для удобства работы применяются следующие величины измерения: микровольт (мкВ, 0,000001 В), милливольт (мВ, 0,001 В), вольт (В, 1В), киловольт (кВ, 1000 В), мегавольт (МВ, 1000000 В). На схемах и в формулах напряжение обозначается буквой «U» (у).
Сопротивление
Свойство материала проводника препятствовать прохождению электрического тока, называется электрическим сопротивлением. При движении по проводнику свободные электроны взаимодействуют на своём пути с атомами и другими электронами. Это приводит к потере ими части своей энергии. Можно сказать, что электрон испытывает сопротивление своему движению. Различные материалы имеют различное атомное строение. Соответственно, они оказывают различное сопротивление электрическому току. Сопротивление измеряется омметром. За единицу измерения сопротивления принят один «ом» (Ом). Это очень маленькое сопротивление. Для удобства работы применяются следующие величины измерения: ом (Ом, 1Ом), килоом (кОм, 1000 Ом), мегаом (Мом, 1000000 Ом). На схемах и в формулах сопротивление обозначается буквой «R» (эр).
Сила тока, напряжение и сопротивление – взаимосвязанные величины, которые влияют друг на друга. Такую зависимость хорошо показывает закон Ома для участка цепи. Он гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Его можно записать в виде формулы I = U/R.
Прямая пропорция показывает, что если увеличить в несколько раз напряжение, то ток увеличится во столько же раз. Обратная пропорция показывает, что если увеличить в несколько раз сопротивление, то ток уменьшится во столько же раз.
Мощность
Мощность электрического тока — количество работы, совершаемое током за одну секунду времени. Тем больше будет совершаться работы, чем больше разность потенциалов и чем большее количество электричества ежесекундно проходит через поперечное сечение проводника. За единицу измерения мощности принят один «ватт» (Вт). Такое название единица получила в честь шотландского инженера и изобретателя Джеймса Уатта (1736 — 1819 гг.). На схемах и в формулах мощность обозначается буквой «P» (п). Определение мощности можно записать в виде формулы P = I x U. Если известна мощность электроприбора (обычно указывается на специальной бирочке, прикреплённой к корпусу), то всегда можно узнать протекаемый по цепи ток, к которой будет подключено это устройство. Он рассчитывается по формуле I = P/U.
Электричество вокруг нас
Скорость электрического тока
Скорость движения свободных электронов в проводнике довольно маленькая. Однако, если взять электрическую лампочку, удалённую от источника на несколько километров, и соединить её такими же длинными проводниками с ним (источником), то электрический ток возникнет практически мгновенно после создания цепи. То есть, лампочка загорится сразу же при подключении к источнику питания. Дело в том, что через лампочку начинают идти электроны не от источника питания, а те свободные электроны, которые находятся в самом проводнике. На место ушедшего электрона приходит электрон от соседнего атома проводника, на его место от следующего атома. Получается своеобразная цепочка из электронов. А электроны из источника питания постепенно приходят на их место. В качестве пояснения можно привести пример с поливочным шлангом на даче. Если его наполнить водой и один конец подключить к водопроводу, то при открытии крана вода на другом конце начнёт сразу же вытекать из шланга. Молекулы воды, которыми в первый момент осуществляется полив, будут не из водопровода, а из шланга. Потом на их место придут молекулы воды из водопровода.
Переменный ток
В начале электрической эры все потребители пользовались постоянным электрическим током. Большой вклад в развитие и распространение сетей с постоянным током внёс американский изобретатель и предприниматель Томас Алва Эдисон (1847 – 1931 гг.). Человек удивительной работоспособности. Только в США он получил 1093 патента. Если брать другие страны мира, то это ещё около трёх тысяч запатентованных изобретения. Томас Эдисон стоял у истоков широкомасштабного применения электричества. Его вариант электрической лампы накаливания с прочной нитью в колбе с вакуумом имел большой коммерческий успех. Не без влияния Томаса Эдисона на промышленных предприятиях стали заменять паровые машины на электродвигатели постоянного тока (на переменном токе электродвигателей ещё не было). Одним словом, в конце XIX века электричество начало семимильными шагами входить в жизнь людей.
К сожалению, у электрического тока в то время был обнаружен один существенный недостаток. Его очень сложно передавать на большие расстояния. Как мы знаем любой проводник оказывает сопротивление прохождению электрического тока. На маленьких расстояниях это практически незаметно, а на больших сопротивление прибавляется и потери становятся сильно ощутимы. Единственным приемлемым выходом из этой ситуации является передача электроэнергии на повышенном напряжении (десятки и сотни тысяч вольт). Чтобы на передающей стороне повысить, а на принимающей стороне опять понизить напряжение нужны специальные трансформаторы. С постоянным током трансформаторы не работают. Соответствующее решение предложил Никола Тесла (1856 – 1943 гг.). Именно он разработал системы передачи электроэнергии посредством многофазного переменного тока, в которую входили генераторы, повышающие и понижающие трансформаторы, а также в качестве потребителей были представлены электрические машины (в том числе, изобретённый им асинхронный электродвигатель переменного тока).
Опора высоковольтной линии электропередачи
Переменный ток – электрический ток, который с течением времени изменяется по величине и направлению. Например, в обычной домашней розетке плюс с минусом на правой и левой клеммах меняются местами 50 раз в течение одной секунды. Человеческий глаз не может различать такую частоту. Поэтому, при включении дома обычной лампы накаливания мы видим ровное (без морганий) освещение. Количество изменений за 1 сек. называется частотой переменного тока и обозначается буквой F (эф). За единицу измерения частоты принят один «герц» (Гц). Такое название единица получила в честь немецкого физика Генриха Рудольфа Герца (1857 – 1894 гг.). В России, как и во многих странах мира, стандарт частоты переменного тока равен 50 Гц.
Переменный электрический ток вырабатывается на электростанциях (гидроэлектростанции, теплоэлектростанции и атомные электростанции). Принцип везде одинаков – механическое движение турбины передаётся ротору генератора, вращение которого приводит к возникновению напряжения в обмотках статора. На гидроэлектростанциях (ГЭС) турбину вращает поток воды. На теплоэлектростанциях (ТЭЦ) энергия сжигаемого топлива (бензин, керосин, дизельное топливо, газ и т.п.) нагревает в котлах воду до состояния пара, который вращает паровую турбину. На атомных электростанциях (АЭС) энергия ядерной реакции нагревает теплоноситель первого контура. Затем этим теплом до состояния пара нагревается вода второго контура, которая опять же вращает паровую турбину.
Электробезопасность
Нет такого человека, который в настоящее время не использовал бы различные электроприборы. При всей пользе электрического тока существует опасность его воздействия на организм людей. Ещё в XVIII веке итальянский врач, физиолог и физик Луиджи Гальвани (1737 – 1798 гг.) открыл феномен сокращения мышц мёртвой лягушки от воздействия электрического тока. Он предположил, что любой живой организм для управления мышцами сам вырабатывает «животное электричество». Заслуги учёного не остались без внимания. Его называют отцом современной электрофизиологии. В последующем учёные доказали, что мозг является генератором электрической активности (были открыты биотоки мозга). Если сказать проще, то мозг использует свои импульсы для управления мышцами, передавая их по нервам.
Естественно, что любой внешний электрический ток, протекая через организм человека, нарушает работу биотоков мозга. Ток как бы блокирует импульсы мозга и не даёт сокращаться мышцам. Это очень чревато для живого организма. Например, из-за остановки мышц лёгких человек прекращает дышать (наступает асфиксия), а при несокращающихся мышцах сердца останавливается кровообращение. Иногда бывает, что человек попадает под действие электрического тока и сам освободиться от него не может. Взялся рукой за оголённый электрический провод, а бросить не получается. То есть, посылаемый мозгом к мышце руки соответствующий импульс, не может превысить действие внешнего источника электрического тока.
Для защиты людей на производстве есть целый раздел техники безопасности – электробезопасность. Специальные люди должны проводить соответствующие инструктажи, где подробно указаны меры электробезопасности на конкретном рабочем месте. В домашних условиях такого нет, но все бытовые электроприборы выпускаются с соответствующим классом защиты от поражения электрическим током. Бояться не нужно, просто необходимо пользоваться исправными бытовыми электроприборами и применять их только по назначению. При соблюдении мер безопасности электричество всегда будет хорошим помощником в вашей жизни.
Project Outline
How did scientists respond to the discovery of electricity?
What was the initial public response to the discovery and development of Electricity.?
How did it change social attitudes and perceptions?
What major changes did it bring about in the life of the society?
Research Information
Introduction
- In 1879, Thomas Edison invented the incandescent light bulb a major step in the human use of storable energy leading eventually to large-scale electrification. Electricity is similar to a liquid fuel in that it can be transported easily from one place to another. One of Edison’s goals was to make electricity affordable for all homes. Edison began with the distribution of electricity through a direct current (DC).
- In the late 19th and early 20th centuries the steam turbine, using coal as a fuel, was developed as a cheap power source that generated electricity. In 1882, the first functional steam turbine was designed by Charles Parsons, an English engineer. He used the high pressure of steam to hit the blades of a rotor. The principle of the turbine was a major step toward today’s production of electricity.
- Full Article is at:
- http://telstar.ote.cmu.edu/environ/m3/s3/01history.shtml
Scientific Contribution to the Mankind
- Electric power arrived barely a hundred years ago, but it has radically transformed and expanded our energy use. To a large extent, electricity defines modern technological civilization.
- The scientists’ achievements during the past years have contributed tremendously to man’s progress towards civilization. In the field of electricity, Michael Faraday gave the world the first dynamo which generates electricity. Thomas Alva Edison, the inventor who gave light to the world. All these inventions of scientists and the benefits they have brought to mankind cannot be denied. They have improved the lives of all the people around the world and have given them a life of comfort.
- Science has made great strides in this century and needless to say it is greatly due to electricity. Transport, communication, medical science and so many other branches of inventions and discoveries are made possible due to the availability of electric power.
- Full article is at:
- http://dir.salon.com/story/tech/feature/2004/09/10/bush/index_np.html
Larger Social and Political Context
- The major way in which the discovery of electricity and the subsequent technological applications impacted the western world was by highlighting a new relationship between science and technology—a relationship in which the state played a major role. Traditionally, craftsmen and tradesmen were the source of technological advancement, altering the methods or tools used for their particular craft.
- The theory followed the application. D.S.L Cardwell reinforces this point when he writes:
- “If we agree that thermodynamics was a gift from the power technologies to science and philosophy, the contemporaneous development of electromagnetic field theory was to prove no less important a gift, but in the opposite direction.”
- In terms of distribution, T.K. Derry writes, “the 1880’s saw the beginning of general recognition of the economic advantages of central power-stations generating electricity at highvoltages and serving large areas: acceptance of this principle brought with it new problems of distribution, both practical and economic.”.
- Full article is at:
- http://www.iog.ca/publications/transformative_tech.pdf
People Response for Discovery of Electricity
- In 1740, electricity was a novel and fashionable subject. Most people thought that electricity was as mysterious as heaven. When Franklin gave the idea of lightning being a source of electricity, people were exited, and he was supported all around the world.
- If Ben hadn’t discovered lightning was electricity, we would not have anything that could run on it. Although many people have researched electricity and found how it worked, fewer research and experiments would have happened. Electricity has gone far from Benjamin Franklin’s basic idea. We now have computers, lamps, speakers, T.V., and many more things that run on electricity.
- Full article is at:
- http://www.kyrene.k12.az.us/schools/brisas/sunda/inventor/franklin/index.html
- Many people think Benjamin Franklin discovered electricity with his famous Kite flying experiments in 1752.Electricity was not “discovered “ all at once. People wanted a cheap and safe way to light their homes, and scientist thought electricity could do it.
- Electricity didn’t have easy beginning. While many people were thrilled with all the new inventions,some people were afraid of electricity and wary of bringing it into their homes.They were afraid to let their children near this strange new power source.
- Many social critics of the day saw electricity as an end to the simpler, less hectic way of life. Poets commented that electric lights were less romantic than gaslights.Perhaps they were right, but the new electric age could not be dimmed.
- Full article is at:
- http://www.need.org/needpdf/infobook_activities/SecInfo/Elec2S.pdf
- The construction of a dam can have a serious environmental impact on the surrounding areas. The amount and the quality of water downstream can be affected, which affects plant life both aquatic, and land-based. Because a river valley is being flooded, the local habitat of many species are destroyed, while people living nearby may have to relocate their homes.
- Wind towers can be beneficial for people living permanently, or temporarily, in remote areas. It may be difficult to transport electricity through wires from a power plant to a far-away location and thus, wind towers can be set up at the remote setting.
- Full article is at:
- http://en.wikipedia.org/wiki/Energy_development
Impact of Electricity on Society
- Electric power developed slowly, however. Humphrey Davy built a battery-powered arc lamp in 1808 and Michael Faraday an induction dynamo in 1831, but it was another half-century before Thomas Edison’s primitive cotton-thread filament burned long enough to prove that a workable electric light could be made.
- Edison opened the first electricity generating plant (in London) less than 3 years later, in January 1882, and followed with the first American plant (in New York) in September. Within a month, electric current from New York’s Pearl Street station was feeding 1,300 lightbulbs, and within a year, 11,000—each a hundred times brighter than a candle. Edison’s reported goal was to «make electric light so cheap that only the rich will be able to burn candles.»
- High costs and the Great Depression, which dried up most investment capital, delayed electric service to rural Americans until President Franklin Roosevelt signed into law the Rural Electrification Administration (REA) in 1935.
- The primary regulation of the generation, distribution, and transmission of electric power occurs at the state level through various state public utility commissions. Because the production of electric energy is connected with a public interest, states have a vested interest in overseeing it and working to guarantee that electricity will be produced in a safe, efficient, and expedient manner.
Electric Utility Retail Sales by Sector
- From 1949 to 2000, while the population of the United States expanded 89 percent, the amount of electricity use grew 1,315 percent. Per-capita average consumption of electricity in 2000 was more than seven times as high as in 1949. Electricity’s broad usage in the economy can be seen in the sector totals, which were led in 2000 by the residential sector, followed closely by the industrial sector, and then the commercial sector.
- Just as electricity’s applications and sources change over time, so is the structure of the electric power sector itself evolving. The sector is now moving away from the traditional, highly regulated organizations known for decades as electric utilities and toward an environment marked by lighter regulation and greater competition from and among nonutility power producers.
- In addition to the conversion losses, line losses occur during the transmission and distribution of electricity as it is transferred via connecting wires from the generating plant to substations (transmission), where its voltage is lowered, and from the substations to end users (distribution), such as homes, hospitals, stores, schools, and businesses. The generating plant itself uses some of the electricity. In the end, for every three units of energy that are converted to create electricity, only about one unit actually reaches the end user.
Electric Power Sector Net Summer Capability
- Source:
- http://www.keystonecurriculum.org/html/acting_out_energy.html
- Electricity, especially at high voltages or high currents, is a dangerous commodity. Faulty wiring, power lines that are close to trees and buildings, and inadequate warning signs and fences around transformer stations and over buried electrical cables can subject an individual to electric shock or even electrocution. Because of the ultrahazardous nature of providing electric power, states have many statutes and regulations in place to protect the public from electric shock.
- Full article is at:
- http://www.answers.com/topic/electricity?cat=technology
Scientist Response for Discovery of Electricity
- «I have accomplished all I promised.» (Thomas Edison, to New York Sun reporter, 1882)
- Metallic glass makes possible the construction of highly efficient electrical transformers, Dr.Nelson said. Alternating-current transformers containing ordinary metal waste a lot of energy through heat because of the hysteresis effect. Metallic glass would also silence the humming you hear in AC transformers, which is also caused by magnetic hysteresis.
- http://query.nytimes.com/gst/fullpage.html?res=940CEED91338F933A05754C0A963948260&sec=health&spon=&pagewanted=all
- During a lightning storm a small spark struck his finger showing that lightning is electricity. This experiment was proved false on an episode of mythbusters on the episode entitled «Franklin’s Kite» where it was shown that the electricity carried down the string would have been enough to kill him. It sparked the interest of later scientists whose work provided the basis for modern electrical technology.
- The late 19th and early 20th century produced such giants of electrical engineering as Nikola Tesla, Antonio Meucci, Thomas Edison, George Westinghouse, Werner von Siemens, Charles Steinmetz, Alexander Graham Bell and William Thomson, 1st Baron Kelvin.
- Source:
- http://www.answers.com/topic/electricity?cat=technology
- In 1904 Lorentz published the correct transformations and derived a number of results from them, such as the variation of mass with velocity, and the inability of electrical experiments to detect motion of the reference frame.
- “History of the theories of ether and electricity“ from 1953, E. T. Whittaker claimed that relativity is the creation of Lorentz and Poincaré and attributed to Einstein’s papers only little importance.
- Source:
- http://en.wikipedia.org/wiki/Relativity_priority_dispute
- Edison had also never wanted to hear about Tesla’s AC polyphase designs, believing that DC electricity was the future. Tesla focused intently on his AC polyphase system.
- Tesla was critical of Einstein’s relativity work, calling it:”a magnificent mathematical garb which fascinates, dazzles and makes people blind to the underlying errors. The theory is like a beggar clothed in purple whom ignorant people take for a king…, its exponents are brilliant men but they are metaphysicists rather than scientists.
- Also in the late 1880s, Tesla and Edison became adversaries in part due to Edison’s promotion of direct current (DC) for electric power distribution over the more efficient alternating current advocated by Tesla and Westinghouse. Until Tesla invented the induction motor, AC’s advantages for long distance high voltage transmission were counterbalanced by the inability to operate motors on AC. As a result of the «War of Currents,» Edison and Westinghouse went nearly bankrupt, so in 1897, Tesla released Westinghouse from contract, providing Westinghouse a break from Tesla’s patent royalties. Also in 1897, Tesla researched radiation which led to setting up the basic formulation of cosmic rays.
- Full article is at:
- http://en.wikipedia.org/wiki/Nikola_Tesla
- Thomas Edison developed improvements leading to modern electric lighting; George Westinghouse, a competitor of Edison, developed innovations that made electricity safer and more efficient to use.
- Full article is at:
- http://www.mindspring.com/~sartor/gradyhs/history/notes14.html
Impact of Electricity on Scientist
- «Fooling around with alternating current in just a waste of time. Nobody will use it, ever.» -Thomas Edison, 1889
- In 1832, after the publication of Faraday’s experiments, Hippolyte Pixii, an electrical instrument maker in Paris, constructed a device in which a rotating permanent magnet induced an alternating current in the field coils of a stationary horseshoe electromagnet. This was the first practical device for producing an electric current by mechanical means. Pixii called it a «magnetoelectric» machine.
- Arc lights had been experimentally demonstrated using a set of carbons and primary batteries,The production of oxygen and hydrogen was expensive, so in 1850 Professor M. Nollet of Brussels began making a high–current magnet electric machine for decomposing water into hydrogen and oxygen. The gases were to be sold for lime lights. In 1853, interrupted by Nollet’s death, F. H. Holmes of England picked up the work. Producing a device admirably suited for the production of light between two carbon points.
- Full article is at:
- http://www.hbci.com/~wenonah/history/edpart2.htm
- A British clergyman and chemist known primarily for his work with gases, independently discovered the inverse-square law at about the same time. Another Englishman, Henry Cavendish (1731-1810), also made important contributions to electrostatics, though he’s better known for isolating the element hydrogen and measuring the strength of gravity with great precision.
- The next breakthrough came, as sometimes happens in science, by sheer accident. In 1786, the Italian physiologist Luigi Galvani (1737-98) touched the leg of a dissected frog with an electrical charge and observed a violent contraction. He thought the effect originated in the animal’s organic tissue, but it was actually the salt within the tissue, in concert with Galvani’s metal electrodes, that was responsible. His discovery led to the invention of the electrochemical battery.
- Another Italian, the physicist Alessandro Volta (1745-1827), took the next step. In 1800, he produced the «voltaic pile» — a stack of alternating layers of silver, zinc, and cardboard which, when placed in an electrical circuit, produced a continuous stream of electricity. The quantitative study of electric current had begun.
- Full article:
- http://scienceweek.com/2005/sa050114-6.htm
- «The Sorcerer of Menlo Park appears not to be acquainted with the subtleties of the electrical sciences. Mr. Edison takes us backwards. One must have lost all recollection of American hoaxes to accept such claims.» -Professor Du Moncel
- An assorted collection of amateurs, philosophers and other scientists to carry on the exploration of electricity.Otto von Guericke, burgomaster of Magdeburg, Germany, opened a new chapter in experimental science when he built the first electrical machine in 1660.
- Gray was thus led to make the fundamental distinction between insulators and conductors: silk filaments did not permit the electricity to leak away, while equally fine copper wires did. He may have been the first to use wires as conductors.
- In Paris, Charles Du Fay repeated and continued Gray’s work. He showed that all bodies could be electrified; in the case of conductors, it was necessary that they be insulated. The most important of Du Fay’s contributions was his classification of electricity into two kinds: vitreous and resinous. These electricities, Du Fay said, repel similar charges and attract opposite kinds.
- Ever since Oersted’s announcement, a prime goal of investigators was the reciprocal condition—the generation of electricity by a magnetic source. In England, Michael Faraday, Davy’s assistant, sought the elusive goal. For ten years he worked, with no success. Then, the breakthrough: The opening and closing of a battery circuit connected to a coil caused a deflection in a galvanometer.
- In 1893, Westinghouse demonstrated a «universal system» of generation and distribution at a Chicago exposition. The universal system meant that power or energy could be used in a variety of ways at many different voltages. Westinghouse, using Tesla’s invention of the transformer and the electric motor, as well as steam turbines, transformed Niagara Falls into one of the first hydroelectric plants in the world.
- Full article is at:
- http://www.hbci.com/~wenonah/history/edpart1.htm
- Hans Christian Oersted discovered that the connection between electricity and magnetism. An electric current could produce magnetic effects. In another ten years the converse was shown, and magnets were being used to generate electric currents. With the development of powerful currents produced by magnetic generators, the stage was set for the use of electric power for light, for communication, and for production of motion.
Development of Electricity
- Thomas Edison (1847-1931) is best known for his inventions —particularly the incandescent lamp but his contributions toward the development of the US electric power grid are often underappreciated. Edison and his team designed the entire electrical system down to the wall outlet and in 1881 established the first power company. Edison’s system was in the Wall Street section of New York City. Even today, vestiges of it supply DC power to about 2000 customers.
- The current US electricity grid remains a mystery to most people. Its ubiquity and high reliability over the past 50 or more years has rendered it nearly invisible, more a backdrop for the workings of modern society than its central nervous system —at least until the lights go out. The blackout of 14 August 2003 brought the operation of the grid momentarily into prominence and raised questions about how it works and why it fails. How could a small local problem bring the lives of 50 million people to a standstill in a matter of minutes?
- AC circuits predominate in the US transmission system because they are compatible with transformers devices that can step up voltage before electricity is transported or step it down before electricity is distributed to consumers. Transmission voltages in the US are typically 115, 138, 230, 345, or 500 kV, although there are a few extra-high voltage lines at 765 kV. The 230-kV system represents the backbone of the US electricity grid.
- Full article:
- http://scienceweek.com/2005/sa050114-6.htm
Energy Consumption
- Sectoral energy source have changed dramatically over time. In the residential and commercial sectors . Electricity, only an incidental source in 1949, expanded in almost every year since then, as did the energy losses associated with producing and distributing the electricity.
- The expansion of electricity use reflects the increased electrification of U.S. households, which typically rely on a wide variety of electrical appliances and systems. In 1997, 99 percent of U.S. households had a color television and 47 percent had central air conditioning. Eighty-five percent of all households had one refrigerator; the remaining 15 percent had two or more. In 1978 only 8 percent of U.S. households had a microwave oven, but by 1997 microwaves could be found in 83 percent.
Energy Consumption due to generating and distribution of Electricity
- The Energy Information Administration (EIA) first collected household survey data on personal computers in 1990, when 16 percent of households owned one or more. By 1997 that share had more than doubled to 35 percent. U.S. home heating also underwent a big change. Over a third of all U.S. housing units were warmed by coal in 1950, but by 1999 that share was only 0.2 percent. Electricity gained as home-heating sources: electricity’s share shot up from only 0.6 percent in 1950 to 30 percent in 1999. In recent times, electricity and natural gas have been the most common sources of energy used by commercial buildings as well. Electricity and its associated losses grew steadily.
- Article is at:
- http://www.mnforsustain.org/energy_in_the_united_states_1635-2000.htm
Change in Perceptions and Attitudes of Electricity
Perceptions
- The most trenchant critics has been economist, Professor Robin Court. He has argued that among other things overestimates of electricity demand have resulted because of the natural empire-building instincts of engineers who have sought increased responsibility and prestige from the building of further power stations.
- Estimates of demand made in the early 1970’s were consistently greater than the actual electricity consumption later in the decade, leading to a over- expenditure on power stations construction and extensive over capacity in the electricity supply system.
- Article is at:
- http://www.techhistory.co.nz/ThinkBig/Attitudes.htm
- Fascination with the effects of electricity and spark discharges on biological systems started with the work of L. Galvani in 1780 with frog legs and the discovery of «animal electricity.» And an everlasting impression was left in the public’s imagination by Mary W. Shelley’s Frankenstein (1818), in which Eramus Darwin gained a place for his advocacy of therapies based on electric discharges.
- Article is at:
- http://www.sciencemag.org/cgi/content/full/300/5620/745
Attitudes
- These overestimates of demand, which so concerned Professor Court, would provide the justification for bringing Maui gas ashore. Availability of this gas, no longer needed to generate electricity, would make possible the state sponsored gas-based enterprises which formed the nucleus of «Think Big» in the 1980s.
- Article is at:
- http://www.techhistory.co.nz/ThinkBig/Attitudes.htm
- «Edison’s claims are «so manifestly absurd as to indicate a positive want of knowledge of the electric circuit and the principles governing the construction and operation of electrical machines.»-Edwin Weston, specialist in arc lighting.
- Luckily, the disinterest and derision of Edison’s scientific peers did not prevent sharp speculators, like J. P. Morgan and William Vanderbilt from investing funds and helping Edison’s inventions become universally adopted.
- Article is at:
- http://www.trufax.org/general/beliefsystems.html
Change in the life of people Due to Discovery and Development of Electricity
- «Electricity is a modern necessity of life.»
(Franklin Roosevelt, at Rural Electrification Administration celebration, 1938)
- In succeeding years, the construction of an interconnected system of large, central generating stations, high-voltage AC transmission lines, and lower voltage AC and DC distribution lines in cities and towns across the country resulted in the creation of a national grid. This was an integrated energy system that could make electricity and deliver it hundreds of miles to wherever it was wanted.
- The electric lamp gave people complete control over lighting inside their homes and work places at the click of a switch. By the eve of World War II this was largely true, with the help of the Rural Electrification Administration (REA), even in rural areas.
- The consequence was to interrupt the normal, biological rhythms of life and to alter our schedules for work and leisure. Industrial plants could operate in shifts around-the-clock, for example, and the concept of «the city that never sleeps» became a reality.
- Use of the new technology effected building architecture as daylight became only a supplemental source of light. Electricity for lights, elevators, and pumps allowed architects to design «skyscrapers» of unprecedented height. The «windowless building» was also an architectural design option by the 1930s.
- The economic effect of electric lighting went far beyond increasing the workday. Profits generated by the electric lamp, in effect, paid for a network of generators and wires. This infrastructure then became available for a whole new class of inventions: appliances and equipment that by the 1930s had transformed the home and the workplace.
- Full article is at:
- http://americanhistory.si.edu/lighting/19thcent/consq19.htm
Appliances Introduced for the Life of People
- Manufacturers developed a wide range of electric appliances for the home. Electric irons and washing machines made laundry day less labor intensive, while electric vacuums made cleaning carpets and furniture easier. Time spent doing domestic tasks didn’t seem to decline, however, as standards of cleanliness rose and fewer families employed domestic servants.
- Electric refrigerators presaged an end to ice boxes and home ice deliveries. Bread toasters, tea kettles, waffle irons, and marshmallow toasters (above) were only a few of the electric appliances introduced to kitchens. Many of these smaller devices sported elaborate and artistic designs, and were meant to be used at the dinning room table.
Marshmallow toaster
- Electric climate control began with fans and radiant heaters that used special light bulbs. Personal care items like electric hair dryers, heating pads, and shaving mugs appeared. Electricity for telephones and radios brought users instantaneous personal communications and news and entertainment.
- Small electric motors freed factories from the need to arrange equipment based on power shafts and belts. Electrified tools boosted industrial productivity, and many were eventually made available to domestic «do-it-yourselfers.»
- Electric power for transportation made subways practical and streetcars more efficient. These in turn provided central stations with daytime consumers of electricity.
- Modern life has become so attached to electricity that life would seem drudgery without it. What is a world without this great wonder of the 20th century? The coming of electricity has removed darkness and gloom enwrapping the world and the world has been transformed into a well-illuminated paradise. In cold we are heated by the electric heaters, in summer we are provided with air conditioners and electric fans to cool us. We have thousands of things using electricity. All these things are available today and life has been made easier due to the discovery of electricity.
- Full article is at:
- http://americanhistory.si.edu/lighting/19thcent/consq19.htm
Major Governance issue with Electricity
- Scientists discovered electromagnetic field theory long before the first electric motor began to hum in 1821. Up to that time, craftsmen and tradesmen were the originators of most technological advances as they altered their working methods, and only later did they refer the advances to scientists for an explanation why an improvement worked as it did. The exploitation of electricity is also one of the first examples of state (and other) support for technical research into a theory before there was a clear practical outcome in mind.
- Over the next 75 years, the chief use of the technology was for electric lighting, but gradually the telegraph, telephone, radio and a myriad of electric machines and gadgets appeared that revolutionized domestic life as well as work.
- Initially the new technology was not competitive with steam, but it had a number of advantages, especially when adapted to move long distances over a network of wires that distributed electric power widely and made it instantly available. Government support was needed to build this network around the turn of the 20th Century, to overcome the cost disadvantage associated with the short peak period for electric lighting.
- Once the power grid was in place, the transformation began. For example, the layout and location of factories was decentralized. No longer was it necessary for machines in a factory to be clustered around a central drive shaft powered by steam or water — they could be laid out according to the work flow, each with its own electric motor. Nor was it necessary for the factories themselves to be clustered around the source of power — they could be located close to markets, raw materials or other scarce resources.
- Access to cheap power was a ticket to the creation of wealth, so the location of generating facilities and the infrastructure to distribute power made winners and losers of individuals, cities, whole regions and countries. This was a major governance issue with electricity as it had been with the railways.
- Full article is at: http://www.iog.ca/publications/transformative_tech.pdf
- The exploitation of the full potential of electricity required substantial alterations in the entire facilitating structure. One of the most important was a drastic change in the layout of factories.With waterpower and steam,the power source drove a central drive shaft whose power was distributed throughout the factory via a set of pulleys and belts. Because of heavy friction loss in the belt transmission, machines that used the most power were placed closest to the drive shaft, and factories.
- Source:
- http://www.iog.ca/publications/transformative_tech.pdf
Project Outline
How did scientists respond to the discovery of electricity?
What was the initial public response to the discovery and development of Electricity.?
How did it change social attitudes and perceptions?
What major changes did it bring about in the life of the society?
Research Information
Introduction
- In 1879, Thomas Edison invented the incandescent light bulb a major step in the human use of storable energy leading eventually to large-scale electrification. Electricity is similar to a liquid fuel in that it can be transported easily from one place to another. One of Edison’s goals was to make electricity affordable for all homes. Edison began with the distribution of electricity through a direct current (DC).
- In the late 19th and early 20th centuries the steam turbine, using coal as a fuel, was developed as a cheap power source that generated electricity. In 1882, the first functional steam turbine was designed by Charles Parsons, an English engineer. He used the high pressure of steam to hit the blades of a rotor. The principle of the turbine was a major step toward today’s production of electricity.
- Full Article is at:
- http://telstar.ote.cmu.edu/environ/m3/s3/01history.shtml
Scientific Contribution to the Mankind
- Electric power arrived barely a hundred years ago, but it has radically transformed and expanded our energy use. To a large extent, electricity defines modern technological civilization.
- The scientists’ achievements during the past years have contributed tremendously to man’s progress towards civilization. In the field of electricity, Michael Faraday gave the world the first dynamo which generates electricity. Thomas Alva Edison, the inventor who gave light to the world. All these inventions of scientists and the benefits they have brought to mankind cannot be denied. They have improved the lives of all the people around the world and have given them a life of comfort.
- Science has made great strides in this century and needless to say it is greatly due to electricity. Transport, communication, medical science and so many other branches of inventions and discoveries are made possible due to the availability of electric power.
- Full article is at:
- http://dir.salon.com/story/tech/feature/2004/09/10/bush/index_np.html
Larger Social and Political Context
- The major way in which the discovery of electricity and the subsequent technological applications impacted the western world was by highlighting a new relationship between science and technology—a relationship in which the state played a major role. Traditionally, craftsmen and tradesmen were the source of technological advancement, altering the methods or tools used for their particular craft.
- The theory followed the application. D.S.L Cardwell reinforces this point when he writes:
- “If we agree that thermodynamics was a gift from the power technologies to science and philosophy, the contemporaneous development of electromagnetic field theory was to prove no less important a gift, but in the opposite direction.”
- In terms of distribution, T.K. Derry writes, “the 1880’s saw the beginning of general recognition of the economic advantages of central power-stations generating electricity at highvoltages and serving large areas: acceptance of this principle brought with it new problems of distribution, both practical and economic.”.
- Full article is at:
- http://www.iog.ca/publications/transformative_tech.pdf
People Response for Discovery of Electricity
- In 1740, electricity was a novel and fashionable subject. Most people thought that electricity was as mysterious as heaven. When Franklin gave the idea of lightning being a source of electricity, people were exited, and he was supported all around the world.
- If Ben hadn’t discovered lightning was electricity, we would not have anything that could run on it. Although many people have researched electricity and found how it worked, fewer research and experiments would have happened. Electricity has gone far from Benjamin Franklin’s basic idea. We now have computers, lamps, speakers, T.V., and many more things that run on electricity.
- Full article is at:
- http://www.kyrene.k12.az.us/schools/brisas/sunda/inventor/franklin/index.html
- Many people think Benjamin Franklin discovered electricity with his famous Kite flying experiments in 1752.Electricity was not “discovered “ all at once. People wanted a cheap and safe way to light their homes, and scientist thought electricity could do it.
- Electricity didn’t have easy beginning. While many people were thrilled with all the new inventions,some people were afraid of electricity and wary of bringing it into their homes.They were afraid to let their children near this strange new power source.
- Many social critics of the day saw electricity as an end to the simpler, less hectic way of life. Poets commented that electric lights were less romantic than gaslights.Perhaps they were right, but the new electric age could not be dimmed.
- Full article is at:
- http://www.need.org/needpdf/infobook_activities/SecInfo/Elec2S.pdf
- The construction of a dam can have a serious environmental impact on the surrounding areas. The amount and the quality of water downstream can be affected, which affects plant life both aquatic, and land-based. Because a river valley is being flooded, the local habitat of many species are destroyed, while people living nearby may have to relocate their homes.
- Wind towers can be beneficial for people living permanently, or temporarily, in remote areas. It may be difficult to transport electricity through wires from a power plant to a far-away location and thus, wind towers can be set up at the remote setting.
- Full article is at:
- http://en.wikipedia.org/wiki/Energy_development
Impact of Electricity on Society
- Electric power developed slowly, however. Humphrey Davy built a battery-powered arc lamp in 1808 and Michael Faraday an induction dynamo in 1831, but it was another half-century before Thomas Edison’s primitive cotton-thread filament burned long enough to prove that a workable electric light could be made.
- Edison opened the first electricity generating plant (in London) less than 3 years later, in January 1882, and followed with the first American plant (in New York) in September. Within a month, electric current from New York’s Pearl Street station was feeding 1,300 lightbulbs, and within a year, 11,000—each a hundred times brighter than a candle. Edison’s reported goal was to «make electric light so cheap that only the rich will be able to burn candles.»
- High costs and the Great Depression, which dried up most investment capital, delayed electric service to rural Americans until President Franklin Roosevelt signed into law the Rural Electrification Administration (REA) in 1935.
- The primary regulation of the generation, distribution, and transmission of electric power occurs at the state level through various state public utility commissions. Because the production of electric energy is connected with a public interest, states have a vested interest in overseeing it and working to guarantee that electricity will be produced in a safe, efficient, and expedient manner.
Electric Utility Retail Sales by Sector
- From 1949 to 2000, while the population of the United States expanded 89 percent, the amount of electricity use grew 1,315 percent. Per-capita average consumption of electricity in 2000 was more than seven times as high as in 1949. Electricity’s broad usage in the economy can be seen in the sector totals, which were led in 2000 by the residential sector, followed closely by the industrial sector, and then the commercial sector.
- Just as electricity’s applications and sources change over time, so is the structure of the electric power sector itself evolving. The sector is now moving away from the traditional, highly regulated organizations known for decades as electric utilities and toward an environment marked by lighter regulation and greater competition from and among nonutility power producers.
- In addition to the conversion losses, line losses occur during the transmission and distribution of electricity as it is transferred via connecting wires from the generating plant to substations (transmission), where its voltage is lowered, and from the substations to end users (distribution), such as homes, hospitals, stores, schools, and businesses. The generating plant itself uses some of the electricity. In the end, for every three units of energy that are converted to create electricity, only about one unit actually reaches the end user.
Electric Power Sector Net Summer Capability
- Source:
- http://www.keystonecurriculum.org/html/acting_out_energy.html
- Electricity, especially at high voltages or high currents, is a dangerous commodity. Faulty wiring, power lines that are close to trees and buildings, and inadequate warning signs and fences around transformer stations and over buried electrical cables can subject an individual to electric shock or even electrocution. Because of the ultrahazardous nature of providing electric power, states have many statutes and regulations in place to protect the public from electric shock.
- Full article is at:
- http://www.answers.com/topic/electricity?cat=technology
Scientist Response for Discovery of Electricity
- «I have accomplished all I promised.» (Thomas Edison, to New York Sun reporter, 1882)
- Metallic glass makes possible the construction of highly efficient electrical transformers, Dr.Nelson said. Alternating-current transformers containing ordinary metal waste a lot of energy through heat because of the hysteresis effect. Metallic glass would also silence the humming you hear in AC transformers, which is also caused by magnetic hysteresis.
- http://query.nytimes.com/gst/fullpage.html?res=940CEED91338F933A05754C0A963948260&sec=health&spon=&pagewanted=all
- During a lightning storm a small spark struck his finger showing that lightning is electricity. This experiment was proved false on an episode of mythbusters on the episode entitled «Franklin’s Kite» where it was shown that the electricity carried down the string would have been enough to kill him. It sparked the interest of later scientists whose work provided the basis for modern electrical technology.
- The late 19th and early 20th century produced such giants of electrical engineering as Nikola Tesla, Antonio Meucci, Thomas Edison, George Westinghouse, Werner von Siemens, Charles Steinmetz, Alexander Graham Bell and William Thomson, 1st Baron Kelvin.
- Source:
- http://www.answers.com/topic/electricity?cat=technology
- In 1904 Lorentz published the correct transformations and derived a number of results from them, such as the variation of mass with velocity, and the inability of electrical experiments to detect motion of the reference frame.
- “History of the theories of ether and electricity“ from 1953, E. T. Whittaker claimed that relativity is the creation of Lorentz and Poincaré and attributed to Einstein’s papers only little importance.
- Source:
- http://en.wikipedia.org/wiki/Relativity_priority_dispute
- Edison had also never wanted to hear about Tesla’s AC polyphase designs, believing that DC electricity was the future. Tesla focused intently on his AC polyphase system.
- Tesla was critical of Einstein’s relativity work, calling it:”a magnificent mathematical garb which fascinates, dazzles and makes people blind to the underlying errors. The theory is like a beggar clothed in purple whom ignorant people take for a king…, its exponents are brilliant men but they are metaphysicists rather than scientists.
- Also in the late 1880s, Tesla and Edison became adversaries in part due to Edison’s promotion of direct current (DC) for electric power distribution over the more efficient alternating current advocated by Tesla and Westinghouse. Until Tesla invented the induction motor, AC’s advantages for long distance high voltage transmission were counterbalanced by the inability to operate motors on AC. As a result of the «War of Currents,» Edison and Westinghouse went nearly bankrupt, so in 1897, Tesla released Westinghouse from contract, providing Westinghouse a break from Tesla’s patent royalties. Also in 1897, Tesla researched radiation which led to setting up the basic formulation of cosmic rays.
- Full article is at:
- http://en.wikipedia.org/wiki/Nikola_Tesla
- Thomas Edison developed improvements leading to modern electric lighting; George Westinghouse, a competitor of Edison, developed innovations that made electricity safer and more efficient to use.
- Full article is at:
- http://www.mindspring.com/~sartor/gradyhs/history/notes14.html
Impact of Electricity on Scientist
- «Fooling around with alternating current in just a waste of time. Nobody will use it, ever.» -Thomas Edison, 1889
- In 1832, after the publication of Faraday’s experiments, Hippolyte Pixii, an electrical instrument maker in Paris, constructed a device in which a rotating permanent magnet induced an alternating current in the field coils of a stationary horseshoe electromagnet. This was the first practical device for producing an electric current by mechanical means. Pixii called it a «magnetoelectric» machine.
- Arc lights had been experimentally demonstrated using a set of carbons and primary batteries,The production of oxygen and hydrogen was expensive, so in 1850 Professor M. Nollet of Brussels began making a high–current magnet electric machine for decomposing water into hydrogen and oxygen. The gases were to be sold for lime lights. In 1853, interrupted by Nollet’s death, F. H. Holmes of England picked up the work. Producing a device admirably suited for the production of light between two carbon points.
- Full article is at:
- http://www.hbci.com/~wenonah/history/edpart2.htm
- A British clergyman and chemist known primarily for his work with gases, independently discovered the inverse-square law at about the same time. Another Englishman, Henry Cavendish (1731-1810), also made important contributions to electrostatics, though he’s better known for isolating the element hydrogen and measuring the strength of gravity with great precision.
- The next breakthrough came, as sometimes happens in science, by sheer accident. In 1786, the Italian physiologist Luigi Galvani (1737-98) touched the leg of a dissected frog with an electrical charge and observed a violent contraction. He thought the effect originated in the animal’s organic tissue, but it was actually the salt within the tissue, in concert with Galvani’s metal electrodes, that was responsible. His discovery led to the invention of the electrochemical battery.
- Another Italian, the physicist Alessandro Volta (1745-1827), took the next step. In 1800, he produced the «voltaic pile» — a stack of alternating layers of silver, zinc, and cardboard which, when placed in an electrical circuit, produced a continuous stream of electricity. The quantitative study of electric current had begun.
- Full article:
- http://scienceweek.com/2005/sa050114-6.htm
- «The Sorcerer of Menlo Park appears not to be acquainted with the subtleties of the electrical sciences. Mr. Edison takes us backwards. One must have lost all recollection of American hoaxes to accept such claims.» -Professor Du Moncel
- An assorted collection of amateurs, philosophers and other scientists to carry on the exploration of electricity.Otto von Guericke, burgomaster of Magdeburg, Germany, opened a new chapter in experimental science when he built the first electrical machine in 1660.
- Gray was thus led to make the fundamental distinction between insulators and conductors: silk filaments did not permit the electricity to leak away, while equally fine copper wires did. He may have been the first to use wires as conductors.
- In Paris, Charles Du Fay repeated and continued Gray’s work. He showed that all bodies could be electrified; in the case of conductors, it was necessary that they be insulated. The most important of Du Fay’s contributions was his classification of electricity into two kinds: vitreous and resinous. These electricities, Du Fay said, repel similar charges and attract opposite kinds.
- Ever since Oersted’s announcement, a prime goal of investigators was the reciprocal condition—the generation of electricity by a magnetic source. In England, Michael Faraday, Davy’s assistant, sought the elusive goal. For ten years he worked, with no success. Then, the breakthrough: The opening and closing of a battery circuit connected to a coil caused a deflection in a galvanometer.
- In 1893, Westinghouse demonstrated a «universal system» of generation and distribution at a Chicago exposition. The universal system meant that power or energy could be used in a variety of ways at many different voltages. Westinghouse, using Tesla’s invention of the transformer and the electric motor, as well as steam turbines, transformed Niagara Falls into one of the first hydroelectric plants in the world.
- Full article is at:
- http://www.hbci.com/~wenonah/history/edpart1.htm
- Hans Christian Oersted discovered that the connection between electricity and magnetism. An electric current could produce magnetic effects. In another ten years the converse was shown, and magnets were being used to generate electric currents. With the development of powerful currents produced by magnetic generators, the stage was set for the use of electric power for light, for communication, and for production of motion.
Development of Electricity
- Thomas Edison (1847-1931) is best known for his inventions —particularly the incandescent lamp but his contributions toward the development of the US electric power grid are often underappreciated. Edison and his team designed the entire electrical system down to the wall outlet and in 1881 established the first power company. Edison’s system was in the Wall Street section of New York City. Even today, vestiges of it supply DC power to about 2000 customers.
- The current US electricity grid remains a mystery to most people. Its ubiquity and high reliability over the past 50 or more years has rendered it nearly invisible, more a backdrop for the workings of modern society than its central nervous system —at least until the lights go out. The blackout of 14 August 2003 brought the operation of the grid momentarily into prominence and raised questions about how it works and why it fails. How could a small local problem bring the lives of 50 million people to a standstill in a matter of minutes?
- AC circuits predominate in the US transmission system because they are compatible with transformers devices that can step up voltage before electricity is transported or step it down before electricity is distributed to consumers. Transmission voltages in the US are typically 115, 138, 230, 345, or 500 kV, although there are a few extra-high voltage lines at 765 kV. The 230-kV system represents the backbone of the US electricity grid.
- Full article:
- http://scienceweek.com/2005/sa050114-6.htm
Energy Consumption
- Sectoral energy source have changed dramatically over time. In the residential and commercial sectors . Electricity, only an incidental source in 1949, expanded in almost every year since then, as did the energy losses associated with producing and distributing the electricity.
- The expansion of electricity use reflects the increased electrification of U.S. households, which typically rely on a wide variety of electrical appliances and systems. In 1997, 99 percent of U.S. households had a color television and 47 percent had central air conditioning. Eighty-five percent of all households had one refrigerator; the remaining 15 percent had two or more. In 1978 only 8 percent of U.S. households had a microwave oven, but by 1997 microwaves could be found in 83 percent.
Energy Consumption due to generating and distribution of Electricity
- The Energy Information Administration (EIA) first collected household survey data on personal computers in 1990, when 16 percent of households owned one or more. By 1997 that share had more than doubled to 35 percent. U.S. home heating also underwent a big change. Over a third of all U.S. housing units were warmed by coal in 1950, but by 1999 that share was only 0.2 percent. Electricity gained as home-heating sources: electricity’s share shot up from only 0.6 percent in 1950 to 30 percent in 1999. In recent times, electricity and natural gas have been the most common sources of energy used by commercial buildings as well. Electricity and its associated losses grew steadily.
- Article is at:
- http://www.mnforsustain.org/energy_in_the_united_states_1635-2000.htm
Change in Perceptions and Attitudes of Electricity
Perceptions
- The most trenchant critics has been economist, Professor Robin Court. He has argued that among other things overestimates of electricity demand have resulted because of the natural empire-building instincts of engineers who have sought increased responsibility and prestige from the building of further power stations.
- Estimates of demand made in the early 1970’s were consistently greater than the actual electricity consumption later in the decade, leading to a over- expenditure on power stations construction and extensive over capacity in the electricity supply system.
- Article is at:
- http://www.techhistory.co.nz/ThinkBig/Attitudes.htm
- Fascination with the effects of electricity and spark discharges on biological systems started with the work of L. Galvani in 1780 with frog legs and the discovery of «animal electricity.» And an everlasting impression was left in the public’s imagination by Mary W. Shelley’s Frankenstein (1818), in which Eramus Darwin gained a place for his advocacy of therapies based on electric discharges.
- Article is at:
- http://www.sciencemag.org/cgi/content/full/300/5620/745
Attitudes
- These overestimates of demand, which so concerned Professor Court, would provide the justification for bringing Maui gas ashore. Availability of this gas, no longer needed to generate electricity, would make possible the state sponsored gas-based enterprises which formed the nucleus of «Think Big» in the 1980s.
- Article is at:
- http://www.techhistory.co.nz/ThinkBig/Attitudes.htm
- «Edison’s claims are «so manifestly absurd as to indicate a positive want of knowledge of the electric circuit and the principles governing the construction and operation of electrical machines.»-Edwin Weston, specialist in arc lighting.
- Luckily, the disinterest and derision of Edison’s scientific peers did not prevent sharp speculators, like J. P. Morgan and William Vanderbilt from investing funds and helping Edison’s inventions become universally adopted.
- Article is at:
- http://www.trufax.org/general/beliefsystems.html
Change in the life of people Due to Discovery and Development of Electricity
- «Electricity is a modern necessity of life.»
(Franklin Roosevelt, at Rural Electrification Administration celebration, 1938)
- In succeeding years, the construction of an interconnected system of large, central generating stations, high-voltage AC transmission lines, and lower voltage AC and DC distribution lines in cities and towns across the country resulted in the creation of a national grid. This was an integrated energy system that could make electricity and deliver it hundreds of miles to wherever it was wanted.
- The electric lamp gave people complete control over lighting inside their homes and work places at the click of a switch. By the eve of World War II this was largely true, with the help of the Rural Electrification Administration (REA), even in rural areas.
- The consequence was to interrupt the normal, biological rhythms of life and to alter our schedules for work and leisure. Industrial plants could operate in shifts around-the-clock, for example, and the concept of «the city that never sleeps» became a reality.
- Use of the new technology effected building architecture as daylight became only a supplemental source of light. Electricity for lights, elevators, and pumps allowed architects to design «skyscrapers» of unprecedented height. The «windowless building» was also an architectural design option by the 1930s.
- The economic effect of electric lighting went far beyond increasing the workday. Profits generated by the electric lamp, in effect, paid for a network of generators and wires. This infrastructure then became available for a whole new class of inventions: appliances and equipment that by the 1930s had transformed the home and the workplace.
- Full article is at:
- http://americanhistory.si.edu/lighting/19thcent/consq19.htm
Appliances Introduced for the Life of People
- Manufacturers developed a wide range of electric appliances for the home. Electric irons and washing machines made laundry day less labor intensive, while electric vacuums made cleaning carpets and furniture easier. Time spent doing domestic tasks didn’t seem to decline, however, as standards of cleanliness rose and fewer families employed domestic servants.
- Electric refrigerators presaged an end to ice boxes and home ice deliveries. Bread toasters, tea kettles, waffle irons, and marshmallow toasters (above) were only a few of the electric appliances introduced to kitchens. Many of these smaller devices sported elaborate and artistic designs, and were meant to be used at the dinning room table.
Marshmallow toaster
- Electric climate control began with fans and radiant heaters that used special light bulbs. Personal care items like electric hair dryers, heating pads, and shaving mugs appeared. Electricity for telephones and radios brought users instantaneous personal communications and news and entertainment.
- Small electric motors freed factories from the need to arrange equipment based on power shafts and belts. Electrified tools boosted industrial productivity, and many were eventually made available to domestic «do-it-yourselfers.»
- Electric power for transportation made subways practical and streetcars more efficient. These in turn provided central stations with daytime consumers of electricity.
- Modern life has become so attached to electricity that life would seem drudgery without it. What is a world without this great wonder of the 20th century? The coming of electricity has removed darkness and gloom enwrapping the world and the world has been transformed into a well-illuminated paradise. In cold we are heated by the electric heaters, in summer we are provided with air conditioners and electric fans to cool us. We have thousands of things using electricity. All these things are available today and life has been made easier due to the discovery of electricity.
- Full article is at:
- http://americanhistory.si.edu/lighting/19thcent/consq19.htm
Major Governance issue with Electricity
- Scientists discovered electromagnetic field theory long before the first electric motor began to hum in 1821. Up to that time, craftsmen and tradesmen were the originators of most technological advances as they altered their working methods, and only later did they refer the advances to scientists for an explanation why an improvement worked as it did. The exploitation of electricity is also one of the first examples of state (and other) support for technical research into a theory before there was a clear practical outcome in mind.
- Over the next 75 years, the chief use of the technology was for electric lighting, but gradually the telegraph, telephone, radio and a myriad of electric machines and gadgets appeared that revolutionized domestic life as well as work.
- Initially the new technology was not competitive with steam, but it had a number of advantages, especially when adapted to move long distances over a network of wires that distributed electric power widely and made it instantly available. Government support was needed to build this network around the turn of the 20th Century, to overcome the cost disadvantage associated with the short peak period for electric lighting.
- Once the power grid was in place, the transformation began. For example, the layout and location of factories was decentralized. No longer was it necessary for machines in a factory to be clustered around a central drive shaft powered by steam or water — they could be laid out according to the work flow, each with its own electric motor. Nor was it necessary for the factories themselves to be clustered around the source of power — they could be located close to markets, raw materials or other scarce resources.
- Access to cheap power was a ticket to the creation of wealth, so the location of generating facilities and the infrastructure to distribute power made winners and losers of individuals, cities, whole regions and countries. This was a major governance issue with electricity as it had been with the railways.
- Full article is at: http://www.iog.ca/publications/transformative_tech.pdf
- The exploitation of the full potential of electricity required substantial alterations in the entire facilitating structure. One of the most important was a drastic change in the layout of factories.With waterpower and steam,the power source drove a central drive shaft whose power was distributed throughout the factory via a set of pulleys and belts. Because of heavy friction loss in the belt transmission, machines that used the most power were placed closest to the drive shaft, and factories.
- Source:
- http://www.iog.ca/publications/transformative_tech.pdf

Древнее время
Термин «электричество» происходит от древнегреческого слова «электрон», что в переводе означает «янтарь». Первое упоминание об этом явлении связано с античными временами. Древнегреческий математик и философ Фалес Милетский в VII веке до н. э. обнаружил, что если произвести трение янтаря о шерсть, то у камня появляется способность притягивать мелкие предметы.
Фактически это был опыт изучения возможности производства электроэнергии. В современном мире такой метод известен, как трибоэлектрический эффект, который дает возможность извлекать искры и притягивать предметы с легким весом. Несмотря на низкую эффективность такого метода, можно говорить о Фалесе, как о первооткрывателе электричества.
В древнее время было сделано еще несколько робких шагов на пути к открытию электричества:
- древнегреческий философ Аристотель в IV веке до н. э. изучал разновидности угрей, способных атаковать противника разрядом тока;
- древнеримский писатель Плиний в 70 году нашей эры исследовал электрические свойства смолы.
Все эти эксперименты вряд ли помогут нам разобраться в том, кто открыл электричество. Эти единичные опыты не получили развития. Следующие события в истории электричества состоялись много веков спустя.
Этапы создания теории
XVII-XVIII века ознаменовались созданием основ мировой науки. Начиная с XVII века происходит ряд открытий, которые в будущем позволят человеку полностью изменить свою жизнь.
Появление термина

Уильям Гильберт смог изобрести прибор, который назвал версор. Можно сказать, что он напоминал современный электроскоп, функцией которого является определение наличия электрического заряда. При помощи версора было установлено, что, кроме янтаря, способностью притягивать легкие предметы также обладают:
- стекло;
- алмаз;
- сапфир;
- аметист;
- опал;
- сланцы;
- карборунд.
Первая электростатическая машина
В 1663 году немецкий инженер, физик и философ Отто фон Герике изобрел аппарат, являвшийся прообразом электростатического генератора. Он представлял собой шар из серы, насаженный на металлический стержень, который вращался и натирался вручную. С помощью этого изобретения можно было увидеть в действии свойство предметов не только притягиваться, но и отталкиваться.

В 1729 году ученый из Великобритании Стивен Грей произвел опыты, которые позволили открыть возможность передачи электрического заряда на небольшие (до 800 футов) расстояния. А также он установил, что электричество не передается по земле. В дальнейшем это дало возможность классифицировать все вещества на изоляторы и проводники.
Два вида зарядов
Французский ученый и физик Шарль Франсуа Дюфе в 1733 году открыл два разнородных электрических заряда:
- «стеклянный», который теперь именуется положительным;
- «смоляной», называющийся отрицательным.
Затем он произвел исследования электрических взаимодействий, которыми было доказано, что разноименно наэлектризованные тела будут притягиваться один к одному, а одноименно — отталкиваться. В этих экспериментах французский изобретатель пользовался электрометром, который позволял измерять величину заряда.
Лейденская банка

11 октября 1745 года Клейст произвел опыт с «медицинской банкой» и обнаружил способность хранения большого количества электрических зарядов. Затем он проинформировал об открытии немецких ученых, после чего в Лейденском университете был проведен анализ этого изобретения. Затем Питер ван Мушенбрук опубликовал свой труд, благодаря которому стала известна Лейденская банка.
Бенджамин Франклин
В 1747 году американский политический деятель, изобретатель и писатель Бенджамин Франклин опубликовал свое сочинение «Опыты и наблюдения с электричеством». В ней он представил первую теорию электричества, в которой обозначил его как нематериальную жидкость или флюид.
В современном мире фамилия Франклин часто ассоциируется со стодолларовой купюрой, но не следует забывать о том, что он являлся одним из величайших изобретателей своего времени. В списке его многочисленных достижений присутствуют:
- Известное сегодня обозначение электрических состояний (-) и (+).
- Франклин доказал электрическую природу молнии.
- Он смог придумать и представить в 1752 году проект громоотвода.
- Ему принадлежит идея электрического двигателя. Воплощением этой идеи стала демонстрация колеса, вращающегося под действием электростатических сил.
Публикация своей теории и многочисленные изобретения дают Франклину полное право считаться одним из тех, кто придумал электричество.
От теории к точной науке
Проведенные исследования и опыты позволили изучению электричества перейти в категорию точной науки. Первым в череде научных достижений стало открытие закона Кулона.
Закон взаимодействия зарядов
Французский инженер и физик Шарль Огюстен де Кулон в 1785 году открыл закон, который отображал силу взаимодействия между статичными точечными зарядами. Кулон до этого изобрел крутильные весы. Появление закона состоялось благодаря опытам Кулона с этими весами. С их помощью он измерял силу взаимодействия заряженных металлических шариков.
Закон Кулона являлся первым фундаментальным законом, объясняющим электромагнитные явления, с которых началась наука об электромагнетизме. В честь Кулона в 1881 году была названа единица электрического заряда.
Изобретение батареи

Открытие Луиджи Гальвани получило свое развитие в работе итальянского химика, физика и физиолога Алессандро Вольты. В 1800 году он изобретает «Вольтов столб» — источник непрерывного тока. Он представлял собой стопку серебряных и цинковых пластин, которые были разделены между собой смоченными в соленом растворе бумажными кусочками. «Вольтов столб» стал прототипом гальванических элементов, в которых химическая энергия преобразовывалась в электрическую.
В 1861 году в его честь было введено название «вольт» — единица измерения напряжения.
Гальвани и Вольта являются одними из основоположников учения об электрических явлениях. Изобретение батареи спровоцировало бурное развитие и последующий рост научных открытий. Конец XVIII века и начало XIX века можно характеризовать как время, когда изобрели электричество.
Появление понятия тока
В 1821 году французский математик, физик и естествоиспытатель Андре-Мари Ампер в собственном трактате установил связь магнитных и электрических явлений, которая отсутствует в статичности электричества. Тем самым он впервые ввел понятие «электрический ток».
Ампер сконструировал катушку с множественными витками из медных проводов, которую можно классифицировать как усилитель электромагнитного поля. Это изобретение послужило созданию в 30-х годах 19 века электромагнитного телеграфа.
Благодаря исследованиям Ампера стало возможным рождение электротехники. В 1881 в его честь единица силы тока была названа «ампером», а приборы, измеряющие силу — «амперметрами».
Закон электрической цепи
Физик из Германии Георг Симон Ом в 1826 году представил закон, который доказывал связь между сопротивлением, напряжением и силой тока в цепи. Благодаря Ому возникли новые термины:
- падение напряжения в сети;
- проводимость;
- электродвижущая сила.
Его именем в 1960 году названа единица электросопротивления, а Ом, несомненно, входит в список тех, кто изобрел электричество.
Электромагнитная индукция

Фарадей является создателем учения об электромагнитном поле. Он сумел предсказать наличие электромагнитных волн.
Общедоступное применение
Все эти открытия не стали бы легендарными без практического использования. Первым из возможных способов применения явился электрический свет, который стал доступен после изобретения в 70-х годах 19 века лампы накаливания. Ее создателем стал российский электротехник Александр Николаевич Лодыгин.
Первая лампа являлась замкнутым стеклянным сосудом, в котором находился угольный стержень. В 1872 году была подана заявка на изобретение, а в 1874 году Лодыгину выдали патент на изобретение лампы накаливания. Если пытаться ответить на вопрос, в каком году появилось электричество, то этот год можно считать одним из правильных ответов, поскольку появление лампочки стало очевидным признаком доступности.
Появление электроэнергии в России

В Москве освещение впервые появилось 1881 году. Первая городская электростанция заработала в Москве в 1888 году.
Днем основания энергетических систем России считается 4 июля 1886 года, когда Александр III подписал устав «Общества электрического освещения 1886 года». Оно было основано Карлом Фридрихом Сименсом, который являлся братом организатора всемирно известного концерна Siemens.
Невозможно точно сказать, когда появилось электричество в мире. Слишком много разбросанных во времени событий, которые являются одинаково важными. Поэтому вариантов ответа может быть много, и все они будут правильными.
Электричество прочно вошло в нашу жизнь, и теперь в случае кратковременного отсутствия электроснабжения наступает “конец света” не только в переносном, но и в прямом смысле. Привыкнув к благам цивилизации, которые стали возможны благодаря применению электрической энергии, современным людям трудно понять, как жили наши предки.
При мысли об этом в голове возникает картина темной пещеры, внутри которой горит костер. Древний человек, одетый в шкуру, задумчиво смотрит на огонь и подбрасывает в него сухие ветки. Рядом сидят дети, внимательно следят за его действиями и слушают рассказы об огненном цветке.
Многие читатели наверняка удивятся, если узнают, что электричество было известно еще в далекой древности. Причем точно ответить на вопрос, кто изобрел электричество, невозможно.
Наши предки уже знали о возможностях некоторых видов рыб испускать электрические разряды, которые обездвиживали жертву. А чего стоит находка “багдадской батарейки” — предположительно первого химического источника тока, работавшего более 2,5 тысячи лет назад? Вперед, читатель, попробуем разобраться в запутанной истории применения электричества.
История открытия
Атмосферное электричество существовало задолго до появления человека. Оно вызывало пожары и представляло непосредственную опасность для древних людей. Увидев приближение грозы, наши предки принимали ее за гнев грозных богов и благоразумно старались не выходить из укрытий.
Неизвестная сила привлекала, поэтому зная об опасности электричества, люди все же старались применять его для своих целей. До нашего времени, к большому сожалению, дошло мало данных. Поэтому ответ на вопрос, кто первым придумал использовать электричество, похоже, навсегда останется скрытым во тьме истории.
Наблюдения в древности
Наши предки знали о необычных свойствах некоторых видов рыб. В древнеегипетских текстах, которые датируются 2750 годом до нашей эры, встречается упоминание о рыбах, способных создавать электрические разряды, — “громовержцах Нила”.
На барельефе, созданном древним художником примерно в 2300 году до нашей эры, представлена сцена ловли рыбы. Среди изображений рыб на нижней части барельефа можно увидеть электрического сома.
Древнеримский ученый Плиний Старший описывал необычные возможности электрических сомов и скатов. Он упоминал о способности разрядов, создаваемых этими животными, перемещаться по проводящим ток объектам.
Арабские, древнеримские и древнегреческие врачи использовали способности электрических рыб при устранении подагры и головной боли. Способ лечения заключался в том, что больной прикасался к ним и получал мощный электрический разряд.
Известный древнеримский ученый Гален, живший во 2 веке нашей эры, настолько успешно применял этот метод для терапии, что император Марк Аврелий сделал его своим врачом.
Заслуживают внимания барельефы древнеегипетского храма богини Хатхор, построенного более 4,5 тысячи лет назад. Изображенные на стенах предметы похожи на газоразрядные электрические лампы и дают основания предполагать, что они использовались для освещения храма.
Большинство египтологов придерживаются противоположной точки зрения. Они опровергают это открытие и утверждают, что для изготовления таких ламп помимо мощного источника тока требовались вакуумные насосы, проводники тока, изоляторы и развитое стеклодувное производство.
Фалес, философ и математик из древнегреческого города Милета, в 600 г. до нашей эры опытным путем установил, что янтарь при натирании мехом животных притягивает к себе разные легкие предметы. Из-за малого количества исследований и низкого уровня развития науки того времени суть явления полностью не была изучена.
Необычная особенность янтаря объяснялась воздействием божественных сил. Кстати, корень слова «электричество» связан с греческим названием янтаря — электрон.
Немецкий археолог Вильгельм Кениг в 1936 г. в окрестностях Багдада, столицы современного государства Ирака, обнаружил артефакт возрастом более 2 тысяч лет. Это остатки глиняного сосуда, длина которого составляла 13 см. Верхняя часть сосуда была покрыта битумом. Внутри находился стальной стержень, вставленный в медный цилиндр.
Ученый предположил, что этот сосуд является химическим источником электрического тока при заполнении раствором кислоты или щелочи. Догадку Кенига опытным путем подтвердили многие ученые. Так, в 1947 г. американским ученым-физиком была изготовлена копия сосуда. В качестве электролита он использовал сульфат меди. Напряжение, создаваемое батареей, составило 2 В.
Конечно, у теории возможности создания древними людьми источников тока нашлись критики. Они утверждают, что оборудование, которое могло бы работать от электрического тока, не найдено. Устройство батареи, при котором вся верхняя часть покрывалась слоем битума, не предполагает его использования в качестве источника тока, а наоборот, схоже с сосудами для хранения свитков.
Шарль Франсуа Дюфе и типы зарядов
В конце XVI века ученые начали интересоваться античными трудами. Английский придворный врач Елизаветы I и по совместительству ученый-физик Уильям Гилберт ввел в широкое обращение термин “электричество” в 1600 г.
Этим термином ученый описывал силу, создаваемую разными веществами при трении друг о друга. Он также является автором научного трактата. В нем Гилберт предложил рассматривать Землю как большой магнит, полюсы которого совпадают с географическими.
Гилберт был первым ученым, который разделил понятия магнетизма и статического электричества. Он является создателем простейшего прибора, названного “версориум”. Устройство предназначалось для определения присутствия электрического поля.
С его помощью ученый доказал, что при натирании возможность притягивать к себе предметы небольшого веса свойственна не только янтарю, но и другим материалам. Также он впервые описал изолирующие и экранирующие свойства разных материалов.
В 1663 г. бургомистр немецкого города Магдебурга Отто фон Герике продолжил исследования Уильяма Гилберта и построил электростатическую машину. С ее помощью изучались эффекты притягивания и отталкивания разных тел.
Машина состояла из шара, внутри которого был закреплен стальной стержень. Шар изготавливали, заливая расплавленную серу в стеклянный сосуд. После того как сера застывала, сосуд разбивали.
Шар устанавливался на специальном креплении. Вращение шара производилось при помощи специальной рукоятки. Прислонив к нему сухую руку, можно было наблюдать, как легкие тела под воздействием статического электричества притягиваются или отталкиваются. Также ученый доказал, что статические заряды могут передаваться на небольшие расстояния по льняной нити.
Опыты фон Герике по передаче электричества на расстояние продолжил английский ученый Стивен Грей. Он наблюдал за тем, как пробка, которая закрывает стеклянную трубку, начинает притягивать легкие предметы, если трубку потереть.
Присоединив к пробке шелковую нить, ученый смог добиться того, что максимальное расстояние, на которое смог быть передан заряд электричества, составило 800 футов.
Причем было установлено, что на расстояние оказывает влияние не толщина веревки, а материал, из которого она изготовлена. Также ученый определил, что электрические заряды могут передаваться путем электростатической индукции без прикосновения стеклянной трубки к веревке. Грей установил, что вещества делятся на проводники электричества и диэлектрики.
Французский ученый Шарль Дюфе, изучив опыты предшественников, в 1733 г. выявил, что в природе существует два вида электрических зарядов, или, как он их называл, “смоляное и стеклянное электричество”. Причем электричество разного рода может притягиваться, а одного вида отталкивает себе подобное.
Следующим этапом в изучении электричества стало изобретение конденсатора, устройства для накапливания электрических зарядов, в 1745 г. в голландском городе Лейдене.
История его открытия сообщает о двух ученых, которые обнаружили этот эффект независимо друг от друга. Первым, кто открыл эффект накопления электрических зарядов, стал Эвальд фон Клейст.
Открытие было сделано случайно, когда он заряжал от электрической машины стальной гвоздь. Решив, что гвоздь достаточно заряжен, ученый стал доставать его из банки, которую держал другой рукой. Прикоснувшись к гвоздю, он получил заметный удар электрическим током.
В результате была открыта возможность накопления электричества. Немного позже его опыт повторил профессор Питер фон Мушенбрук. Он использовал налитую в стеклянный сосуд воду и погружал в нее медную проволоку. Когда ученый попытался прикоснуться к заряженному медному проводнику, он получил сильный электрический удар.
Впоследствии фон Мушенбрук доложил об открытии научному сообществу. Полученное устройство стало называться “лейденская банка”.
Примерно в это же время в России изучением атмосферного электричества занимались такие великие ученые, как Михаил Ломоносов и Георг Рихман. Для исследования явления ими был сконструирован громоотвод. С его помощью ученые заряжали “лейденскую банку”. Также они изобрели прибор для измерения электричества — “электрический указатель”.
К сожалению, в 1753 г. во время одного из экспериментов с атмосферным электричеством Георг Рихман трагически погиб из-за удара молнии.
Бенджамин Франклин и воздушный змей
Продолжая исследовать природу того, как появляется электричество, американский ученый и известный политический деятель Бенджамин Франклин ввел определение положительного и отрицательного зарядов.
В Филадельфии в 1752 г. он проводил опыты по изучению электрических явлений в атмосфере. Суть заключалась в запуске воздушного змея в грозовое облако. Он состоял из стальной рамки, обтянутой шелковой тканью. Змей был привязан к шелковой ленте.
На конце ленты находился металлический ключ. Зная о смертельной опасности, возникающей при ударе молнии, Франклин не стал ждать момента удара. Вместо этого он запустил змея в облако и обнаружил, что тот может собрать электрические заряды.
Также он смог описать принцип действия громоотвода и для повышения его эффективности предложил делать верхнюю часть заостренной. При помощи громоотвода ученому удалось доказать, что молния имеет электрическую природу.
Луиджи Гальвани и Алессандро Вольта — открытия в Италии на рубеже 18-19 веков
Итальянский ученый Луиджи Гальвани в 1771 г. во время проведения опытов по изучению сокращения мышц обнаружил возможность препарированных лапок лягушки сокращаться под действием электричества. Это случайное открытие положило начало новому направлению науки — электрофизиологии.
В опубликованном им в 1791 г. трактате ученый описал наличие в мышцах животных электрического тока. Само явление получило название в его честь — гальванизм. Гальвани предположил, что мышцы животных являются подобием лейденской банки и могут накапливать электрические заряды, которые передаются по нервам.
Последователь Луиджи Гальвани, его племянник, профессор анатомии Джованни Альдини приобрел известность тем, что сделал из открытия своего дяди жуткое зрелище. Вместо препарированной лягушки для своих опытов он использовал трупы казненных преступников. Зрители могли видеть, как тело двигается, открывает глаза и корчит гримасы. После такого шоу некоторые длительно страдали расстройством психики.
В 1785 г. французский ученый Шарль Кулон сформулировал закон, который описывал силу взаимодействия между электрическими зарядами, зависящую от расстояния между ними. Работа по изучению электрических явлений стала точной наукой.
Опыты с электричеством Луиджи Гальвани вдохновили его соотечественника, ученого Алессандро Вольта, на проведение экспериментов с “животным электричеством”. Вольта пришел к выводу, что такие явления имеют отношение к замкнутой электрической цепи, состоящей из двух разных видов металлов и жидкости.
В 1800 г. он изобретает химический источник тока — “Вольтов столб”. Устройство представляло собой диски из разных металлов, между которыми помещались бумажные диски, пропитанные щелочными растворами.
Проводя опыты с лягушачьими лапками, ученый пришел к выводу, что величина их сокращений будет зависеть от вида металлов. При прикосновении к ним проводниками из металлов одного типа эффект не наблюдается. Благодаря этому исследованию он пришел к пониманию разницы потенциалов.
Продолжая опыты с электричеством, Вольта пришел к открытию того, что нервы имеют большую возбудимость по сравнению с мышцами. Также ученый определил, что органы зрения и вкуса человека чувствительны к воздействию электрического тока.
Используя открытие Вольта, российский ученый Василий Петров в 1802 г. собрал большую батарею, состоявшую из 2100 пар медных и цинковых дисков, между которыми находились диски из картона, пропитанные нашатырным раствором.
Диски были уложены в деревянные ящики и подключены последовательно. Общая длина батареи составила около 12 метров. Создание такого мощного источника тока позволило открыть электрическую дугу.
На практике была доказана возможность применения дуги для разных целей:
- Плавки и сварки металлов.
- Восстановления металлов из руды.
- Освещения.
Петрову принадлежит применение термина “сопротивление”. Он описывал им характеристики вещества, препятствующие движению электрического тока. Проведение опытов по прохождению электрического тока через оксиды металлов и другие вещества позволило описать процессы электролиза.
Магнитное поле — труды Эрстеда, Ампера и Фарадея
В 1820 г. датский ученый-физик Ханс Эрстед смог впервые экспериментально доказать, что электрические и магнитные явления имеют связь. При демонстрации нагрева проволоки током, получаемым при подключении к вольтову столбу, было замечено, что стрелка компаса отклонилась.
Впоследствии ученый смог опытным путем доказать появление магнитных свойств у платины, золота, серебра, латуни, свинца, железа при пропускании электрического тока. Эрстед применял разные материалы для экранирования, но стрелка продолжала отклоняться. Причем она не отклонилась, когда ученый установил проволоку, по которой проходил ток в вертикальное положение.
Опираясь на открытия Эрстеда, французский ученый Андре Мари Ампер в 1821 г. вывел правило, описывающее действие магнитного поля. Впоследствии его назовут теоремой Ампера. Ученый смог объединить электричество и магнетизм в одну теорию электромагнетизма. Им было установлено, что связь магнитного поля и электричества не наблюдается при статическом электричестве.
В 1822 г. ученый открыл наличие магнитного эффекта у соленоида при протекании по нему электрического тока. Ампер предложил использовать для усиления магнитного поля стальной сердечник, помещаемый внутрь соленоида.
Открыть взаимосвязь между сопротивлением электрической цепи, силой тока и напряжением удалось в 1826 г. немецкому физику Георгу Ому. Это оказало огромное влияние на развитие науки и известно в наше время как закон Ома.
В 1830 г. немецкий ученый Карл Гаусс сформулировал основную теорему теории электростатического поля.
Английский ученый-физик Майкл Фарадей стал основоположником учения об электромагнитном поле. В 1831 г. им была открыта электромагнитная индукция — появление электрического тока в замкнутом проводнике при изменении магнитного потока, который через него проходит.
На основе своего открытия ученый создал первый электрогенератор и электродвигатель. Ему принадлежит мысль, что электрические силы переносятся атомами материи.
Одним из основоположников электротехники по праву считают российского физика Эмилия Ленца. В 1834 г. он открыл закон индукции, определяющий направление индукционного тока, — “Правило Ленца”. Также ученым был сформулирован закон, определяющий количество тепла, выделяемое проводником при протекании по нему тока, и принцип обратимости электрических машин.
Вклад Максвелла
После открытия электромагнитной индукции в ученом мире появилось два разных взгляда на происхождение электрических и магнитных явлений.
Большая часть ученых поддерживала концепцию дальнодействия, которая считала электромагнитные силы подобием сил гравитационного притяжения. Майкл Фарадей придерживался идеи силовых линий, соединяющих положительные и отрицательные заряды.
Решить задачу построения математической теории, объединяющей концепции силовых линий и дальнодействия, удалось британскому ученому-физику Джеймсу Максвеллу. Он вывел уравнения, определяющие взаимодействие зарядов и токов, в 1873 г.
Согласно полученным уравнениям выяснилось, что изменяющееся со временем электрическое поле приводит к появлению магнитного поля. Последнее, в свою очередь, приводит к появлению электрического поля. В результате такого взаимодействия в пространстве происходит распространение электромагнитных волн со скоростью света.
Распространение и становление электротехники в конце 19 – начале 20 века
Становлению электротехники предшествовали исторические открытия в области электродинамики и электромагнитной индукции. Постепенно был сформирован весь арсенал способов расчета электрических цепей постоянного тока.
Ограниченные возможности тепловых двигателей уже не соответствовали растущим потребностям промышленности. Выход из такого кризиса был найден благодаря использованию электрических машин. Их применение позволило за несколько десятилетий совершить революцию в промышленном производстве.
Период с 1821 по 1834 гг. являлся начальным в разработке электродвигателей. Он был тесно связан с разработкой Фарадеем устройств, демонстрирующих возможности преобразования электрической энергии в механическую.
Вторым этапом считается период с 1834 по 1860 гг. В это время появляются электродвигатели с явнополюсным якорем. Созданный в 1834 г. русским изобретателем Борисом Якоби прибор был первым в мире электродвигателем, в котором рабочий вал вращался. Прежние конструкции предполагали только получение колебательного или возвратно-поступательного движения якоря.
Конструкция этого двигателя постоянного тока предполагала наличие двух групп электромагнитов. Подвижные электромагниты (3) были установлены на роторе (2), неподвижные – на статоре (1). Изменение полярности достигалось за счет коммутатора (4). Вал (5) вращался со скоростью 40 об/мин. Мощность первого двигателя составила 15 Вт. Питание осуществлялось постоянным током от гальванической батареи (6).
Третьим этапом развития электродвигателей считается период с 1860 по 1887 гг. В это время разрабатываются конструкции двигателей с кольцевым неявнополюсным якорем и постоянным вращающим моментом.
В 1888 г. ученый и изобретатель сербского происхождения Никола Тесла получает патент на практическое применение системы двухфазного переменного тока и двухфазного электродвигателя.
Российский ученый Михаил Доливо-Добровольский, усовершенствовав двухфазную систему тока, в 1889 г. получает патент на асинхронный двигатель, работающий от трехфазной системы передачи переменного тока.
Отличительная особенность этой системы – необходимость всего трех проводов для передачи электричества. В 1889 г. ученым был изобретен и запатентован трехфазный трансформатор.
Трехфазная система позволила решить проблему передачи электричества на большие расстояния с наименьшими потерями. В 1891 г. во время проведения международной выставки ученый построил линию электропередачи на 170 км. Это было рекордное расстояние для того времени.
Первые электроприборы
В 1872 году русский ученый Александр Лодыгин подает заявку на патент лампы накаливания с угольным стержнем и получает его в 1874 г.
Такими лампами было впервые осуществлено электрическое освещение Литейного моста в Санкт-Петербурге в 1879 г.
Из-за высокой стоимости и небольшого количества света вместо ламп накаливания стали применяться свечи Яблочкова. Патент на свое изобретение русский ученый Павел Яблочков получил в 1876 г. в Париже.
Вместо нити накаливания источником света в ней выступала электрическая дуга, которая горела между двумя угольными стержнями. Стержни были разделены изолирующей перегородкой, а на верхней части закреплялась тонкая проволока.
При включении поволока перегорала и зажигалась дуга. Свеча давала ровный и яркий свет в течение 1,5 часа. Для поддержания горения дуги не требовалось применения механических регуляторов.
Позднее Яблочков усовершенствовал конструкцию свечи и смог избавиться от ее главного недостатка — невозможности повторного включения. Для этого он стал добавлять в изолирующий материал соли разных металлов, благодаря чему также смог менять оттенок дуги.
Благодаря простой конструкции свеча Яблочкова имела меньшую стоимость и была более удобной в эксплуатации, чем лампа накаливания. Осветительные приборы со свечами Яблочкова установили сначала в Париже, затем в Лондоне, а впоследствии и в других городах мира.
к содержанию ↑
Когда появилось в домах и где
Идея перехода с газового и керосинового на электрическое освещение овладела массами в конце 19 века. В это время американцам первым удалось осуществить ее.
В 1879 г. Эдисон продемонстрировал систему освещения при помощи электричества, которая включала лампу накаливания с цоколем, имеющим винтовую резьбу, патрон, штепсельные розетку и вилку, выключатель, предохранители и электросчетчик. В 1906 г. Эдисон начал производство ламп накаливания с вольфрамовой нитью.
В 1882 г. в Нью-Йорке была открыта электростанция “Перл Стрит”, на которой электричество вырабатывалось при помощи шести паровых динамо-машин. Электроэнергия использовалась для освещения целого района Нью-Йорка площадью 2,5 км2.
Уже в конце 19 века в продаже появляются первые электрические бытовые приборы: чайник, кофеварка, электродрель, электроплита, бытовой холодильник, вентилятор и т. п.
к содержанию ↑
Развитие электричества в России и ГОЭЛРО
Распространению электрической энергии в России способствовало создание Особого отдела Русского технического общества. В его состав вошли ученые Яблочков, Лодыгин и Чиколев.
Стараниями общества было организовано электрическое освещение улиц Москвы и Санкт-Петербурга. В Петербурге дуговыми лампами освещали Большой театр и Михайловский Манеж. В Москве обеспечили электрическое освещение площади перед Храмом Христа Спасителя.
По причине высокой стоимости и отсутствия рядом электростанций электрическое освещение в основном применялось в производственных зданиях, магазинах и общественных местах. В жилых домах оно считалось редкостью.
Несмотря на то что в стране отсутствовала государственная поддержка, до 1914 г. темпы роста применения электрической энергии были очень высокими. К сожалению, после начала Первой Мировой войны темпы электрификации значительно снизились, а после Революции и Гражданской войны электроэнергетика пришла в полнейший упадок.
В 1920 г. создается комиссия ГОЭРЛО, целью которой являлась разработка плана по электрификации страны. Под председательством Кржижановского к работе привлекли больше 200 человек.
План был перевыполнен к 1931 г. Количество выработанной электроэнергии в 7 раз превысило объемы дореволюционной выработки. Число введенных в работу электростанций составило 40 штук.
к содержанию ↑
Заключение
Выше указаны только наиболее важные этапы развития применения электрической энергии. Всю историю использования электричества уместить в рамках одной статьи невозможно.
Предыдущая
ЭлектрикаУстройство и основные характеристики автоматических выключателей
Следующая
ЭлектрикаКак правильно сделать электрику в ванной комнате
Ежедневно нас окружает одно из важнейших изобретений всех времен – электричество. Что же означает электричество в жизни человека, почему оно так важно?
Электричество в жизни человека: почему оно так важно?
Хотя эта сила энергии используется во всем мире сегодня, перед тем как изобрести электричество, люди жили веками в темноте. Как вы можете себе представить, мир ночью был темный, за исключением пламени свечей то здесь, то там.
Однако, несмотря на то, что люди выжили без электричества, шансы на процветание человеческой расы без него были маловероятными.
Диффузия вокруг нас: примеры
Это связано с развитием и прогресом, которые стали возможными в результате производства электроэнергии. В тот момент, когда идея была представлена миру о том, что электроэнергию можно создать и оживить ею мир, это был момент, когда все в корне изменилось.
Электричество используется не только для включения света в вашем доме и для удобного приготовления пищи, уборки и проведения рабочего дня, как это делается сегодня.
Электричество в жизни человека также отвечает за поддержку многих различных отраслей, и больше всего это касается сферы технологии. Если бы идея электричества и процесс ее создания не произошли, не было бы ни одной технологии, и жизнь осталась бы неизменной.
Что такое шаровая молния: существует ли она?
Значение электричества в нашей повседневной жизни
Домохозяйство
Начиная с вашего дома, электроэнергия важна для работы всей бытовой техники, развлечений, освещения и, конечно, всех технологий вокруг.
Путешествия
Что касается путешествий, электроэнергия важна для использования электричек, самолетов и даже для некоторых автомобилей (таких как электромобили).
Кто изобрел лампочку: история лампочки накаливания
Общественные учреждения
Если вы задумаетесь о таких организациях, как школы, медицинские учреждения, больницы и торговые заведения, то всем нужна электроэнергия для эффективной работы.
Медицина
Что касается медицинской отрасли, электричество позволяет получить рентгеновские лучи, ЭКГ и мгновенные результаты анализов крови, а также многое-многое другое. Это позволяет обеспечить более эффективную медицинскую практику.
Электроэнергия также важна для работы таких машин, как компьютеры или мониторы, которые отражают данные для улучшения медицины.
Без электричества больницы и медицина не смогли бы прогрессировать и вылечить многие болезней.
Стивен Хокинг в молодости: ранние годы гения
Откуда берется электроэнергия?
Мало кто знает, как производится электроэнергия, что кажется нереальным, поскольку это одна из самых важных вещей, которую мы используем каждый день.
Фактически электричество генерируется из следующих источников:
- Энергия ветра с использованием ветряков.
- Энергия воды, которая помогает производить гидроэлектрическую энергию.
- Угля, сжигаемого для производства электроэнергии.
- Солнечная енернетика, вырабатываемой солнечными лучами.
Принимая во внимание какую роль играет электричество в жизни человека – чтобы поддерживать наш нынешний образ жизни и достижения в жизни, это то, что нельзя воспринимать как должное.
По сей день в слаборазвитых странах через бедность многие люди живут без электричества.
Источник: rturnerelectric.com
Что такое электричество и откуда оно берется
О чем думают, когда слышат слово «электричество» или «электрический»? На ум приходят розетки, линии электропередач, трансформаторы или сварочные аппараты, молния, батарейки и зарядные устройства. Безусловно, электричества в современной цивилизации очень много. Кроме того, оно есть в природе. Но что мы о нем знаем?
Электричеситвом называют процесс движения заряженных частиц под воздействием электромагнитного поля:
- в одном направлении (постоянный ток);
- с периодическими сменами направления (переменный ток).
Термин имеет греческое происхождение, а «электрон» означает ‘янтарь’. Первым его использовал древнегреческий философ Фалес.
Когда вставляем вилку в розетку, включаем электрочайник или нажимаем выключатель, между источником и приемником электричества замыкается электрическая цепь, благодаря чему электрический заряд получает путь для движения, например, по спирали чайника. Описать процесс можно так:
- Источник электричества — розетка.
- Электрическим током называем электрический заряд, который двигается через проводник (например, спираль чайника).
- Проводник соединяет розетку с потребителем двумя проводами: по одному из них заряд движется к потребителю, а по второму — к розетке.
- В случае переменного тока провода по 50 раз в секунду меняются ролями.
Источник энергии для движения зарядов (то есть, источник электричества) в городах — это электростанции. На них происходит выработка электричества с помощью мощных генераторов, ротор которых приводит во вращение ядерная установка или силовая установка (например, гидротурбина).

Трансформаторы электростанций подают сверхвысокое переменное напряжение величиной 110, 220 или 500 киловольт на высоковольтные линии электропередач (ЛЭП). Достигнув понижающих подстанций, оно снижается до уровня бытовой сети — 220 вольт. Это напряжение в наших розетках, которое используем каждый день, не задумываясь о длине того пути, которое оно проходит.
Можно ли накопить электричество для бытовых целей? Да, и мы этим тоже пользуемся. В этом помогает преобразование в химическую энергию, а именно в аккумуляторы. Химические реакции между электродами (веществами и растворами, которые проводят ток) создают ток при замкнутой на потребителя внешней цепи. Чем больше площадь электродов, тем больше тока можно получить.
Используя разный материал электродов и количество соединенных в аккумуляторе ячеек, можно генерировать разное напряжение. Например, в литий-ионном аккумуляторе стандартное напряжение для одной ячейки составляет 3,7 вольта. Работает он так:
- Ионы лития с положительными зарядами во время разряда движутся в электролите от анода (положительного электрода) из меди и графита к катоду (отрицательному электроду) из алюминия.
- Во время заряда происходит обратное движение, и образуются соединения графита с литием, то есть накопление энергии в виде химического соединения.
Такой аккумулятор полноценно работает на протяжении около 1000 циклов заряда-разряда.

В современном мире все привыкли к тому, что электричество всегда есть в доме. Тысячи людей ежедневно трудятся для того, чтобы его источники работали бесперебойно.
История возникновения
Много лет назад люди наблюдали за природными явлениями, имеющими электрическую природу. В 600 г. до н.э. в Греции экспериментально установили, что потертая шерстью окаменелая смола притягивает предметы.
В 30-е гг. ХХ веке археологи нашли горшки, внутри которых находились медные листы. Эти своеобразные батареи для освещения были обнаружены в Багдаде, что дает основания предположить, что разработка принадлежит древним персам.
В 1600 году слово electricus использовалось Уильямом Гилбертом для описания статической энергии, возникающей при механическом взаимодействии веществ. Томас Браун в ряде исследовательских трудов использовал категорию «электричество» («янтарность»). С этого времени началась эра экспериментов с целью разгадки природы явления. Дата каждого из них вписана в историю.
В 17 в. был изобретен генератор, классифицированы изоляторы и проводники, разграничены частицы с зарядами «+» / «-». С XVIII в. и до сих пор человечество продуцирует, генерирует и потребляет электричество.
Период ранних открытий подготовил базис для развития науки, проведения исследований, разработки оборудования для транспортирования электричества.
История изобретения электричества
Было бы неправильно сказать, что кто-то один открыл электричество. Сама идея существовала тысячи лет, а затем началась эра научных и коммерческих исследований. Многие великие умы трудились над вопросом природы электричества.
Фалес Милетский
Около 600 года до н. э. греческий математик Фалес обнаружил, что во время трения меха о янтарь между ними возникает притяжение. Оказалось, что его вызывает дисбаланс электрических зарядов, так называемое статическое электричество.
Уильям Гилберт
Понятие «электричество» впервые было введено в употребление Уильямом Гилбертом в 1600 г. С этого момента отмечают дату, когда появилось электричество.
Английский физик в 1600 году написал книгу «De Magnete». В ней ученый объяснил опыты, которые проводил Фалес Милетский. Явление статического электричества, которое античный исследователь производил с помощью янтаря (на греческом ‘электрум’), Гилберт назвал электрической силой.
Так появилось английское слово electricity. Кроме того, ученый изобрел электроскоп, который обнаруживал присутствие электрических зарядов на теле.
Отто фон Герике — первая электростатическая машина
В 1663 году немецкий инженер, физик и философ Отто фон Герике изобрел аппарат, являвшийся прообразом электростатического генератора. Он представлял собой шар из серы, насаженный на металлический стержень, который вращался и натирался вручную. С помощью этого изобретения можно было увидеть в действии свойство предметов не только притягиваться, но и отталкиваться.

В 1729 году ученый из Великобритании Стивен Грей произвел опыты, которые позволили открыть возможность передачи электрического заряда на небольшие (до 800 футов) расстояния. А также он установил, что электричество не передается по земле. В дальнейшем это дало возможность классифицировать все вещества на изоляторы и проводники.
Шарль Франсуа Дюфе
В начале XVII века французский ученый открыл два типа электричества. Он назвал их стекловидным и смолистым (в современной терминологии — положительный и отрицательный заряды). Он обнаружил, что объекты с одинаковыми зарядами притягиваются, а с противоположными — отталкиваются.
Шарль Огюстен де Кулон — закон взаимодействия зарядов
Французский инженер и физик Шарль Огюстен де Кулон в 1785 году открыл закон, который отображал силу взаимодействия между статичными точечными зарядами. Кулон до этого изобрел крутильные весы. Появление закона состоялось благодаря опытам Кулона с этими весами. С их помощью он измерял силу взаимодействия заряженных металлических шариков.
Закон Кулона являлся первым фундаментальным законом, объясняющим электромагнитные явления, с которых началась наука об электромагнетизме. В честь Кулона в 1881 году была названа единица электрического заряда.
Питер ван Мушенбрук — Лейденская банка

11 октября 1745 года Клейст произвел опыт с «медицинской банкой» и обнаружил способность хранения большого количества электрических зарядов. Затем он проинформировал об открытии немецких ученых, после чего в Лейденском университете был проведен анализ этого изобретения. Затем Питер ван Мушенбрук опубликовал свой труд, благодаря которому стала известна Лейденская банка.
Бенджамин Франклин — два вида зарядов
Бенджамин Франклин ввёл понятие о полярности зарядов. С тех пор аксиомой является то, что любой электрический потенциал имеет отрицательный и положительный полюсы.
В середине XVIII века Бенджамин Франклин проводил многочисленные эксперименты, изучая природу электричества. В 1748 году ему удалось построить электрическую батарею из стеклянных листов, сжатых пластинами из свинца. Ученый открыл принцип сохранения заряда. Летом 1752 года Франклин провел знаменитый эксперимент, который доказал, что молния — это электричество.
Луиджи Гальвани
Этому итальянскому физику и биологу принадлежит первенство в открытии явления биоэлектромагнетизма. В 1780 году он проводил эксперименты на лягушках и выяснил, что электричество — та среда, с помощью которой нейроны передают сигналы мышцам.
Алессандро Вольта — изобретение батареи
Этот итальянский физик выяснил, что некоторые химические реакции — источники постоянного электрического тока. Он построил электрическую батарею из меди и цинка для производства непрерывного потока электрических зарядов.
Вольта ввел понятия электрического потенциала (V) и заряда (Q), выразил закон емкости, позже названный его именем. За эту работу единицу измерения электрического потенциала назвали в его честь.
Документальным подтверждением изобретения электрической батареи считается предложенное устройство итальянским учёным Алессандро Вольта. Прибор назвали вольтовым столбом. Он представлял собой своеобразную этажерку, сложенную из медных и цинковых пластинок, переложенных кусками войлока, смоченного раствором серной кислоты.
Вверху и внизу столба создавался электрический потенциал, разряд которого можно было почувствовать, приложив к столбу ладони рук. В результате взаимодействия атомов металлов, возбуждённых электролитом, внутри батареи накапливалась электроэнергия.
Изобретатель гальванического электричества, Алессандро Вольта, положил начало появлению того, что сегодня называют батарейками.
Ханс Кристиан Эрстед и Андре-Мари Ампер — появление понятия тока
В начале XIX века датский физик Ханс Кристиан Эрстед обнаружил прямую связь между электричеством и магнетизмом. Он описал, как стрелка компаса отклоняется под воздействием электрического тока.
Вдохновленный этой работой французский физик Андре-Мари Ампер составил формулу для описания магнитных сил, которые возникают между объектами, несущими ток. В его честь назвали единицу измерения электрического тока.
В 1821 году французский математик, физик и естествоиспытатель Андре-Мари Ампер в собственном трактате установил связь магнитных и электрических явлений, которая отсутствует в статичности электричества. Тем самым он впервые ввел понятие «электрический ток».
Ампер сконструировал катушку с множественными витками из медных проводов, которую можно классифицировать как усилитель электромагнитного поля. Это изобретение послужило созданию в 30-х годах 19 века электромагнитного телеграфа.
Благодаря исследованиям Ампера стало возможным рождение электротехники. В 1881 в его честь единица силы тока была названа «ампером», а приборы, измеряющие силу — «амперметрами».
Георг Симон Ом — закон электрической цепи
Физик из Германии Георг Симон Ом в 1826 году представил закон, который доказывал связь между сопротивлением, напряжением и силой тока в цепи. Благодаря Ому возникли новые термины:
- падение напряжения в сети;
- проводимость;
- электродвижущая сила.
Его именем в 1960 году названа единица электросопротивления, а Ом, несомненно, входит в список тех, кто изобрел электричество.
Майкл Фарадей — электромагнитная индукция

Этот ученый:
- заложил основу концепции электромагнитного поля;
- обнаружил, что магнетизм влияет на световые лучи;
- изобрел электромагнитные вращательные устройства.
В 1831 году Фарадей сконструировал электрическую динамомашину, в которой вращательная механическая энергия непрерывно превращалась в электрическую. Это позволило производить электричество.
Томас Эдисон
В 1879 году ученый изобрел практичную лампочку. Далее он занялся разработкой системы, которая обеспечивала бы людей источником энергии для питания таких ламп. В 1882-м в Лондоне построена первая электростанция, которая вырабатывала электричество и поставляла его в дома людей.
Через несколько месяцев появилась первая электростанция в Нью-Йорке, которая поставляла электричество для освещения нижней части острова Манхэттен (85 потребителей смогли зажечь 5000 ламп). Это был постоянный ток.
Никола Тесла
Никола Тесла Резонанс в электрической цепи

Тесла известен разработкой нового типа двигателя переменного тока и технологии передачи электроэнергии. Он запатентовал систему с переменным током, чтобы обеспечивать людей электроэнергией высочайшего качества. Энергетические системы Теслы распространилась в США и Европе, так как обеспечивали дальнюю высоковольтную передачу.
Наиболее значительными и важными изобретениями великого ученого являются:
- Генератор высоких частот;
- Индукционный асинхронный электродвигатель;
- Высокочастотный трансформатор;
- Мачтовая антенна для передачи и приема радиосигналов.
Также Тесла первый, кто разработал и активно практиковал правила техники безопасности при работе с электрическим током различной частоты и силы.
Генрих Рудольф Герц и Альберт Эйнштейн
Генрих Герц занимался экспериментами по изучению электромагнитных волн. В 1887 году он описал фотоэлектрический эффект, когда электроны испускаются (отрываются от атома) при попадании на материал электромагнитного излучения (например, света).
В 1905 году Альберт Эйнштейн опубликовал закон фотоэлектрических эффектов и выдвинул гипотезу о квантах световой энергии. Так началось развитие квантовой механики и создание солнечных батарей.
Так как электричество необходимо человечеству, исследования в этой сфере продолжаются и сейчас. Без электрического тока мы не представляем быт, а ученые находятся в поисках его новых источников.
Освещение
Когда появилось электричество в домах и квартирах? Для многих это явление связано в первую очередь с освещением. Таким образом, следует рассматривать, когда была изобретена первая лампочка. Это произошло в 1809 г. Изобретателем стал англичанин Деларю. Чуть позже появились спиралевидные лампочки, которые были наполнены инертным газом. Производиться они начали в 1909 г.
Появление электричества в России
Через некоторое время после введения термина «электричество» это явление начали исследовать во многих странах. Началом перемен можно считать появление освещения. В каком году появилось электричество в России? Согласно общественному резонансу, эта дата – 1879 год. Именно тогда в Петербурге впервые была проведена электрификация Литейного моста с помощью ламп.

Но есть еще одна версия, когда появилось электричество в России. С юридической точки зрения эта дата – тридцатое января 1880 года. В этот день в Русском техническом обществе появился первый электротехнический отдел. В его обязанности вменялось курировать внедрение электричества в повседневную жизнь. В 1881 г. Царское село стало первым европейским городом, который был полностью освещен.
Еще одна знаковая дата – пятнадцатое мая 1883 г. В этот день впервые была проведена иллюминация Кремля. Событие было приурочено к вступлению на российский трон Александра III. Для освещения Кремля на Софийской набережной специалистами-электриками была установлена небольшая электростанция. После этого события освещение сначала появилось на главной улице Петербурга, а потом в Зимнем дворце.

А в Москве первая электростанция появилась в 1897 г. Она была построена на Раушской набережной. Электростанция вырабатывала переменный трехфазный ток. И это позволяло передавать электричество на большие расстояния без существенной потери мощности. В других городах России электростанции начали строиться на заре двадцатого века, перед Первой мировой войной.
Производство и практическое использование
Со времён появления первого электричества до массового производства электричества и его практического применения должно было произойти много открытий, и внедрено изобретений в сферу генерирования и передачи электрической энергии.
Применение
Практически невозможно назвать сферу деятельности человечества, где бы ни было задействовано электричество. Оно является основным источником энергии во многих жизнеобеспечивающих сферах деятельности человека.
Генерирование и передача электроэнергии
Со временем стали придумывать различные способы генерирования электричества. С появлением мобильных, а впоследствии гигантских электростанций, возникла проблема передачи электричества на большие расстояния.
Позволить решить этот вопрос помогла научно-техническая революция. В результате были построены огромные сети электропередач, охватывающие страны и целые континенты.
Переменный и постоянный ток
Когда открыли электричество, между Томасом Эдисоном и Никола Теслой разгорелся спор, какой ток использовать в качестве основного, переменный или постоянный. Противостояние между учёными даже было прозвано «Войной токов». В этой борьбе победил переменный ток, так как он:
- легко передается на большие расстояния;
- не несет огромных потерь, передаваясь на расстоянии.
Основные области потребления

Переменный ток способен меняться по направлению и величине в течение определенного промежутка времени. Он применяется чаще постоянного. В наших домах его источником служат розетки, к ним подключают различные бытовые приборы под разным напряжением. Переменный ток часто применяется в промышленности и при освещении улиц.
Электроток в жизни
Сейчас электричество в наши дома поступает благодаря электрическим станциям. На них установлены специальные генераторы, которые работают от источника энергии. В основном эта энергия тепловая, которая получается при нагревании воды. Для нагревания воды используют нефть, газ, ядерное топливо или уголь. Пар, образовывающийся при нагревании воды, приводит в действие огромные лопасти турбин, которые, в свою очередь, запускают генератор. В качестве питания генератора можно использовать энергию воды, падающую с высоты (с водопадов или плотин). Реже используется сила ветра или энергия солнца.

Когда заводят разговор об электричестве в природе, первыми на ум приходят молнии, но это далеко не единственный его источник. Даже наши с вами тела имеют электрический заряд, он существует в тканях человека и передает нервные импульсы по всему организму. Но не только человек содержит в себе электрический ток. Многие обитатели подводного мира также способны выделять электричество, например, скат содержит в себе заряд мощностью 500 Ватт, а угорь может создать напряжение до 0,5 киловольт.
Явления в природе, связанные с электричеством
Природа богата явлениями электрической природы. Примерами таких явлений, которые связаны с электричеством, служат северное сияние, молния и др.
Северное сияние

Молния
Перемещаясь с атмосферными потоками, кучевые облака вызывают трение капель и ледяных кристаллов. В результате трения в облаках накапливаются заряды. Это приводит к образованию между облаками и землей гигантских искр. Это и есть молнии. Они сопровождаются раскатами грома.
Накопление электрических зарядов в воздухе иногда вызывает образование небольших светящихся шариков или крупных искр. Эти шары и искры названы шаровым молниями. Они перемещаются с воздухом, взрываясь от контакта с отдельными предметами. Такие молнии нередко вызывают ожоги и гибель живых существ и людей, возгорание предметов. Точно объяснить причины появления молний ученые пока не могут.
Огни святого Эльма

Свечение можно наблюдать в грозу на высоких шпилях. Огоньки выглядят как свечи и кисти голубого или светло-фиолетового оттенка. Длина этих огней иногда достигает метра. Сияние порой сопровождает шипение или негромкий свист.
Моряки пытались отломить часть мачты вместе с огнем. Но это никогда не удавалось, поскольку огонь «перетекал» на мачту и поднимался по ней вверх. Пламя это холодное, от него не происходит возгорания, оно не обжигает руки. И гореть может несколько минут, иногда около часа. Современные ученые установили, что эти огни имеют электрическую природу.
Металлы — проводники электричества
Металлы служат проводником этих самых электронов (заряженных частиц). Они легко перетекают по проводнику с одного участка в другой. Пока же совершается движение электронов, происходят параллельные физические явления. К примеру, когда много электронов упорядоченно движутся через тонкий проводник, они сталкиваются с атомами, неподвижно стоящих на своих местах в кристаллической решётки вещества. В результате таких столкновений энергия движения электронов переходит в энергию тепла атома, с которым было столкновение. То есть, энергия движения электронов частично перешла в энергию тепла, произведя нагрев данного вещества.
Электромагнитные поля
Есть и другой пример, в котором проявляется суть электричества. Это взаимодействие электромагнитных полей. Вспомним, что вокруг неподвижных заряженных частиц существует электрическое поле, а вокруг движущихся электрических частиц ещё возникает и магнитное поле. В итоге, когда заряженные частицы движутся вокруг них образуется общее электромагнитное поле, и оно воздействует на другие поля иных заряженных частиц. По такому принципу работает электродвигатель. Простыми словами — магнитные поля заставляют вращаться электрический мотор, а в этот момент по его обмоткам совершается перетекание электрических зарядов с одного полюса на другой.

Современный виток исследований
Грандиозный рывок в развитии электротехники совершил легендарный учёный, физик и изобретатель Никола Тесла на рубеже XIX, XX веков. Многие изобретения Теслы ещё ждут нового витка исследований в области электротехники для того, чтобы они были внедрены в жизнь.
Сейчас ведутся исследовательские работы по получению новых сверхпроводимых материалов, созданию совершенных компонентов электрических цепей с высоким КПД.
Дополнительная информация. Открытие графена и получение из него новых токопроводящих материалов предрекают грандиозные перемены в сфере использования электричества.
Наука не стоит на месте. С каждым годом человечество становится свидетелем появления более совершенных источников электроэнергии, вместе с этим и создания приборов, машин и различных агрегатов, потребляющих экологически чистую энергию в виде электрического тока.
Интересные факты об электричестве
- Для того чтобы добыть электричество из магнита от динамика, на него наматывают два медных провода, два их конца спаивают вместе, к оставшимся подсоединяют небольшую лампочку, светодиодную ленту. Для того чтобы сделать источник питания для лампы накаливания на 220 В, используют более мощные и крупные магниты, толстые медные провода большого сечения.
- Самой древней батарейкой считается найденное при раскопках в Египте устройство, представляющее собой медный сосуд с вставленным в него железным стержнем, не касающимся стенок.
- Для того чтобы показать, как вырабатывается и протекает электричество, при дворе короля Людовика XV проводили эксперимент с Лейденской банкой и строем солдат: взявшиеся за руки солдаты при этом образовывали ни что иное, как первую в мире полноценную живую электрическую цепь;
- Из-за большого количества смертей от даров молний в Италии в XVIII веке во многих европейских странах появилась очень странная мода на шляпки и зонтики с громоотводами;
- В скандинавских странах главный, порой и единственный, источник электроэнергии – это гидроэлектростанции. Благодаря этому, в этих государствах очень низкий уровень загрязнения атмосферы.
Знать то, как работает всем привычное электричество, очень важно для каждого человека, не только в целях самообразования и расширения кругозора, но и для обеспечения собственной безопасности в мире, где достаточно опасная электроэнергия встречается почти на каждом шагу.
Электричество
Изобретение электричества по праву является величайшим открытием, ведь без него становится невозможной современная жизнь. Оно имеется почти в каждом доме и применяется для освещения, обмена информацией, приготовления пищи, обогрева, функционирования бытовых приборов. Также электроэнергия необходима для движения трамваем, троллейбусов, метро, электропоездов. Работа компьютера, сотового телефона тоже невозможна без электричества.

Источники
- https://www.nur.kz/family/school/1912747-chto-takoe-elektrichestvo-i-kto-ego-izobrel/
- https://panelektro.ru/ampery/kto-izobrel-elektrichestvo-pervym.html
- https://knigaelektrika.ru/teoriya/kto-izobryol-elektrichestvo-istoriya-vozniknoveniya-vek-i-god-izobreteniya.html
- https://chebo.pro/tehnologii/istoriya-otkrytiya-elektrichestva-poyavlenie-i-razvitie.html
- https://amperof.ru/teoriya/kto-pridumal-elektrichestvo.html
- https://amperof.ru/teoriya/elektrichestvo.html
- https://FB.ru/article/271757/kogda-poyavilos-elektrichestvo-istoriya-vozniknoveniya
- https://220v.guru/vse-ob-elektroenergii/kto-i-v-kakom-godu-izobrel-elektrichestvo-istoriya-otkrytiya.html
- https://tvercult.ru/nauka/kogda-poyavilos-i-kto-otkryil-elektrichestvo-v-rossii
- https://electricdoma.ru/kak-eto-ustroeno/sut-ehlektrichestva-prostymi-slovami/
- https://FB.ru/article/277550/izobretenie-elektrichestva-istoriya-primenenie-poluchenie
Как вам статья?

Павел
Бакалавр «210400 Радиотехника» – ТУСУР. Томский государственный университет систем управления и радиоэлектроники
Написать
Пишите свои рекомендации и задавайте вопросы
Без открытия электричества жизнь людей была бы совершенно другой. Будучи естественным явлением, электричество было открыто, а не изобретено. Впервые термин «электричество» был произнесен британским физиком Уильямом Гилбертом, изучавшим влияние магнетизма и электричества на янтарь. Фактически в переводе с латыни electricus обозначает «янтарь». Работы великих ученых, среди которых Ом, Фарадей, Вольт, Тесла, позволили нам использовать это явление в повседневной жизни.
1. Переменный ток
Переменный и постоянный ток — основа электричества. Их открыватели Вольт, Ампер, Тесла, Эдисон могут по праву считаться великими люди всех времен. /Фото: tengritravel.kz
Это открытие — самое важное среди всех электрических изобретений. В сравнении с постоянным током, переменный менее опасный и более эффективный при использовании на больших расстояниях. Открытый физиком Николаем Теслей, переменный ток стал основополагающим фактором для электрификации многих стран мира. К его заслугам также можно отнести появление в дальнейшем трансформаторов и электродвигателей.
2. Электрическая лампочка
Лампочка Эдисона. /Фото: cf.shopee.sg
До изобретения лампочки освещение улиц и домов во всем мире осуществлялось с помощью восковых свечей, масляных или газовых ламп. Это были малоэффективные осветители, требующие постоянного контроля и обслуживания. Электрическая лампочка также относится к одному из величайших изобретений человечества.
Интересный факт от Novate.ru: Кто же изобрел электрическую лампочку? Основной принцип работы лампы накаливания был открыт сэром Хамфри Дэви более двухсот лет назад. В 1830 году другим изобретателем Уоррен де ла Рю была разработана практическая модель лампочки с нитью накала из платины. Однако этот проект не имел успеха, так как платина была очень дорогим материалом. В 1879 году Томас Эдисон, проведя многочисленные опыты, разработал лампочку с нитью накаливания из углеродной нити. Это был правильный шаг как для практического использования, так и с коммерческой точки зрения.
3. Интернет
Интернет — самое важное открытие со времен изобретения печатного станка Gutenberg. /Фото: cdn.lavoz.com.ar
Без Интернета невозможна современная жизнь. Мы так привыкли к нему, что думаем, что это было всегда. Истоки Интернета уходят к шестидесятым годам прошлого столетия. В последующие десятилетия происходили незначительные сдвиги в этой отрасли. Кульминацией и прорывом стал 1989 год. Новаторская работа Тима Бернерса-Ли, известная как World Wide Web (Всемирная паутина) навсегда изменила жизнь всех людей мира. Этот проект смог значительно облегчить поиск и передачу информации в любую точку земного шара.
4. MP3-плееры
MP3-плееры — достойная альтернатива компакт-дискам и кассетам. /Фото: valkenpower.com
Изобретение МР3-плееров навсегда изменили способ слушать музыку. Практически за одну ночь старые компакт-дички, кассеты и другие медиа-формы ушли в прошлое. Однако для практического использования МР3-плееров потребовался период длиной в 20 лет. Жизнеспособная коммерция этих медиа-проигрывателей началась только в конце 1990 года. Первый прототип МР3 был разработан специалистами компании Saehan Information Systems. Разработка этой компании MPMan мог вместить от 6 до 12 песен. Другие компании использовали потенциал Apple и в 2001 году выпустили инновационный iPod.
5. Транзисторы
Транзисторы — основа электрических цепей. /Фото: suadieuhoauytin.com
Транзисторы — одно из важных технических изобретений. Работа современной электроники невозможна без использования этих элементов. Основная функция транзисторов — включение и выключение электрического тока. По мнению специалистов, изобретение транзисторов продвинуло современную технику далеко вперед. Без этих крохотных элементов не могли бы работать ни смартфоны, ни компьютеры. У нас бы вообще не было распределения электрической энергии по сети. «Отцами-основателями» транзисторов по праву считаются Уильям Шокли, Джон Бардин и Уолтер Браттейн, получившие в 1956 году за это изобретение Нобелевскую Премию.
6. Системы глобального позиционирования
GPS. /Фото: reedr.ru
Система глобального позиционирования или ГМС — это определение местоположения любого объекта через навигационные спутники. Global Positioning System начиналась как секретный военный проект в 60-ых годах прошлого столетия. К 1995 году GPS стала полностью функциональной благодаря трем ученым: Ивану А. Гетингу, Роджеру Истону и Брэдфорду Паркинсону. Такие системы круглосуточно обеспечивают информацию для пользователей, имеющих специального оборудование (Glospace, GPS-приемник) о трехмерном положении, времени и скорости контролируемого объекта.
7. Цифровые камеры
Цифровые камеры — один из незаменимых элементов современного мира. /Фото: inteng-storage.s3.amazonaws.com
Сегодня современный мир невозможно представить без этого удобного гаджета. Первоначало цифровые камеры были достоянием ученых и военных. Концепция камер без пленок уже разрабатывалась в 60-ых годах прошлого столетия. В 1975 году инженер компании Eastman Kodak Стивен Сассон разработал первую «цифровую» камеру.
8. Электромобили
Электромобиль — машина будущего. /Фото: avatars.mds.yandex.net
Многие думают, что электромобили появились сравнительно недавно. С подачи Илона Маска о них узнал весь мир. Вместе с тем, электромобили были известны еще в 1880 году. Однако альтернативное развитие двигателей внутреннего сгорания предопределило спрос на них. В 70 годах прошлого столетия интерес к ним снова появился, но был кратковременным. Современные достижения в области систем управления и аккумуляторных технологий наконец-то позволили электромобилям заявить о себе. Спрос на эти машины увеличивается с каждым днем.
9. Электродвигатель
Электродвигатель. /Фото: elektro-motors.uz
Электродвигатели — одно из весомых электронных изобретений всех времен. Именно благодаря им были полностью модернизированы крупные промышленные предприятия. Замена парового двигателя на двигатель, преобразующий электрическую энергию в механическую — огромный шаг человечества в области технического прогресса.
А ведь благодаря этому появились настоящие умные города.
Ученые Вашингтонского университета доказали, что с появлением электричества люди стали спать гораздо меньше, поскольку исчезла необходимость ложиться с заходом солнца. Diletant.media и «Ростех» расскажут о том, как учёные смогли совладать с электрическими зарядами.
Первый опыт
Вплоть до начала XVII века знания об электричестве ограничивались размышлениями античных философов, которые в своё время заметили, что потертый об шерсть янтарь имеет свойство притягивать маленькие предметы. Янтарь по-гречески, кстати, именно так и звучит — «электрон». Само название «электричество», соответственно, и произошло от янтаря.

Устройство для получения статического электричества Отто фон Герике
Отто фон Герике, вероятно, первый наблюдал электролюминесценцию в 1663 г.
Именно эффект трения (как в случае с шерстью и янтарем) использовал Отто фон Герике для создания одного из первых в мире электрических генераторов. Он натирал руками шар из серы, а ночью видел, как его шар излучает свет и потрескивает. Он, вероятно, одним из первых наблюдал электролюминесценцию уже в 1663 году.
Учёный и шутник Стивен Грей
Стивен Грей — британский астроном-любитель, всю жизнь едва сводивший концы с концами — как-то раз заметил, что пробка, заткнувшая стеклянную трубку, притягивает мелкие кусочки бумаги, если трубку натереть. Затем вместо пробки любопытный учёный вставил длинную щепку и заметил такой же эффект. После этого Стивен Грей заменил щепку на пеньковую верёвку. В результате своих опытов Грей смог передать электрический заряд на расстояние восьмисот футов. По сути, учёный смог открыть явление передачи электричества на расстоянии и дать людям представление о том, что может проводить ток, а что нет.
Стивен Грей смог открыть передачу электричества на расстоянии

Стивен Грей стал первым лауреатом Медали Копли, высшей награды Королевского общества Великобритании
Некоторые источники утверждают, что на своём открытии Стивен Грей сделал забавный бизнес. Он якобы брал мальчишек из приюта Чартерхаус и подвешивал их на шнурках из изолирующего материала. После этого он «электрифицировал его прикосновением натертого стекла и высекал искры из его носа».
Лейденская банка
У Питера ван Мушенбрука, ученика Ньютона, изобретательство, можно сказать, было в крови, так как его отец занимался созданием специализированных научных приборов.

Благодаря Лейденской банке удалось впервые искусственным путём получить электрическую искру
Став преподавателем философии Лейденского университета, Мушенбрук направил свои силы на изучение нового на тот момент явления — электричества. Его научная деятельность дала результаты: в 1745 году он вместе со своим учеником соорудил устройство для накопления заряда, так называемую Лейденскую банку. Отчет об этом событии выглядит очень комично: «Банку устроил голландский физик Мушенбрук, впервые испытал удар от разряда банки лейденский гражданин Кюнеус».
Некто Бозе высказал желание быть убитым электричеством
Создание Лейденской банки продвинуло эксперименты с электричеством на новый уровень. Некто Бозе даже высказал желание быть убитым электричеством, если об этом напишут в изданиях Парижской академии наук. Кстати, именно Мушенбрук впервые сравнил действие разряда с ударом ската, первым употребив термин «электрическая рыба».
Электрическая панацея
После изобретения Лейденской банки опыты с электричеством приобрели небывалую популярность. Почему-то люди стали считать, что электрические разряды обладают врачебными свойствами. На волне этого заблуждения Мэри Шелли написала роман «Франкенштейн, или Современный Прометей», в котором умершего смогли оживить с помощью сильного разряда тока.

Обложка книги «Франкенштейн, или Современный Прометей», 1831 год
Аббе Нолле придумал, используя электричество, необычную забаву. В Версале, демонстрируя королю Людовику чудеса электричества, учёный в 1746 году выстроил монахов в 270-метровую цепь, соединив друг с другом кусками железной проволоки. Когда всё было готово, Нолле подал электричество, и монахи в ту же секунду вскрикнули и вместе подпрыгнули. Ещё практически через сто лет Максвелл подсчитает, что электричество распространяется со скоростью света.
Вольт и гальванический элемент
Эти хорошо знакомые нам обозначения на самом деле произошли от фамилий двух учёных — Александро Вольта и Луиджи Гальвани.
Лаборатория, в которой Гальвани проводил свои опыты
Обозначение «вольт» произошло от фамилии ученого — Александро Вольта
Первый опустил пластины из цинка и меди в кислоту, тем самым получив непрерывный электрический ток, а второй первым исследовал электрические явления при мышечном сокращении. В дальнейшем эти открытия сыграли важнейшую роль в становлении науки об электричестве. На открытия Вольта и Гальвани будут опираться работы Ампера, Джоуля, Ома и Фарадея.
Судьбоносный подарок
Майкл Фарадей, ученик переплетчика в лондонском книжном магазине, заприметил книжку по электричеству и химии. Чтение настолько увлекло его, что уже тогда он сам пытался проводить простейшие опыты с электричеством. Отец, поощряя тягу сына к знаниям, даже купил тому Лейденскую банку, что позволило молодому Фарадею проводить более серьёзные опыты.

Фарадей за опытами в своей лаборатории
Фарадей сыграл едва ли не главную роль в становлении теории электричества
Как выяснилось, подарок скончавшегося вскоре отца оказал огромное влияние на юношу — через двадцать лет Фарадей откроет явление электромагнитной индукции, соберёт первый в мире генератор электроэнергии и электродвигатель, выведет законы электролиза и сыграет едва ли не главную роль в становлении теории электричества.



























































