Как можно изменить направление вращения электродвигателя постоянного тока

Что такое реверс двигателя? Схема реверсивного подключения двигателя постоянного и переменного тока. Изменение направления вращения ротора асинхронного двигателя.

Реверс двигателя — это изменение вращения ротора на противоположное. Изменить направление вращения можно у электродвигателя постоянного тока, асинхронного и коллекторного двигателя переменного тока. Сложно представить себе устройство, в котором не применяется реверсивное вращение электродвигателя. Без изменения вращения невозможно представить работу тельфера, кран-балки, лебедок, грузоподъемных механизмов, лифтов, задвижек и т.п. Исключение составляют такие устройства, как заточные станки, вытяжки и т.д. В этой статье мы расскажем читателям сайта Сам Электрик, как осуществить реверс электродвигателей разных типов.

Реверсивное включение двигателей постоянного тока

Наиболее просто осуществить реверс двигателя постоянного тока, у которого статор с постоянными магнитами. Достаточно изменить полярность питания, чтобы ротор начал вращаться в обратную сторону.

Сложнее осуществить реверсирование мотора с электромагнитным возбуждением (последовательным, параллельным). Если просто поменять полярность питающего напряжения, то направление вращения ротора не изменится. Чтобы изменить направление вращения, достаточно поменять полярность только в обмотке возбуждения или только на щетках ротора.

Для осуществления реверса двигателей большой мощности полярность следует менять на якоре. Разрыв обмотки возбуждения на работающем моторе может привести к неисправности, т.к. возникающая ЭДС имеет повышенное напряжение, которое способно повредить изоляцию обмоток. Что приведет к выходу электродвигателя из строя.

Для осуществления обратного направления вращения ротора применяют мостовые схемы на реле, контакторах или транзисторах. В последнем случае можно и регулировать скорость вращения.

На рисунке представлена схема на транзисторах. В качестве иллюстрации работы транзисторы заменены контактами переключателя. Аналогично выполняются мостовые схемы не на биполярных, а на полевых транзисторах.

КПД такой схемы значительно выше, чем на транзисторах. Управление осуществляется микроконтроллером или простыми логическими схемами, предотвращающими одновременную подачу сигналов.

Реверс двигателей с током постоянной величины

shema-elektromotora-s-mnogoobmotochnym-yakorem реверс

Очень просто выполняется реверс силовых установок, имеющих постоянный ток. Для этого достаточно поменять полярность, и ротор будет крутиться в противоположную сторону.

Более сложной задачей является реверсирование двигателя с электрическим последовательным либо параллельным возбуждением.

Простой сменой полярности питания здесь не обойтись. Потребуется изменить поляризацию в возбуждающей обмотке или на роторных щётках.

Для моторов, обладающих высокой мощностью применима смена якорной полярности.

Разрыв возбуждающей обмотки на функционирующем двигателе не допускается, потому что образовавшаяся электрическая движущаяся сила обладает большим напряжением, что приведёт к пробою изоляции и, в итоге, двигатель потеряет работоспособность.

реверс электрического двигателя с различными типами тока

Для выполнения реверсирования используют релейные, транзисторные мосты, либо контакторы. С транзисторной мостовой схемой можно контролировать и менять вращающую скорость.

На картинке показана транзисторная схема. Для иллюстрации функционала вместо транзисторов показаны переключающие контакты. Идентично выполняются мосты для полевых транзисторов.

Коэффициент полезного действия данной схемы на порядок больше транзисторной. Управление выполняется контроллером либо логическими схемами, исключающими одновременное поступление сигнала.

Изменение направления вращения ротора асинхронного двигателя

Наибольшее распространение в промышленности получили асинхронные двигатели, запитанные от трехфазного напряжения 380 вольт. Для того чтобы осуществить реверс, достаточно поменять две любые фазы.

Получила распространение схема подключения, выполненная на двух магнитных пускателях. Собственно для двигателей постоянного тока она аналогична, но используются двухполюсные контакторы или пускатели. Эту схему так и называют «схема реверсивного пускателя» или «реверсивная схема пуска асинхронного трёхфазного электродвигателя».

При включении пускателя КМ1 кнопкой «Пуск 1», происходит прямая подача напряжения на обмотки и блокируется кнопка «Пуск 2» от случайного включения, посредством размыкания нормально-замкнутых контактов КМ-1. Двигатель вращается в одну сторону.

После отключения пускателя КМ1 кнопкой «Стоп» или полным снятием напряжения, можно включить КМ2 кнопкой «Пуск 2». В результате через контакты линия L2 подается напрямую, а L1 и L3 меняются местами. Кнопка «Пуск 1» заблокирована, так как нормально-замкнутые контакты пускателя КМ2 приводятся в движение и размыкаются. Двигатель начинает вращаться в другую сторону.

Схема применяется повсеместно и по сей день для подключения трехфазного двигателя в трехфазной сети. Простота схемного решения и доступность комплектующих — её весомые преимущества.

Наибольшее распространение находят электронные системы управления. Коммутационные схемы, которых собранные на тиристорах без пускателей. Хотя пускатели могут быть и установлены для дистанционного включения или выключения в этой цепи.

Они сложнее, но и надежнее устройств на контакторах. Для управления используется системы импульсно-фазного управления (СИФУ), системы частотного управления. Это многофункциональные устройства, с их помощью можно не только осуществлять реверс асинхронного электродвигателя, но и регулировать частоту вращения.

В домашних условиях возникает необходимость подключения двигателя 380В на 220 с реверсом. Для этого необходимо произвести переключение обмоток звезда треугольник. Подробнее мы рассматривали различия этих схем в статье размещенной на сайте ранее: .

Однако, если предполагается подключение трехфазного электродвигателя к однофазной сети, то для этого применяется конденсатор, который подключается по нижеприведенной схеме.

При этом чтобы осуществить реверс, достаточно переключить провод сети с В на клемму А, а конденсатор отсоединить от А и подсоединить к клемме В. Удобно это сделать с помощью 6-контактного тумблера. Это типовое включение асинхронного электродвигателя к сети 220В с конденсатором.

Как реализовать схему реверса?

Для перемены направленности вращения ротора, нужно поменять местами 2 из 3 фазы его обмотки. Тогда электромагнитное поле статора меняет свою направленность движения, при этом ротор в первоначальный период времени, двигаясь по инерции, станет притормаживаться, пока окончательно не остановится. И только потом он будет крутиться в другом направлении.

Замену полярности электро-пусковой обмотки возможно сделать с управляющим тумблером по схеме. Его можно подобрать с 2 или 3 зафиксированными положениями и 6 выходами. Выбирать такое устройство нужно по токовой нагрузке и разрешенному напряжению.

Пропускать ток на тумблер предпочтительнее от вспомогательной обмотки, которая работает непродолжительно. Перечисленное, даст возможность значительно увеличить рабочий ресурс контактной группы.

Реверс асинхронного двигателя с конденсаторным запуском лучше выполнять по следующей схеме:

  • При тяжелом пуске параллельно к главному конденсатору, используя средний контакт с самовозвратом ПНВ, подсоединяют добавочный конденсатор.
  • В таком примере переключают тумблер реверса только при заторможенном роторе, и никак не при его вращении.
  • Случайная перемена направленности работы мотора под напряжением, сопряжена с огромными скачками тока, что истощает его мото-ресурс. По этой причине посадочное место тумблера реверса на оборудовании нужно подбирать таким образом, чтобы сделать невозможным случайное включение его во время работы. Лучше установить его в каком-то углубленном месте конструкции.

Если электродвигатель не работает должным образом после сборки схемы, потребуется дважды перепроверить, что провода идут к правильным клеммам переключателя. И также удостоверится, что проводка не ослаблена или не повреждена.

Рекомендуется использовать увеличительное стекло, чтобы убедиться, что соединения выполнены правильно и даже самая тонкая нить провода случайно не касается другого проводка или клеммы.

Схема подключения коллекторного двигателя с реверсом

Чтобы осуществить реверс коллекторного двигателя, необходимо знать:

  1. Не на каждом коллекторном моторе можно осуществить реверс. Если на корпусе указана стрелка вращения, то его нельзя применять в реверсивных устройствах.
  2. Все двигатели, имеющие высокие обороты предназначены для вращения в одну сторону. Например, у электродвигателя, устанавливаемого в болгарках.
  3. У двигателя, который имеет небольшие обороты, вращение может осуществляться в разные стороны. Такие моторы смонтированы в электроинструментах, например, электродрелях, шуруповертах, стиральных машинах и т.п.

На рисунке представлена схема универсального коллекторного двигателя, который может работать как от постоянного, так и переменного тока.

Чтобы изменилось вращение ротора, достаточно поменять полярность напряжения на обмотке ротора или статора, как и в двигателях постоянного тока, от которых универсальные машины практически не отличаются.

Если просто изменить полярность подводящего напряжения на коллекторном двигателе, направление вращения ротора не изменится. Это необходимо учитывать при подключении электродвигателя к сети.

Также следует знать, что в моторах большой мощности коммутируют обмотку якоря. При переключении обмоток статора возникает напряжение самоиндукции, которое достигает величин, способных вывести двигатель из строя.

Конструктора-любители в своих поделках применяют различные типы двигателей. Зачастую они используют щеточный электродвигатель от стиральной машинки автомат. Это удобные моторчики, которые можно подключать непосредственно к сети 220 вольт. Они не требуют дополнительных конденсаторов, а регулировку оборотов можно легко производить с помощью стандартного диммера. На клеммную колодку выводятся шесть или семь выводов.

Зависит от типа двигателя:

  • Два идут на щетки коллектора.
  • От таходатчика на колодку приходит пара проводов.
  • Обмотки возбуждения могут иметь два или три провода. Третий служит для изменения скорости вращения.

Чтобы выполнить реверс двигателя от стиральной машины, следует поменять местами выводы обмотки возбуждения. Если имеется третий вывод, то его не используют.

Как сделать реверс на двигателе 12 вольт

Всем привет, наверно многие радиолюбители, также как и я, имеют не одно хобби, а несколько. Помимо конструирования электронных устройств занимаюсь фотографией, съемкой видео на DSLR камеру, и видео монтажом. Мне, как видеографу, был необходим слайдер для видео съемки, и для начала вкратце объясню, что это такое. Ниже на фото показан фабричный слайдер.

Слайдер предназначен для видеосъемки на фотоаппараты и видеокамеры. Он являются аналогом рельсовой системы, которая используется в широкоформатном кино. С его помощью создается плавное перемещение камеры вокруг снимаемого объекта. Другим очень сильным эффектом, который можно использовать при работе со слайдером, – это возможность приблизиться или удалиться от объекта съемки. На следующем фото изображен двигатель, который выбрал для изготовления слайдера.

В качестве привода слайдера используется двигатель постоянного тока с питанием 12 вольт. В интернете была найдена схема регулятора для двигателя, который перемещает каретку слайдера. На следующем фото индикатор включения на светодиоде, тумблер, управляющий реверсом и выключатель питания.

При работе такого устройства важно, чтоб была плавная регулировка скорости, плюс легкое включение реверса двигателя. Скорость вращения вала двигателя, в случае применения нашего регулятора, плавно регулируется вращением ручки переменного резистора на 5 кОм. Возможно, не только я один из пользователей этого сайта увлекаюсь фотографией, и кто-то ещё захочет повторить это устройство, желающие могут скачать в конце статьи архив со схемой и печатной платой регулятора. На следующем рисунке приведена принципиальная схема регулятора для двигателя:

Схема реверса трехфазного двигателя в однофазной сети

Так как трехфазному асинхронному двигателю будет недоставать двух фаз, их нужно компенсировать конденсаторами – пусковым и рабочим, на которые коммутируют обе обмотки. От того, куда присоединить третью, зависит кручение вала в ту или иную сторону.

На схеме ниже видно, что обмотка под номером 3 через рабочий конденсатор подсоединяется к трехпозиционному тумблеру, который и отвечает за режимы работы двигателя вперед/назад. Два других его контакта объединены с обмотками 2 и 1.

При включении двигателя нужно придерживаться следующего алгоритма действий:

Схема реверса трехфазного двигателя в однофазной сети

Довольно часто трехфазные электродвигатели используются в бытовых условиях и включаются в однофазную сеть. Для таких случаев предусмотрена реверсивная схема подключения электродвигателя в однофазной сети. Принцип действия такой схемы очень простой: для выполнения реверса используются конденсаторы, питание которых переключается между полюсами питающего напряжения. Управление схемой осуществляется кнопкой.

Поскольку питающее напряжение составляет 220 В, соединение обмоток двигателя будет выполнено звездой, а на клеммник подведено три вывода. На кнопке управления между клеммами устанавливается перемычка, после чего к одной из них подключается вывод конденсатора. Второй вывод конденсатора подключается к обмотке электродвигателя, не соединенной с сетью.

Затем переключатель соединяется с двигателем, затем подводится питающее напряжение. Готовую систему нужно включить и проверить работу реверса.

Схема реверса трехфазного двигателя, подключенного в однофазную сеть

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Несколько дней назад от одного из читателей сайта я получил письмо с просьбой подробно рассказать о том, как осуществить реверс трехфазного асинхронного двигателя 380/220 (В), подключенного в однофазную сеть 220 (В).

Действительно, я как то упустил этот момент из виду и про реверс совсем забыл. Дело в том, что у меня уже имеется статья, где я рассказывал про выбор емкости рабочих и пусковых конденсаторов, собирал схему подключения трехфазного двигателя в однофазную сеть 220 (В) и даже снял видео на конкретном примере.

А сейчас вернемся к реверсу. Мудрить сложную схему я не буду, а покажу самый простой и самый распространенный вариант с помощью кнопки управления КУ-110111. Эту кнопку еще называют кнопочным выключателем или переключателем.

Вот так она выглядит.

Суть в том, что нам нужно две пары контактов: нормально-разомкнутый и нормально-замкнутый. И самое главное, чтобы управление этими контактами было фиксированным.

Вот как раз таки в этой кнопке имеется две пары контактов:

В нашем случае управление контактами осуществляется с помощью рукоятки-переключателя, которая имеет два положения.

Когда переключатель установлен (зафиксирован) в вертикальном положении, то его контакт (1-2) разомкнут, а (3-4) замкнут. И наоборот, когда переключатель находится в горизонтальном положении (поворот рукоятки на 90° по часовой стрелке), то его контакт (1-2) замкнут, а (3-4) — разомкнут.

Номинальный ток контактных пар составляет 10 (А). На это стоит обращать внимание, т.к. при выборе кнопки с заниженным номинальным током контакты могут выгореть.

Вместо кнопки управления КУ-110111 можно использовать тумблеры, ключи управления, кнопки с фиксацией положения и т.п.

Например, для реверса двигателей мощностью до 0,4 (кВт) можно применять тумблер ТВ1-2. У него имеется 4 контактные группы: 2 нормально-разомкнутые и 2 нормально-замкнутые. Номинальный ток контактов составляет 5 (А).

Реверс асинхронного трехфазного двигателя, подключенного в однофазную сеть

Все просто. Реверс осуществляется путем переключения питания конденсаторов с одного полюса питающего напряжения на другой. Это как раз и осуществляется с помощью кнопки управления. На схеме она показана в красном прямоугольнике.

В качестве примера рассмотрим уже известный нам трехфазный двигатель АОЛ 22-4 мощностью 0,4 (кВт) напряжением 220/127 (В). Для его запуска необходим рабочий конденсатор емкостью не ниже 25 (мкФ). Я использовал конденсатор чуть меньшей емкости – МБГО-1, 20 (мкФ), напряжение 500 (В).

В моем примере взят двигатель напряжением – 220/127 (В). Т.к. питающая сеть у нас 220 (В), то его обмотки должны быть соединены в звезду. Звезда уже собрана внутри этого двигателя и на клеммник выведено всего 3 вывода.

Сначала я устанавливаю на кнопке управления перемычку между клеммами (2) и (3). Затем к клемме (2) подключаю один вывод конденсатора.

Схема реверса трехфазного двигателя и кнопочного поста

В каждой системе, обеспечивающей реверс трехфазного электродвигателя, имеются специфические кнопочные контакты, объединенные в общий кнопочный пост. Работа этой системы тесно связана с функционированием остальных элементов схемы.

Всем известно, что включение контактора магнитного пускателя осуществляется с помощью управляющего импульса, поступающего после нажатия на пусковую кнопку. Данная кнопка в первую очередь обеспечивает подачу напряжения на катушку управления.

Включенное состояние контактора удерживается и сохраняется, благодаря принципу самоподхвата. Он заключается в параллельном подключении (шунтировании) к пусковой кнопке вспомогательного контакта, обеспечивающего подачу напряжения на катушку. В связи с этим уже нет необходимости удерживать кнопку ПУСК в нажатом состоянии. Таким образом, магнитный пускатель может отключиться только после разрыва цепи катушки управления, поэтому в схеме необходима кнопка с размыкающим контактом. В связи этим, кнопки управления, объединенные в кнопочный пост, оборудуются двумя парами контактов – нормально открытыми (NO) и нормально закрытыми (NC).

Все кнопки выполнены в универсальном варианте для того, чтобы обеспечить моментальный реверс двигателя, если в этом возникнет срочная необходимость. Отключающая кнопка, в соответствии с общепринятыми нормами, имеет название СТОП и маркируется красным цветом. Кнопка включения известна как стартовая или пусковая, поэтому она именуется по-разному с помощью слов ПУСК, ВПЕРЕД или НАЗАД.

В некоторых случаях кнопочный пост может использоваться в нереверсивной схеме работы электродвигателя, когда его вал вращается лишь в одном направлении. Запуск производится кнопкой пуск, а остановка произойдет через определенный промежуток времени после нажатия кнопки СТОП, когда вал преодолеет инерцию. Подключение такой схемы может быть выполнено в двух вариантах, с помощью катушек управления на 220 и 380 вольт.

Часто для выполнения определенной задачи требуется осуществить реверсирование двигателя постоянного тока. Термин «реверсирование» обозначает изменение направления вращения мотора агрегата. Добиться этого можно, изменив направление действия вращающего момента. Направление магнитного потока электродвигателя постоянного тока изменяется двумя способами:

  • переключением обмотки возбуждения;
  • переключением якоря.

В обоих случаях направление тока в якоре станет противоположным. Если переключить и якорь, и цепь направления, направление вращения магнитного поля не изменится.

Поскольку постоянная времени обмотки якоря достаточно мала, переключение якоря значительно ускоряет процесс реверсирования. Когда нет необходимости быстродействия, обычно прибегают к переключению цепи возбуждения. В моделях двигателей параллельного возбуждения в обмотке имеется большой запас энергии, поэтому в машинах с большими мощностями постоянная времени обмотки равна буквально нескольким секундам.

В моделях последовательного возбуждения реверс производится аналогично. В обмотках якоря и возбуждения имеется небольшой запас энергии, вследствие чего постоянные времени обоих узлов относительно малы.

Процесс реверсирования двигателя постоянного тока

Реверс двигателя постоянного тока с параллельным возбуждением выглядит следующим образом:

  • Якорь отключается от источника питания.
  • Двигатель переключается для торможения или тормозится механически.
  • Якорь переключается либо в процессе торможения, либо после полного окончания торможения.
  • Осуществляется пуск механизма, и двигатель начинает вращаться в противоположном направлении.

Реверсирование модели с последовательным возбуждением выполняется в той же последовательности. У моделей со смешанным возбуждением переключается или якорь, или параллельная и последовательная обмотки вместе.

Пуск и торможение двигателя постоянного тока

Способ пуска двигателя постоянного тока зависит от его мощности. Прямое включение допускается только для агрегатов малой мощности. Во всех остальных случаях используется пусковой реостат, ограничивающий ток до допустимых значений.

Пусковой реостат представляет собой разделенную на секции ленту (или провод) с высоким удельным сопротивлением. В местах перехода установлены медные плоские или кнопочные контакты, к которым присоединяются провода. При пуске двигателя сопротивление реостата должно последовательно уменьшаться – для этого рычаг переводится с одного неподвижного контакта на другой и секции выключаются.

Существует два способа торможения двигателей постоянного тока:

  • Механическое торможение, применяемое при отсутствии ограничений времени и тормозного пути. При его выполнении тормозные колодки накладываются на тормозной шкив.
  • Электрическое торможение, обеспечивающее точный тормозящий момент. Поскольку фиксация механизма в нужном месте невозможна, часто оно дополняется механическим.

В свою очередь, электрическое торможение может осуществляться тремя путями:

  • С возвратом энергии в сеть. Кинетическая энергия при этом преобразовывается в электрическую, часть которой возвращается в сеть.
  • При противовключении. Вращающийся двигатель переключается на противоположное направление вращения.
  • Динамическое. При этом происходит рассеивание электрической энергии в цепи якоря.

Пуск, торможение и реверс двигателя постоянного тока должны выполняться с соблюдением технологических требований и правил техники безопасности.

18

Скоростные и механические характеристики двигателя с последовательным возбуждением строят аналогично (рисунок 47, б).

Чтобы изменить направление вращения двигателя, необходимо изменить направление электромагнитного момента М, действующего на якорь. Это можно осуществить двумя способами: путем изменения направления тока Iа в обмотке якоря или изменения направления магнитного потока Φ, т. е. тока возбуждения. Для этого переключают провода, подводящие ток к обмотке якоря или обмотке возбуждения.

9 Тормозные режимы двигателей

9. 1 Электрическое торможение

Электрические двигатели, как правило, используют не только для вращения механизмов, но и для их торможения. Электрическое торможение позволяет быстро остановить механизм или уменьшить его частоту вращения без применения механических тормозов.

Различают три вида электрического торможения двигателей постоянного

тока:

1) рекуперативное торможение – генераторное торможение с отдачей электрической энергии в сеть;

2) динамическое или реостатное торможение – генераторное тор-

можение с гашением выработанной энергии в реостате, подключенном к обмотке якоря;

3) электромагнитное торможение – торможение противовключением.

Во всех указанных режимах электромагнитный момент М воздействует на якорь в направлении, противоположном n, т. е. является тормозным.

Рекуперативное торможение. Двигатель с параллельным возбуждением переходит в режим рекуперативного торможения при увеличении его час-

U

тоты вращения выше n0 = СеΦ. В этом случае ЭДС машины становится

больше напряжения сети и ток изменяет свое направление, т. е. двигатель переходит в генераторный режим. В этом режиме машина создает тормозной момент, а выработанная электрическая энергия отдается в сеть и может быть полезно использована.

В машине с параллельным возбуждением механические характеристики генераторного режима являются продолжением механических характеристик двигательного режима в область отрицательных моментов (рисунок 48, б).

19

Рисунок 48 Схема и механические характеристики машины постоянного тока в двигательном и генераторном режимах

Поэтому переход из двигательного режима в генераторный может происходить автоматически, если под действием внешнего момента якорь будет вра-

щаться с частотой n выше n0. Можно перевести машину в генераторный режим и принудительно, если перевести ее на работу с характеристики 1 на характе-

ристику 2, уменьшив n0 путем увеличения магнитного потока (тока возбуждения) или снижения напряжения, подводимого к двигателю. В этом случае некоторой частоте вращения n соответствует на характеристике 1 двигательный режим (точка А), а на характеристике 2 – режим рекуперативного торможения (точка В).

Двигатели с последовательным возбуждением не могут переходить в режим рекуперативного торможения. При необходимости реку-

перативного торможения схему двигателей в тормозном режиме изменяют, превращая двигатели в генераторы с независимым возбуждением.

Двигатели со смешанным возбуждением могут автоматически переходить в генераторный режим, что обусловило их применение в троллейбусах, трамваях и других устройствах с частыми остановками, где двигатель должен обладать мягкой механической характеристикой.

Динамическое торможение. При этом виде торможения двигателя с параллельным возбуждением обмотку якоря отключают от сети и присоединяют к ней реостат RДОБ (рисунок 49, а). При этом машина работает как генератор, создает тормозной момент, а выработанная электрическая энергия гасится

Е

в реостате. Регулирование тока Iа = ΣR + R , т. е. тормозного момента М,

a ДОБ

осуществляют путем изменения сопротивления RДОБ, подключенного к обмотке якоря. При n = 0 тормозной момент М равен нулю, следовательно, машина не может быть заторможена в неподвижном состоянии.

20

Рисунок 49 Схема и механические характеристики двигателя с параллельным возбуждением в режиме динамического торможения

Двигатель с последовательным возбуждением может работать в режиме динамического торможения при независимом возбуждении и при самовозбуждении. При независимом возбуждении обмотку возбуждения отключают от обмотки якоря и подключают к питающей сети последовательно с резистором, сопротивление которого выбирают так, чтобы ток возбуждения не превышал номинального значения. При этом механические характеристики двигателя будут линейные, как на рисунке 49, б. При самовозбуждении при переводе машины в генераторный режим необходимо переключить провода, подводящие ток к обмотке возбуждения (рисунок 50). Последнее необходимо для того, чтобы при изменении направления тока в якоре (при переходе с двигательного режима в генераторный) направление тока в обмотке возбуждения оставалось неизмен-

ным и создаваемая этой обмоткой МДС FB совпадала по направлению с МДС FОCT от остаточного магнетизма. В противном случае генераторы с самовозбуждением размагничиваются.

Рисунок 50 – Схемы машины с последовательным возбуждением в режимах двигательном (а) и динамического торможения (б)

21

Рисунок 51 Зависимости ЭДС от тока якоря для двигателя с последовательным возбуждением в режиме динамического торможения

На рисунке 51 показаны зависимости ЭДС Е от тока якоря Iа при различных частотах вращения (n1 > n2 > n3 >n4) и вольт-амперные характеристики

Iа(ΣRa + RДОБ) = f(Iа) полного сопротивления, включенного в цепь якоря

(RДОБ1 > RДОБ2 > RДОБ3).

Точки пересечения А1, А2 и А3 указанных зависимостей определяют зна-

чения тока якоря Iа = Σ СЕnΦ , при котором машина работает в режиме ди-

Ra + RДОБ

намического торможения, а следовательно, и значение тормозного момента М. При увеличении n и неизменном значении RДОБ возрастает ЭДС, ток якоря и тормозной момент.

Самовозбуждение оказывается возможным только при частоте вращения, большей некоторого критического значения nКР, при котором вольт-амперная характеристика сопротивления цепи якоря располагается по касательной к зависимости Е = f(Iа). Так, например, при подключении к машине реостата с сопротивлением RДОБ1 тормозной режим при частоте вращения n1 может быть

реализован (точка А1); при уменьшении же ее до значения n1 он невозможен. Двигатель со смешанным возбуждением также может работать в режиме

динамического торможения.

Электромагнитное торможение. В этом режиме изменяют направ-

ление электромагнитного момента М, сохраняя неизменным направление тока из сети, т. е. момент делают тормозным. Последнее осуществляют так же, как и при изменении направления вращения двигателя – путем переключения проводов, подводящих ток к обмотке якоря (рисунок 52, а) или к обмотке возбужде-

Соседние файлы в папке Методички

  • #
  • #
  • #
  • #

Реверс двигателя — это изменение вращения ротора на противоположное. Изменить направление вращения можно у электродвигателя постоянного тока, асинхронного и коллекторного двигателя переменного тока. Сложно представить себе устройство, в котором не применяется реверсивное вращение электродвигателя. Без изменения вращения невозможно представить работу тельфера, кран-балки, лебедок, грузоподъемных механизмов, лифтов, задвижек и т.п. Исключение составляют такие устройства, как заточные станки, вытяжки и т.д. В этой статье мы расскажем читателям сайта Сам Электрик, как осуществить реверс электродвигателей разных типов.

Способы пуска и реверса ДПТ

Двигатели постоянного тока запускаются с ограничением тока якоря до значений не более 2,5 , для этого в нерегулируемых проводах последовательно с якорем включается пусковой (добавочный) резистор Rдоб
, который после запуска шунтируется контактором
КМ
автоматически, в функции тока, ЭДС якоря или времени (рисунок 3.8). Величина сопротивления этого резистора определяется из формулы (3.4). Для принятых условий:
.
Рисунок 3.8. К вопросу о пуске ДПТ с добавочным резистором.

Диаграмма пуска имеет вид рисунка 3.9. Электродвигатель разгоняется по искусственной механической характеристики из точки «а» в точку «б». При скорости ωпер

шунтируется добавочный резистор контактом, от чего двигатель переходит на естественную характеристику в точку «б» и далее разгоняется до точки «г». В этой точке его механическая характеристика пересекается с механической характеристикой рабочей машины (
Мс
) и процесс разбега заканчивается.

Рисунок 3.9. Пусковая диаграмма ДПТ параллельного возбуждения с одним добавочным резистором.

При значительном моменте Мс

одним добавочным резистором не обеспечивается условие
. Приходится использовать 3 или 4 добавочных резистора. В этом случае токовая диаграмма имеет 3 или 4 ступени пуска.
В современных приводах в ДПТ, получают питание от преобразователей,

основной способ пуска постепенное повышение напряжения на якоре. Это обеспечивает плавный пуск с ограничением тока якоря.

Реверс ДПТ можно производить, изменяя направление тока в обмотке якоря или в обмотке возбуждения. Обычно изменяют направление тока в обмотке якоря, потому что она имеет меньшую индуктивность и возникает меньшая дуга на контактах при переключении.

Для простых приводов, без преобразователей, типовая схема реверса изображена на рисунке 3.10. В период реверса в якорь включается добавочный резистор Rдоб

для ограничения тока якоря до значения
.
Рисунок 3.10. Типовая схема реверса ДПТ в нерегулируемых проводах: В – контакты контактора «вперед»; Н – контакты контакторов «назад».

В регулируемых приводах с ДПТ, имеющих преобразователи, часть используется вторая группа вентилей, включение которой вызывает изменение направления тока в якоре и реверс электродвигателя. Обычно такое решение применяют при работе электропривода с частыми реверсами. Принципиальная схема реверса ДПТ с двумя группами вентилей UZ1 и UZ2 изображена на рисунке 3.11. При реверсе контролирует ток якоря путем изменения напряжений на его зажимах.

Рисунок 3.11. Принципиальная схема регулируемого электропривода с ДПТ для режимов частых реверсов.

8 Характеристики генератора параллельного возбуждения

Характеристика холостого хода U=f (Iв) при I=0 и n=const. В процессе самовозбуждения в генераторах параллельного возбуждения Ia=Iв, причем Iв=(0,02…0,03) Iн. Поэтому можно пренебречь реакцией якоря и падением напряжения в обмотке якоря и считать, что между характеристиками холостого хода генератора параллельного возбуждения и независимого возбуждения практически нет разницы. Следует учесть, что эта характеристика может быть снята только в одном квадранте, так как процесс самовозбуждения в данном генераторе может протекать только в одном направлении при согласном действии остаточного магнитного потока и потока, создаваемого током возбуждения, причем на прямолинейном участке характеристики напряжение генератора не удается регулировать как у генератора независимого возбуждения, что определяет меньший диапазон регулирования его напряжения.

Нагрузочная характеристика U=f (Iв) при I=const и n=const. Нагрузочные характеристики генератора параллельного возбуждения практически совпадают с характеристиками генератора независимого возбуждения, так как увеличение тока Iа на величину тока возбуждения при параллельном возбуждении не может оказать заметного влияния на напряжение генератора.

Внешняя характеристика U=f (I) при rв=const и n=const (рисунок 1) показывает влияние изменения нагрузки на напряжение генератора. При этом ток возбуждения не регулируется с помощью регулировочного реостата. Следует учесть, что при независимом возбуждении

а при параллельном возбуждении

Последнее равенство означает, что при снятии внешней характеристики ток возбуждения генератора изменяется пропорционально напряже­нию на генераторе. Таким образом, уменьшение напряжения генератора параллельного возбуждения при увеличении его нагрузки вызывается не только размагничивающим действием реакции якоря и падением напряжения в цепи якоря, но и уменьшением тока возбуждения. Поэтому внешняя характеристика генератора параллельного возбуждения (рисунок 1 ) (кривая 1) располагается ниже внешней характеристики генератора независимого возбуждения (кривая 2).

В генераторе параллельного возведения ток нагрузки I будет увеличиваться только до определенного критического значения Iкр=(2. 2,5) Iн, после чего он начнет уменьшаться до Iко

Регулировочная характеристика Iв=f (I) при n=const и U=const снимается так же как и для генератора независимого возбуждения и практически получается такой же, как и при независимом возбуждении, т.к. ток возбуждения очень мал и падение напряжения Iвraв цепи якоря от тока возбуждения также очень мало и не оказывает заметного влияния на напряжение генератора.

Характеристика короткого замыкания Iк=f (Iв) при n=const и U=0 может быть снята только при питании обмотки возбуждения от постороннего источника, т.к. при самовозбуждении при U=0 ток возбуждения Iв=0

8 уравнения генератора постоянного тока

Любая электрическая машина обладает свойством обратимости, т.е. может работать в режиме генератора или двигателя. Если к зажимам приведенного во вращение якоря генератора присоединить сопротивление нагрузки, то под действием ЭДС якорной обмотки в цепи возникает ток

(2)

Уравнение (2) называется основным уравнением генератора. С появлением тока в проводниках обмотки возникнут электромагнитные силы. На рис. 5 схематично изображен генератор постоянного тока, показаны направления токов в проводниках якорной обмотки.

Воспользовавшись правилом левой руки, видим, что электромагнитные силы создают электромагнитный момент Мэм, препятствующий вращению якоря генератора. Чтобы машина работала в качестве генератора, необходимо первичным двигателем вращать ее якорь, преодолевая тормозной электромагнитный момент, возникающий по правилу Ленца.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Что такое реверс

Проще говоря, реверс – это изменение направления движения какого-либо механизма в противоположную сторону от выбранного основного. Схему реверса можно получить несколькими способами:

В первом случае при помощи переключения шестеренчатых связей, соединяющих ведущий вал с ведомым, добиваются вращения последнего в обратную сторону. По такому принципу работают все коробки передач.

Электрический способ подразумевает непосредственное воздействие на сам двигатель, где в изменении движения ротора принимают участие электромагнитные силы. Этот метод выигрывает тем, что не требует применения сложных механических преобразований.

Для того, чтобы получить реверс электродвигателя, необходимо собрать специальную электрическую схему, которая так и называется – схема реверса двигателя. Она будет отличаться для разных типов электрических машин и питающего напряжения.

Пуск и реверс двигателя постоянного тока

Ток якорной обмотки определяется выражением

При пуске двигателя якорь неподвижен, противо-ЭДС равна нулю. Сопротивление якорной обмотки незначительное, поэтому при Uя = Uн пусковой ток якоря Iяпуск во много раз превышает ток в номинальном режиме Iя н, что приводит к повреждению двигателя.

Ограничение пускового тока в ДПТ с параллельным возбуждением производится введением последовательно в цепь якоря пускового реостата Rдя (рис. 5.7).

Ток при пуске тогда будет равен

Пуск должен производиться при номинальном магнитном потоке Фн, при этом согласно уравнению увеличивается пусковой момент и быстрее увеличивается ЭДС обмотки якоря. Это приводит к ускоренному разгону и сокращению времени прохождения большого пускового тока.

Запуск мотора схемой звезда-треугольник

При прямом запуске мощных трехфазных электродвигателей, применяя схему управления реверсом, происходят просадки напряжения в сети. Это связано с большими пусковыми токами, протекающими в этот момент. Чтобы снизить значение тока, применяют постепенный запуск мотора по схеме звезда-треугольник.

Суть заключается в том, что начало и конец каждой обмотки статора выводят в коробку с клеммами. Управляется схема тремя контакторами. Они поэтапно включают обмотки в звезду, а далее при разгоне двигателя выводят систему на рабочее состояние при подключении треугольником.

Кпд и потери мощности машин постоянного тока

Потери в электрических машинах делят на основные и добавочные. К основным потерям относят электрические, магнитные и механические.

Электрические потери ΔРэл или потери в меди обмоток, состоят из потерь в активных сопротивлениях обмоток и потерь в переходном сопротивлении щеточного контакта. Они определяются, как суммарные потери в обмотке якоря

где Rя – сопротивление цепи обмотки якоря с учетом переходного сопротивления щеточного контакта.

Магнитные потери или потери в стали обозначают ΔРс. В процессе работы сердечник якоря машины постоянного тока перемагничивается. Поэтому в сердечнике якоря возникают потери на вихревые токи и гистерезис.

Механические потери ΔРмех состоят из потерь на трение в подшипниках, потерь на трение щеток о коллектор, потерь на трение вращающихся частей машины о воздух, а также потерь вентиляционных.

Суммарные потери равны

.

В режиме холостого хода электрические потери незначительны, мощность потребляемая машиной из сети

Потери холостого хода называют постоянными потерями

, так как они не зависят от нагрузки.

Электрические потери называют переменными потерями

Коэффициент полезного действия (КПД) определяется как отношение полезной, или отдаваемой, мощности P2 к потребляемой мощности P1

Электрическая мощность, потребляемая двигателем из сети P1 = Pя + Pв,

Для двигателя параллельного возбуждения

Механическая мощность на валу двигателя, отдаваемая приводному механизму P2=ωМ.

Современные машины постоянного тока имеют высокий КПД, который в зависимости от мощности, колеблется в пределах ηн = 0,75÷0,96. Высшее значение КПД относится к машинам большей мощности.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник

Переменная сеть: мотор 380 к сети 380

Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

Для подключения дополнительно понадобятся:

Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».

Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

Для запуска двигателя:

Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

Как реализовать схему реверса?

Для перемены направленности вращения ротора, нужно поменять местами 2 из 3 фазы его обмотки. Тогда электромагнитное поле статора меняет свою направленность движения, при этом ротор в первоначальный период времени, двигаясь по инерции, станет притормаживаться, пока окончательно не остановится. И только потом он будет крутиться в другом направлении.

Замену полярности электро-пусковой обмотки возможно сделать с управляющим тумблером по схеме. Его можно подобрать с 2 или 3 зафиксированными положениями и 6 выходами. Выбирать такое устройство нужно по токовой нагрузке и разрешенному напряжению.

Пропускать ток на тумблер предпочтительнее от вспомогательной обмотки, которая работает непродолжительно. Перечисленное, даст возможность значительно увеличить рабочий ресурс контактной группы.

Реверс асинхронного двигателя с конденсаторным запуском лучше выполнять по следующей схеме:

  • При тяжелом пуске параллельно к главному конденсатору, используя средний контакт с самовозвратом ПНВ, подсоединяют добавочный конденсатор.
  • В таком примере переключают тумблер реверса только при заторможенном роторе, и никак не при его вращении.
  • Случайная перемена направленности работы мотора под напряжением, сопряжена с огромными скачками тока, что истощает его мото-ресурс. По этой причине посадочное место тумблера реверса на оборудовании нужно подбирать таким образом, чтобы сделать невозможным случайное включение его во время работы. Лучше установить его в каком-то углубленном месте конструкции.

Если электродвигатель не работает должным образом после сборки схемы, потребуется дважды перепроверить, что провода идут к правильным клеммам переключателя. И также удостоверится, что проводка не ослаблена или не повреждена.

Рекомендуется использовать увеличительное стекло, чтобы убедиться, что соединения выполнены правильно и даже самая тонкая нить провода случайно не касается другого проводка или клеммы.

Переменная сеть: электродвигатель 220 к сети 220

Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.

В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

Постановка задачи

Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.

Уточним важные моменты:

  • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
  • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
  • Направление вращения ротора обозначено с помощью стрелок.

Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

Переменная сеть: 380В к 220В

Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

Реверс однофазных синхронных машин

Для запуска этим моторам необходима вторая обмотка на статоре, в цепь которой включен фазосдвигающий элемент, обычно бумажный конденсатор. Реверсировать можно только те, у которых обе статорных обмотки равнозначны – по диаметру провода, числу витков, а также при условии, что одна из них не отключается после набора оборотов.

Суть схемы реверсирования в том, что фазосдвигающий конденсатор будет подключаться то к одной из обмоток, то к другой. Для примера рассмотрим асинхронный однофазный двигатель АИРЕ 80С2 мощностью 2,2 кВт.

В его клеммной коробке шесть резьбовых выводов, обозначенных литерами с цифрами W2 и W1, U1 и U2, V1 и V2. Чтобы двигатель вращался по часовой стрелке, коммутация производится следующим образом:

Чтобы вращение происходило против часовой стрелки, изменяют положение перемычек, они ставятся по схеме W2–U2 и U1– W1. Схема автоматического реверса строится так же на двух магнитных пускателях и трех кнопках – двух нормально разомкнутых «Пуск» и одной нормально замкнутой «Стоп».

Постоянный электроток: особенности

Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.

Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:

Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.

В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.

В электротранспорте применяются агрегаты с последовательным возбуждением.

Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.

Все способы включения электродвигателей постоянного тока могут реверсироваться:

Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.

Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.

Реверс трехфазных асинхронных машин

Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником. Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее. Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.

 Реверс двигателя — это изменение вращения ротора на противоположное. Изменить направление вращения можно у электродвигателя постоянного тока,

асинхронного и коллекторного двигателя переменного тока. Сложно представить себе устройство, в котором не применяется реверсивное вращение электродвигателя. Без изменения вращения невозможно представить работу тельфера, кран-балки, лебедок, грузоподъемных механизмов, лифтов, задвижек и т.п. Исключение составляют такие устройства, как заточные станки, вытяжки и т.д. В этой статье мы расскажем читателям сайта Сам Электрик, как осуществить реверс электродвигателей разных типов.

Реверсивное включение двигателей постоянного тока

Наиболее просто осуществить реверс двигателя постоянного тока, у которого статор с постоянными магнитами. Достаточно изменить полярность питания, чтобы ротор начал вращаться в обратную сторону.

Сложнее осуществить реверсирование мотора с электромагнитным возбуждением (последовательным, параллельным). Если просто поменять полярность питающего напряжения, то направление вращения ротора не изменится. Чтобы изменить направление вращения, достаточно поменять полярность только в обмотке возбуждения или только на щетках ротора.

Для осуществления реверса двигателей большой мощности полярность следует менять на якоре. Разрыв обмотки возбуждения на работающем моторе может привести к неисправности, т.к. возникающая ЭДС имеет повышенное напряжение, которое способно повредить изоляцию обмоток. Что приведет к выходу электродвигателя из строя.

Для осуществления обратного направления вращения ротора применяют мостовые схемы на реле, контакторах или транзисторах. В последнем случае можно и регулировать скорость вращения.

Мостовая схема включения транзисторов или реле

На рисунке представлена схема на транзисторах. В качестве иллюстрации работы транзисторы заменены контактами переключателя. Аналогично выполняются мостовые схемы не на биполярных, а на полевых транзисторах.

Схема реверсивного включения на полевых транзисторах

КПД такой схемы значительно выше, чем на транзисторах. Управление осуществляется микроконтроллером или простыми логическими схемами, предотвращающими одновременную подачу сигналов.

Изменение направления вращения ротора асинхронного двигателя

Наибольшее распространение в промышленности получили асинхронные двигатели, запитанные от трехфазного напряжения 380 вольт. Для того чтобы осуществить реверс, достаточно поменять две любые фазы.

Получила распространение схема подключения, выполненная на двух магнитных пускателях. Собственно для двигателей постоянного тока она аналогична, но используются двухполюсные контакторы или пускатели. Эту схему так и называют «схема реверсивного пускателя» или «реверсивная схема пуска асинхронного трёхфазного электродвигателя».

Схема реверсивного пускателя

При включении пускателя КМ1 кнопкой «Пуск 1», происходит прямая подача напряжения на обмотки и блокируется кнопка «Пуск 2» от случайного включения, посредством размыкания нормально-замкнутых контактов КМ-1. Двигатель вращается в одну сторону.

После отключения пускателя КМ1 кнопкой «Стоп» или полным снятием напряжения, можно включить КМ2 кнопкой «Пуск 2». В результате через контакты линия L2 подается напрямую, а L1 и L3 меняются местами. Кнопка «Пуск 1» заблокирована, так как нормально-замкнутые контакты пускателя КМ2 приводятся в движение и размыкаются. Двигатель начинает вращаться в другую сторону.

Схема применяется повсеместно и по сей день для подключения трехфазного двигателя в трехфазной сети. Простота схемного решения и доступность комплектующих — её весомые преимущества.

Наибольшее распространение находят электронные системы управления. Коммутационные схемы, которых собранные на тиристорах без пускателей. Хотя пускатели могут быть и установлены для дистанционного включения или выключения в этой цепи.

Схема реверса асинхронного двигателя на тиристорах без пускателей

Они сложнее, но и надежнее устройств на контакторах. Для управления используется системы импульсно-фазного управления (СИФУ), системы частотного управления. Это многофункциональные устройства, с их помощью можно не только осуществлять реверс асинхронного электродвигателя, но и регулировать частоту вращения.

В домашних условиях возникает необходимость подключения двигателя 380В на 220 с реверсом. Для этого необходимо произвести переключение обмоток звезда треугольник.

Однако, если предполагается подключение трехфазного электродвигателя к однофазной сети, то для этого применяется конденсатор, который подключается по нижеприведенной схеме.

Схема подключения трёхфазного двигателя к однофазной сети

При этом чтобы осуществить реверс, достаточно переключить провод сети с В на клемму А, а конденсатор отсоединить от А и подсоединить к клемме В. Удобно это сделать с помощью 6-контактного тумблера. Это типовое включение асинхронного электродвигателя к сети 220В с конденсатором.

Схема подключения коллекторного двигателя с реверсом

Чтобы осуществить реверс коллекторного двигателя, необходимо знать:

  1. Не на каждом коллекторном моторе можно осуществить реверс. Если на корпусе указана стрелка вращения, то его нельзя применять в реверсивных устройствах.
  2. Все двигатели, имеющие высокие обороты предназначены для вращения в одну сторону. Например, у электродвигателя, устанавливаемого в болгарках.
  3. У двигателя, который имеет небольшие обороты, вращение может осуществляться в разные стороны. Такие моторы смонтированы в электроинструментах, например, электродрелях, шуруповертах, стиральных машинах и т.п.

На рисунке представлена схема универсального коллекторного двигателя, который может работать как от постоянного, так и переменного тока.

Схема подключения обмоток коллекторного двигателя

Чтобы изменилось вращение ротора, достаточно поменять полярность напряжения на обмотке ротора или статора, как и в двигателях постоянного тока, от которых универсальные машины практически не отличаются.

Если просто изменить полярность подводящего напряжения на коллекторном двигателе, направление вращения ротора не изменится. Это необходимо учитывать при подключении электродвигателя к сети.

Также следует знать, что в моторах большой мощности коммутируют обмотку якоря. При переключении обмоток статора возникает напряжение самоиндукции, которое достигает величин, способных вывести двигатель из строя.

Конструктора-любители в своих поделках применяют различные типы двигателей. Зачастую они используют щеточный электродвигатель от стиральной машинки автомат. Это удобные моторчики, которые можно подключать непосредственно к сети 220 вольт. Они не требуют дополнительных конденсаторов, а регулировку оборотов можно легко производить с помощью стандартного диммера. На клеммную колодку выводятся шесть или семь выводов.

Зависит от типа двигателя:

  • Два идут на щетки коллектора.
  • От таходатчика на колодку приходит пара проводов.
  • Обмотки возбуждения могут иметь два или три провода. Третий служит для изменения скорости вращения.

Схема двигателя от стиральной машины

Чтобы выполнить реверс двигателя от стиральной машины, следует поменять местами выводы обмотки возбуждения. Если имеется третий вывод, то его не используют.

Схема реверса электродвигателя на ардуино

В конструировании моделей или робототехнике часто применяются небольшие щеточные электродвигатели постоянного тока, для управления которыми используется программируемый микроконтроллер ардуино.

Если вращение двигателя предполагается только в одну сторону, и мощность электродвигателя небольшая, а напряжение питания от 3,3 до 5 вольт, то схему можно упростить и запитать непосредственно от ардуино, но так делают редко.

В моделях с дистанционным управлением, где необходимо использовать реверс моторов с напряжением более 5В, применяют ключи, собранные по мостовой схеме. В этом случае схема подключения двигателя с реверсом на ардуино будет выглядеть подобно тому что изображено ниже. Такое включение применяется чаще всего.

Схема реверсивного управления электродвигателем на ардуино

В мостовой схеме могут применяться полевые транзисторы или специальное согласующее устройство — драйвер, с помощью которого подключаются мощные моторчики.

В заключение отметим, что собирать схему реверса электродвигателя должен подготовленный специалист. Однако, при самостоятельном подключении необходимо соблюдать условия техники безопасности, выбрать подходящую схему соединения и подобрать необходимые комплектующие, строго следуя инструкции по монтажу. В этом случае у конструктора не возникнет трудностей в подключении и эксплуатации электродвигателя.

Теперь вы знаете, что такое реверс электродвигателя и какие схемы подключения для этого используют. Надеемся, предоставленная информация была для вас полезной и интересной!

Двигатель постоянного тока

Для начала рассмотрим повнимательней
обычный двигатель
постоянного тока. Любой двигатель
имеет две основные части — ротор и статор.
В коллекторном двигателе статор —
неподвижная часть, состоит из постоянных
магнитов (или в более мощных двигателях
электромагнитов). Ротор (якорь) —
вращается, совмещён с валом двигателя
и состоит из многих катушек (как минимум
трех). Коллектор (щёточно-коллекторный
узел) отвечает за переключение выводов
катушек ротора. Ток в таком двигателе
подводится к катушкам ротора через
скользящие контакты (или щётки). В один
момент времени подключена только одна
катушка, она и создаёт момент вращения
двигателя за счет проходящего тока.

С точки зрения базовых элементов
схемотехники любой двигатель можно
представить в виде следующей эквивалентной
схемы:

Когда мотор подключён источнику
постоянного тока и еще не начал вращаться,
то он представляет из себя обычное
сопротивление. То есть через него течет
ток согласно закону Ома и сопротивлению
его обмотки. Преобладает компонента R.
Индуктивность начинает влиять когда
напряжение не постоянное, например,
если мотор питается от ШИМ (PWM) сигнала.

Сопротивление ротора и индуктивность,
как правило, очень малы. Его можно
померить обычным мультиметром. Небольшие
модельные моторы имеют сопротивление
1-10 Ом. Поэтому, при старте мотора (когда
он ещё не начал вращаться), ток сильно
превышает рабочий ток мотора и если
мотор долго будет неподвижен (его
заклинило), то такой высокий ток может
привести к перегреву мотора и выходу
из строя.

Индуктивность катушек ротора пытается
поддерживать ток протекающий через
обмотки постоянным. Ее влияние заметно
только когда напряжение меняется. Когда
мотор начинает вращаться, то коллектор
начинает переключать катушки ротора,
что вызывает изменение напряжения.
Индуктивность пытается в эти моменты
поддерживать ток протекающий через
мотор на постоянном уровне за счет
напряжения.

Во время вращения катушки ротора
начинают вырабатывать ток (как генератор)
— возникает обратная ЭДС. Чем быстрее
вращается ротор, тем выше обратная ЭДС
возникающая в катушках, а так как она
направлена против напряжения питания,
то ток потребляемый мотором снижается.

В дальнейшем нам понадобятся следующие
выводы:

  • пока мотор не начал вращаться он
    является сопротивлением

  • если приложить к мотору изменяющееся
    напряжение (например PWM), то индуктивность
    будет иметь большое влияние, она будет
    сопротивляться изменению тока через
    мотор

  • когда мотор вращается, то он является
    генератором, и за счет этого потребляемый
    ток снижается (итоговое напряжение
    равно V — Vbemf).

Как подключить мотор к МК

В данной статье мы будем разбираться
как управлять с помощью МК скоростью и
направлением вращения обычным двигателем
постоянного тока.

Для того чтобы коллекторный мотор
постоянного тока начал вращаться,
достаточно подать на него определённое
напряжение. Полярность данного напряжения
будет определять направление его
вращения, а величина напряжения —
скорость вращения. Напряжение нельзя
менять безгранично. Каждый мотор
рассчитан на определённый диапазон
напряжений. При повышении напряжения
ток через мотор будет расти, и он начнётся
перегреваться и может сгореть. На
следующем графике некоего мотора хорошо
видна взаимосвязь его основных
показателей.


Максимальной
мощности (Torque — крутящий момент) мотор
достигает при максимальном токе. И
зависимость тока и момента — линейная.
Максимальной скорости двигатель
достигает при отсутствии нагрузки (на
холостых оборотах), при увеличении
нагрузки скорость вращения падает.
Номинальное рабочее напряжение указано
в паспорте на двигатель и именно для
него и приведён и этот график. Если же
снижать напряжение, то скорость вращения,
и все остальные показатели будут тоже
падать. Как правило, ниже 30-50% от
номинального напряжения мотор перестанет
вращаться. Если же мотор не сможет
прокрутить вал (его заклинило), то по
сути станет сопротивлением и потребляемый
ток достигает максимальной величины,
зависящей от внутреннего сопротивления
его обмоток. Обычный мотор не рассчитан
на работу в таком режиме и может сгореть.

Посмотрим как меняется ток от нагрузки
на реальном моторе R380-2580.


Мы
видим, что рабочее напряжение данного
мотора — 12В, потребляемый ток под
нагрузкой — 1.5А. Ток останова мотора
вырастает до 8А, а в холостом же вращении,
потребляемый ток равен всего 0.8А.

Как мы знаем, порт микроконтроллера
не может выдать ток больше 50мА, и
напряжение питания 12В для него слишком
большое. Для управления моторами нам
понадобится электронный ключ —
транзистор, возьмём обычный биполярный
транзистор NPN и подключим его по следующей
неправильной схеме.

Чтобы мотор начал вращаться, на базу
транзистора необходимо подать небольшой
ток, далее транзистор откроется и сможет
пропустить через себя гораздо больший
ток и напряжение — мотор будет вращаться.
Стоит отметить что, если мы соберём
такую схему, то транзистор очень
скоро, если не сразу, выйдет из строя
.
Чтобы этого не произошло, его необходимо
защитить.

Как мы уже знаем одна из компонент
мотора — индуктивность — сопротивляется
изменению тока. Поэтому, когда мы закроем
транзистор, чтобы выключить мотор, то
сопротивление транзистора резко
увеличится и он перестанет пропускать
через себя ток. Однако индуктивность
будет сопротивляться этому, и для того,
чтобы удержать ток на прежнем уровне,
по закону Ома, напряжение на коллекторе
транзистора начнёт резко повышаться
(может достигнуть даже 1000В, правда очень
на малое время) и транзистор сгорит.
Чтобы этого не произошло необходимо
параллельно обмоткам мотора поставить
диод, который откроет путь для обратного
напряжения и замкнёт его на обмотке
мотора, тем самым защитит транзистор.

Также, все постоянные моторы имеют
еще одну неприятность — при вращении
механический контакт в коллекторе не
идеален, щётки искрят в процессе работы,
создавая помехи, что может привести к
сбою микроконтроллера. Чтобы снизить
эти помехи, необходимо использовать
конденсаторы небольшой ёмкости,
подключенный параллельно выводам мотора
(как можно ближе к самому мотору). Вот
окончательная правильная схема
(диод может быть не обязательно Шоттки,
но он предпочтителен).

Биполярные транзисторы в открытом
состоянии они ведут себя как диоды (на
них падает около 0.7 В). А это, в свою
очередь, вызывает их большой нагрев на
больших токах и снижает КПД схемы
управления мотором. Поэтому лучше
управлять моторами с помощью полевых
(MOSFET) транзисторов. В настоящее время
они достаточно распространены и имеют
невысокую цену. Их низкое сопротивление
в открытом состоянии позволяет
коммутировать очень высокие токи с
минимальными потерями. Однако и у них
есть свои недостатки. Так как MOSFET
транзисторы управляются напряжением,
а не током (и обычно оно составляет 10В),
то нужно или выбирать специальные
логические MOSFET, которые могут управляться
низким напряжением — 1.8 .. 2.5В или
использовать специальные схемы накачки
напряжения (драйверы полевых транзисторов).
Как выбирать MOSFET под вашу схему мы
рассмотрим в других статьях, на конкретных
приборах.

Теперь, подавая на выход микроконтроллера
логическую единицу, мы заставим мотор
вращаться, а логический ноль — остановится.
Однако вращаться он будет с постоянной
скоростью и только в одну сторону.
Хотелось бы иметь возможность менять
направление вращения мотора, а также
его скорость. Рассмотрим, как этого
можно добиться с помощью микроконтроллера.

H-Мост — меняем направление
вращения мотора

Для управления направлением вращения
мотора существует специальная схема,
которая называется H-мост (схема выглядит
как буква H).


Работает
схема очень просто. Если открыть верхний
правый и левый нижний транзистор, то на
клемах мотора справа будет плюс, а слева
будет минус. Мотор будет крутиться в
одну сторону. Если открыть левый верхний
и правый нижний, то справа будет минус,
а слева плюс — полярность тока сменится,
и мотор будет крутиться в другую сторону.
Паразитные диоды внутри MOSFET транзисторов
будут защищать всю схему (параметры
этих диодов не очень хорошие и в реальных
схемах могут понадобиться более
быстродействующие диоды Шотке параллельно
паразитным диодам, для снижения нагрева
полевого транзистора), так что лишние
компоненты не понадобятся, кроме
искрогасящего конденсатора.

В схеме H-моста в качестве нижних
транзисторов всегда используются
N-канальные, а вот верхние могут быть
как N-канальные, так и P-канальные.
P-канальными транзисторами в верхнем
ключе проще управлять, достаточно
сделать схему смещения уровня напряжения
на затворе. Для этого можно использовать
маломощный N-канальный полевой или
биполярный транзистор. Нижним транзистором
можно управлять напрямую от МК, если
выбрать специальный логический полевой
транзистор.

Если в вашей схеме будет использоваться
высоковольтный мотор постоянного тока
(больше 24В) или мощный мотор с токами
более 10А, то лучше использовать специальные
микросхемы — драйверы MOSFET транзисторов.
Драйверы управляются, как правило,
сигналами микроконтроллера от 2 до 5В,
а на выходе создают напряжение необходимое
для полного открытия MOSFET транзисторов
— обычно это 10-15В. Также драйверы
обеспечивают большой импульсный ток
необходимый для ускорения открытия
полевых транзисторов. С помощью драйверов
легко организовать управление верхним
N-канальным транзистором. Очень хорошим
драйвером является микросхема L6387D от
компании ST. Данная микросхема хороша
тем, что не требует диода для схемы
накачки напряжения. Вот так она
подключается для управления H-мостом
на 2-х N-канальных транзисторах.


N-канальные
полевые транзисторы, стоят дешевле
P-канальных, а также имеют меньшее
сопротивление в открытом состоянии,
что позволяет коммутировать большие
токи. Но ими сложнее управлять в верхнем
положении. Проблема использования
N-канального транзистора в верхнем ключе
состоит в том, что для его открытия нужно
подать напряжение 10В относительно
Истока, а как вы видите на схеме там
может быть все напряжение питания
мотора, а не 0 вольт. Таким образом, на
базу необходимо подать 10В + напряжение
питания мотора. Нужна специальная
bootstrap схема для повышения напряжения.
Обычно, для этих целей используется
схема накачки напряжения на конденсаторе
и диоде. Однако такая схема работает
только, если вы постоянно подзаряжаете
конденсатор — открывая, закрывая нижний
транзистор (в ШИМ управлении). Для
возможности поддерживания верхнего
транзистора постоянно открытым нужно
еще усложнять схему — добавлять схему
внешней подпитки конденсатора. Вот
пример схемы управления N-канальными
транзисторами без использования
микросхем драйверов.

Перейдём к управлению скоростью
вращения мотора.

ШИМ сигнал — управляем
скоростью вращения мотора

Моторы постоянного тока имеют линейную
зависимость скорости вращения от
приложенного напряжения. Таким образом,
чтобы снизить скорость вращения, надо
подать меньше напряжения. Но надо
помнить, что с падением напряжения, у
мотора падает мощность. Поэтому, на
практике, можно управлять скоростью
мотора только в пределах 30%-50% от полной
скорости вращения мотора. Для управления
скоростью мотора без потери мощности,
необходима обратная связь от мотора по
оборотам вращения, например как в
электрическом шуруповерте. Такой режим
управления, требует более сложной схемы.
Мы же будет рассматривать простой
вариант — управление скоростью мотора
без обратной связи.

Итак, нам необходимо менять напряжение
подаваемое на мотор. В нашем распоряжении
есть MOSFET транзистор. Мы помним, что наш
мотор имеет индуктивность. Индуктивность
сопротивляется изменению тока. И если
быстро включать и выключать напряжение
на моторе, то в момент выключения ток
будет продолжать течь благодаря
индуктивности. А мотор будет продолжать
вращаться по инерции, а не остановится.
Но естественно, вращаться он будет
медленнее, среднее напряжение на его
обмотках будет меньшее.

Микроконтроллер, как раз, отлично
умеет генерировать импульсный ШИМ (PWM)
сигнал. А мотор умеет интегрировать
данный сигнал (усреднять) за счёт
индуктивности обмоток и инерции ротора.
От коэффициента заполнения (скважности)
ШИМ сигнала как раз и будет зависеть
полученное мотором среднее напряжение,
а значит и скорость.

Какая же частота ШИМ нужна для лучшего
управления мотором? Ответ очень простой,
чем больше, тем лучше. Минимальная
частота зависит от индуктивности мотора,
а также массы ротора и нагрузки на вал
мотора. Если смоделировать в электрическом
симуляторе (например, PROTEUS) ШИМ управление
мотором, то будет видно, что чем больше
частота ШИМ, тем более ровный ток
протекает через мотор (ripple current —
снижается при увеличении частоты).
Низкая частота:


высокая
частота:

Если же частота упадёт ниже определённого
уровня, ток станет разрывным (будет
падать до нуля) и в итоге мотор не сможет
крутиться.

Отлично, все просто! Делаем частоту
ШИМ побольше, например 1 МГц, и любому
мотору хватит. В жизни же, все не так
просто. Для понимания всех возможных
проблем можно упрощенно принять затвор
MOSFET транзистора за идеальный конденсатор.
Для того чтобы транзистор полностью
открылся, конденсатор необходимо
зарядить до 10В (на самом деле меньше).
Чем больше ток, который мы можем вкачать
в конденсатор, тем быстрее он зарядится,
а значит быстрее откроется транзистор.
В процессе открытия транзистора, ток и
напряжение на нем будут максимальными,
и чем больше это время, тем сильнее
нагреется транзистор. В datasheet обычно
есть такой параметр как Qgate — полный
заряд, который надо передать транзистору,
чтобы он открылся полностью.

Чем меньше эта величина, тем меньшей
ток нужен для управления данным
транзистором. Естественно, такой ток
нужен только на очень короткое время —
какое, опять же написано в datasheet — tr,
обычно оно измеряется в наносекундах.
Чтобы выдать такой ток, нужны специальные
драйверы, если же мы управляем логическим
MOSFET напрямую от микроконтроллера, то
мы не сможем обеспечить такой ток.
Поэтому для защиты микроконтроллера
необходимо перед базой MOSFET ставить
резистор, а это сильно замедляет время
открытия. В итоге, микроконтроллер в
прямом управлении не может обеспечить
более 1-2 мкc на открытие и закрытие
транзистора. Время открытия и закрытия
должно занимать не более 10% длительности
ШИМ сигнала. Таким образом, мы сразу
получаем ограничение в частоте — 50 000
Гц. Дополнительно, сам микроконтроллер
должен иметь возможность генерировать
ШИМ сигнал с возможностью хотя бы 8
битного управления шириной ШИМ (для
этого требуется большая рабочая частота
МК). В итоге, обеспечить большую частоту
ШИМ не так просто. Так же, на высоких
частотах, начитает мешать паразитные
ёмкости и индуктивности. На плате,
которую можно сделать дома, получить
частоту ШИМ больше 300 кГц, очень сложно.
Трассировка платы должна быть сделана
идеально. Для снижения требований к
плате, в настоящее время выпускаются
специальные MOSFET, объединённые с драйверами
управления, они позволяют на заводских,
многослойных платах получить частоту
управления MOSFET в 2МГц.

Индуктивность моторов не такая уж
маленькая, и такие большие частоты не
нужны. Для управления моторами постоянного
тока вполне достаточно 8 кГц, лучше около
20кГц (за звуковым диапазоном).

Дополнительно стоит отметить, что для
снижения стартового тока необходимо
плавно поднимать на старте частоту ШИМ.
А еще — лучше контролировать стартовый
ток мотора с помощью датчиков тока.

ШИМ управление мотором предполагает
очень быстрое изменение напряжение от
0 для максимального, что порождает
большие проблемы при трассировке платы.
Перечислим коротко правила, которые
необходимо соблюдать при трассировке
платы.

  • Земли управления моторами и
    микроконтроллера обязательно должны
    быть разделены, соединение в одной
    точке тонким проводником, например
    0.3мм, как можно ближе к проводам питания
    всей схемы

  • Драйвера управления MOSFET должны
    быть как можно ближе к самим MOSFET
    транзисторам

  • Исполнение управляющей области
    обязательно двухсторонее, желательно
    с земляным слоем с одной стороны. При
    импульсном управлении возникают
    электромагнитные помехи, чтобы снизить
    их, земляной слой должен быть рядом.

  • Обязательно наличие конденсатора
    как можно ближе к зоне прохождения
    больших импульсных токов. Если такого
    конденсатора не будет, то напряжение
    на линии питания будет сильно проседать
    и микроконтроллер будет постоянно
    сбрасываться. Также без такого
    конденсатора, за счёт индуктивности
    проводов питания, напряжения на линии
    питания может увеличиться в несколько
    раз и компоненты выйдут из строя!

Более подробно мы рассмотрим как
работают эти правила на конкретных
приборах.

ШИМ сигнал в H-мосте

Чтобы можно было менять направление
вращения и скорость — нужна схема
H-моста, а для регулирование скорости
нужно управлять транзисторами ШИМ
сигналом. В схеме H-моста четыре
транзистора. Как лучше ими управлять?
На какой транзистор подавать ШИМ сигнал?
Разберёмся в этом вопросе (рекомендуем
прочитать очень подробную статью
на эту тему).

Рассмотрим нашу схему с точки зрения
нагрева транзисторов. Это один из
основных критериев, по которому наш
прибор может выйти из строя. Полевой
транзистор состоит из двух элементов
— собственно транзистор и паразитный
диод. В схеме управления мотором оба
элемента работают. Нагрев полевого
транзистора происходит в следующие
моменты времени:

  • когда транзистор открыт, нагрев
    идёт из-за сопротивления в открытом
    состоянии Rdson, пропорционально времени
    открытия транзистора выделяется
    мощность P = I * I * Rdson

  • когда транзистор закрыт, то ток ЭДС
    мотора идёт через диод, то есть нагрев
    идет из-за диода P = I * U diode forward (как
    правило 1В)

  • когда транзистор переключается из
    открытого состояния в закрытое, то
    нагрев пропорционален времени открытия
    и закрытия транзистора

Посмотрим, как влияет схема управления
на нагрев нашим электронных ключей.
Допустим, что мы управляем мотором ШИМ
сигналом со скважностью 50% и мотор
крутится в одну сторону.

Самый простой вариант — применить
ШИМ сигнал к одному из двух транзисторов,
а второй оставить все время открытым.
Обычно, ШИМ в этом случае подаётся на
нижний транзистор (N типа), который обычно
быстрее. В этом случае нагрев нижнего
будет больше верхнего на величину тепла
выделяемого при переключениях транзистора.
Чтобы сравнять счёт, можно попеременно
подавать ШИМ сигнал то на верхний (если
они одинаковые), то на нижний транзистор.
Также можно подавать ШИМ на оба транзистора
одновременно, но из-за разницы в
транзисторах это будет не эффективно,
а также будет увеличивать нагрев за
счёт переключения транзисторов. При
такой схеме управления, два других
транзистора работают как диоды. К
счастью, наибольший ток через диод будет
при наибольшей скважности ШИМ, при этом
диод будет задействован очень малое
время.

Для исключения тока через диоды,
которые дают существенный нагрев, можно
мотор никогда не отключать от напряжения,
а вместо этого, крутить его в обратную
сторону. Таким образом, мы должны,
например 70% ШИМ сигнала крутить вправо,
а 30% влево. Это даст в итоге 70%-30%=40% скорости
вправо. Но при этом не будут задействованы
диоды. Такой метод управления называется
комплиментарным. Такая схема требует
большого конденсатора на линии питания,
а также источника питания, который может
потреблять ток (например аккумулятора).

Вместо вращения мотора в разные
стороны, можно помогать диодам — а
именно тормозить мотор, открывать два
верхних транзистора в момент низкого
уровня ШИМ сигнала. На практике, все эти
методы не дают существенного изменения
скорости вращения двигателя, но позволяют
эффективно управлять нагревом полевых
транзисторов. Более подробно про
особенности различных схем управления
можно в этой статье.

На этом мы закончим нашу статью про
моторы. Теперь можно перейти к практике
— будем делать плату
управления 4-мя
моторами
для робота.

Понравилась статья? Поделить с друзьями:

Читайте также:

  • Как можно изменить направление вращения синхронного двигателя
  • Как можно изменить направление вращения ротора электродвигателя
  • Как можно изменить направление вращения ротора трехфазного асинхронного двигателя
  • Как можно изменить направление вращения магнитного поля трехфазной обмотки статора
  • Как можно изменить направление вращения двигателя постоянного тока при пуске через пусковой реостат

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии